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Abstract
A homomorphism from a graph X to a graph Y is an adjacency preserving mapping f : V (X)→
V (Y ). We consider a nonlocal game in which Alice and Bob are trying to convince a verifier
with certainty that a graph X admits a homomorphism to Y . This is a generalization of the
well-studied graph coloring game. Via systematic study of quantum homomorphisms we prove
new results for graph coloring. Most importantly, we show that the Lovász theta number of
the complement lower bounds the quantum chromatic number, which itself is not known to
be computable. We also show that other quantum graph parameters, such as quantum inde-
pendence number, can differ from their classical counterparts. Finally, we show that quantum
homomorphisms closely relate to zero-error channel capacity. In particular, we use quantum
homomorphisms to construct graphs for which entanglement-assistance increases their one-shot
zero-error capacity.
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1 Graph homomorphism game as a generalization of coloring game

In the (X, c)-coloring game, Alice and Bob are trying to convince a verifier with certainty
that the graph X = (V,E) is c-colorable [10, 6]. The verifier sends Alice and Bob vertices
a, b ∈ V respectively and they respond with colors α, β ∈ [c] accordingly. To win Alice an
Bob need to respond with α = β for a = b and with α 6= β for ab ∈ E. Classical Alice and
Bob can win with probability 1 if and only if X is c-colorable. In contrast, quantum Alice
and Bob using shared entanglement can sometimes win the (X, c)-coloring game even when
X is not c-colorable [6, 1, 5, 16].

We introduce a natural generalization of the graph coloring game: the graph homo-
morphism game. A graph homomorphism is a function ϕ : V (X) → V (Y ) such that ϕ(x)
and ϕ(x′) are adjacent whenever x and x′ are adjacent. When such a map exists we say
that X has a homomorphism to Y and write X → Y . A c-coloring of X can be viewed
as a homomorphism ϕ : X → Kc, where Kc is the complete graph on c vertices. Graph
homomorphisms have been used to prove results about different types of chromatic numbers,
graph products etc.; they have applications in areas like complexity theory, statistical physics
and others (see [12, 13] for a general reference).
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Our motivation for this work is that a systematic study of quantum homomorphisms can
yield

better understanding of and new results concerning quantum graph coloring (see Section 4);
new examples of nonlocal games with perfect quantum but not classical strategies (see
Section 2);
new results for zero-error capacity via the connections that we establish in Section 3.

In the (X,Y )-homomorphism game the verifier sends Alice and Bob vertices x, x′ ∈ V (X)
respectively and they respond with vertices y, y′ ∈ V (Y ) accordingly. To win players need to
respond with y = y′ to questions x = x′ and with yy′ ∈ E(Y ) to questions xx′ ∈ E(X). Like
the coloring game, the (X,Y )-homomorphism game can be won with certainty by classical
players if and only if X → Y . If quantum players using shared entanglement can win the
(X,Y )-homomorphism game with certainty we say that X has a quantum homomorphism to
Y and write X q−→ Y . As we know from the case of coloring and will see from new examples
in the next section, sometimes X q−→ Y even though X 6→ Y (i.e., X does not admit a
homomorphism to Y ).

It is known that whenever X is quantum c-colorable, the (X, c)-coloring game can be won
using projective measurements on maximally entangled state [5]. Moreover, Bob’s projectors
are the complex conjugates of Alice’s. We have verified that the proof of [5] extends to the case
of the (X,Y )-homomorphism game. This allows the following combinatorial reformulation:

I Lemma 1. We have X q−→ Y if and only if there exists an assignment of projectors Pxy to
pairs of vertices (x, y) ∈ V (X)× V (Y ) such that

∑
y Pxy = I for all x ∈ V (X) and

PxyPx′y′ = 0 whenever (x = x′ & y 6= y′) or (x ∼ x′ & y 6∼ y′).

This reformulation is instrumental in proving many of the results in the coming sections.
The other proof technique that we employ only uses the players’ ability to win certain
homomorphism games to conclude that they can also win some other homomorphism game.
For example, this kind of reasoning easily shows that quantum homomorphisms are transitive,
i.e., X q−→ Y and Y q−→ Z implies that X q−→ Z.

Curiosly, if instead of entanglement Alice and Bob are given access to non-signalling
correlations, they can win the (X,K2)-homomorphism game with certainty for any graph X.
This implies that they can win any (X,Y )-homomorphism game for arbitrary graphs X,Y
as long as E(Y ) 6= ∅.

2 Quantum parameters

The quantum chromatic number, χq(X), is defined as the smallest c for which quantum players
can win the (X, c)-coloring game with certainty [10, 6]. This parameter has been relatively
well-studied [1, 5, 9, 17, 16]. In particular, it is known that for the family of graphs Ω4n there
is an exponential separation between χ(Ω4n) and χq(Ω4n). Here, the so-called Hadamard
graph Ωn is the graph with vertex set {±1}n and edge set {(v, w) : vTw = 0}. Also, a
complete characterization of graphs with χq(X) < χ(X) has been given [16]. However, many
questions remain open. For example, it is not known whether χq(X) is computable, or whether
there exists a family of graphs Xn such that limn→∞ χ(Xn) =∞ but limn→∞ χq(Xn) <∞.
A systematic study of quantum homomorphisms could aid in answering these and other
questions

Using the framework of quantum homomorphisms, we can introduce a quantum analogue
for any graph parameter defined in terms of graph homomorphisms (e.g., clique number,
independence number, odd girth, etc.). Here we only consider the following:
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quantum clique number, ωq(X) = max{n : Kn
q−→ X};

quantum independence number, αq(X) = ωq(X) where X denotes the complement of X.
Let us remark that by now, the quantum independence number has been further used by
many other authors exploring parallel repetition, zero-error communication, binary constraint
system games etc.

We are about to see that quantum clique and independence number can be different
from their classical counterparts. Moreover, we show how to construct a graph with such a
separation using any two graphs X and Y such that X q−→ Y but X 6→ Y .

For graphs X and Y , their homomorphic product, X n Y , is the graph with vertex
set V (X) × V (Y ), and vertex (x, y) is adjacent to (x′, y′) if either (x = x′ and y 6= y′) or
(xx′ ∈ E(X) and yy′ /∈ E(Y )). This definition is motivated by the fact that X → Y if and
only if α(X n Y ) = |V (X)|. We have proved the quantum version of this fact, i.e., X q−→ Y if
and only if αq(X n Y ) = |V (X)|. Combining these two facts gives:

I Theorem 2. Let X,Y be graphs such that X q−→ Y but X 6→ Y . Then we have that
α(X n Y ) < αq(X n Y ) and ω(X n Y ) < ωq(X n Y ).

This theorem allows to obtain separations for clique and independence numbers starting from
any graph X with χq(X) < χ(X). For example, the fact that Ωn

q−→ Kn [1] but Ω4n 6→ K4n

for n > 2 [11] implies that α(Ω4n nK4n) < αq(Ω4n nK4n) for all n > 2.

3 Relationship to entanglement-assisted zero-error capacity

The one-shot zero-error capacity, c0(X), of a graph X is the maximum number of different
messages that can be sent without error by one use of any classical noisy channel N with
confusability graph X [18, 15]. In the scenario where the communicating parties can use
shared entanglement, we speak about entanglement-assisted zero-error capacity, c∗0(X) [7].

The separations between c∗0(X) and c0(X) and their asymptotic analogues have been
investigated in [7, 14, 16, 3]. It is an open question how large these separations can be. As
[16] shows, a separation between the one-shot zero-error capacities can be obtained starting
from any graph X with χq(X) < χ(X).

A somewhat analogous relationship can be shown to hold for quantum homomorphisms
in general:

I Theorem 3. Let X,Y be graphs such that X q−→ Y but X 6→ Y . Then we have that

c0(X n Y ) < c∗0(X n Y ).

It turns out that the quantum independence number, αq(X), is closely related to and
might equal the one-shot entanglement-assisted zero-error capacity:

I Theorem 4. For any graph X we have αq(X) ≤ c∗0(X) with equality if and only if c∗0(X)
can be achieved using a strategy in which all of Alice’s measurements are projective and the
shared state is maximally entangled.

By the above theorem, proving that αq(X) = c∗0(X) for all graphs X would settle the open
question of whether projective measurements on maximally entangled state suffice to achieve
c∗0(X). If this was the case, the results from [16] would imply a complete characterization of
graphs for which c0(X) < c∗0(X).

Finally, we show that quantum homomorphisms respect the order of both the one-shot
and asymptotic entanglement-assisted zero-error capacities.
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I Theorem 5. Let Θ∗ denote the entanglement-assisted Shannon capacity. For any graphs
X,Y we have that X q−→ Y implies both

c∗0(X) ≤ c∗0(Y ) and Θ∗(X) ≤ Θ∗(Y ).

The above theorem can be used to lower bound Θ∗(Y ) in the case when X q−→ Y and Θ∗(X)
is known for some graph X.

4 Relationship to Lovász ϑ

The Lovász theta number of X, denoted ϑ(X), was introduced in [15] as an efficiently
computable upper bound for the Shannon capacity Θ(X). It has been shown that ϑ(X)
upper bounds even the entaglement-assisted Shannon capacity Θ∗(X) [2, 8]. We have
established that quantum homomorphisms respect the order of Lovász theta:

I Theorem 6. For any graphs X,Y we have that X q−→ Y implies ϑ(X) ≤ ϑ(Y ).

Applying the above theorem with Y being the complete graph on χq(X) vertices gives the
following:

I Corollary 7. For any graph X we have ϑ(X) ≤ χq(X).

Corollary 7 gives us an efficiently computable lower bound on the quantum chromatic
number χq(X), which itself is not even known to be computable (By now our lower bound on
χq(X) has been strengthened by replacing ϑ with ϑ+ [4]). The lower bound from Corollary 7
can also be used to conclude that the previously established [1] upper bound χq(Ωn) ≤ n is
actually tight for all Hadamard graphs Ωn with 4|n. (The other cases are not interesting
since Ωn is either empty or bipartite.)
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