84 research outputs found

    The Haemers bound of noncommutative graphs

    Get PDF
    We continue the study of the quantum channel version of Shannon's zero-error capacity problem. We generalize the celebrated Haemers bound to noncommutative graph

    Quantum asymptotic spectra of graphs and non-commutative graphs, and quantum Shannon capacities

    Get PDF
    We study quantum versions of the Shannon capacity of graphs and non-commutative graphs. We introduce the asymptotic spectrum of graphs with respect to quantum homomorphisms and entanglement-assisted homomorphisms, and we introduce the asymptotic spectrum of non-commutative graphs with respect to entanglement-assisted homomorphisms. We apply Strassen's spectral theorem (J. Reine Angew. Math., 1988) and obtain dual characterizations of the corresponding Shannon capacities and asymptotic preorders in terms of their asymptotic spectra. This work extends the study of the asymptotic spectrum of graphs initiated by Zuiddam (Combinatorica, 2019) to the quantum d

    Graph Homomorphisms for Quantum Players

    Get PDF
    A homomorphism from a graph X to a graph Y is an adjacency preserving mapping f:V(X) -> V(Y). We consider a nonlocal game in which Alice and Bob are trying to convince a verifier with certainty that a graph X admits a homomorphism to Y. This is a generalization of the well-studied graph coloring game. Via systematic study of quantum homomorphisms we prove new results for graph coloring. Most importantly, we show that the Lovász theta number of the complement lower bounds the quantum chromatic number, which itself is not known to be computable. We also show that other quantum graph parameters, such as quantum independence number, can differ from their classical counterparts. Finally, we show that quantum homomorphisms closely relate to zero-error channel capacity. In particular, we use quantum homomorphisms to construct graphs for which entanglement-assistance increases their one-shot zero-error capacity.Published versio

    Quantum asymptotic spectra of graphs and non-commutative graphs, and quantum Shannon capacities

    Get PDF
    We study quantum versions of the Shannon capacity of graphs and non-commutative graphs. We introduce the asymptotic spectrum of graphs with respect to quantum and entanglement-assisted homomorphisms, and we introduce the asymptotic spectrum of non-commutative graphs with respect to entanglement-assisted homomorphisms. We apply Strassen’s spectral theorem (J. Reine Angew. Math., 1988) in order to obtain dual characterizations of the corresponding Shannon capacities and asymptotic preorders in terms of their asymptotic spectra. This work extends the study of the asymptotic spectrum of graphs initiated by Zuiddam (Combinatorica, 2019) to the quantum domain. We then exhibit spectral points in the new quantum asymptotic spectra and discuss their relations with the asymptotic spectrum of graphs. In particular, we prove that the (fractional) real and complex Haemers bounds upper bound the quantum Shannon capacity, which is defined as the regularization of the quantum independence number (Mančinska and Roberson, J. Combin. Theory Ser. B, 2016), and that the fractional real and complex Haemers bounds are elements in the quantum asymptotic spectrum of graphs. This is in contrast to the Haemers bounds defined over certain finite fields, which can be strictly smaller than the quantum Shannon capacity. Moreover, since the Haemers bound can be strictly smaller than the Lovász theta function (Haemers, IEEE Trans. Inf. Theory, 1979), we find that the quantum Shannon capacity and the Lovász theta function do not coincide. As a consequence, two well-known conjectures in quantum information theory, namely: 1) the entanglement-assisted zero-error capacity of a classical channel is equal to the Lovász theta function and 2) maximally entangled states and projective measurements are sufficient to achieve the entanglement-assisted zero-error capacity, cannot both be true

    Achievable error exponents of data compression with quantum side information and communication over symmetric classical-quantum channels

    Full text link
    A fundamental quantity of interest in Shannon theory, classical or quantum, is the optimal error exponent of a given channel W and rate R: the constant E(W,R) which governs the exponential decay of decoding error when using ever larger codes of fixed rate R to communicate over ever more (memoryless) instances of a given channel W. Here I show that a bound by Hayashi [CMP 333, 335 (2015)] for an analogous quantity in privacy amplification implies a lower bound on the error exponent of communication over symmetric classical-quantum channels. The resulting bound matches Dalai's [IEEE TIT 59, 8027 (2013)] sphere-packing upper bound for rates above a critical value, and reproduces the well-known classical result for symmetric channels. The argument proceeds by first relating the error exponent of privacy amplification to that of compression of classical information with quantum side information, which gives a lower bound that matches the sphere-packing upper bound of Cheng et al. [IEEE TIT 67, 902 (2021)]. In turn, the polynomial prefactors to the sphere-packing bound found by Cheng et al. may be translated to the privacy amplification problem, sharpening a recent result by Li, Yao, and Hayashi [arXiv:2111.01075 [quant-ph]], at least for linear randomness extractors.Comment: Comments very welcome
    • …
    corecore