1,925 research outputs found

    Evolutionary consequences of behavioral diversity

    Get PDF
    Iterated games provide a framework to describe social interactions among groups of individuals. Recent work stimulated by the discovery of "zero-determinant" strategies has rapidly expanded our ability to analyze such interactions. This body of work has primarily focused on games in which players face a simple binary choice, to "cooperate" or "defect". Real individuals, however, often exhibit behavioral diversity, varying their input to a social interaction both qualitatively and quantitatively. Here we explore how access to a greater diversity of behavioral choices impacts the evolution of social dynamics in finite populations. We show that, in public goods games, some two-choice strategies can nonetheless resist invasion by all possible multi-choice invaders, even while engaging in relatively little punishment. We also show that access to greater behavioral choice results in more "rugged " fitness landscapes, with populations able to stabilize cooperation at multiple levels of investment, such that choice facilitates cooperation when returns on investments are low, but hinders cooperation when returns on investments are high. Finally, we analyze iterated rock-paper-scissors games, whose non-transitive payoff structure means unilateral control is difficult and zero-determinant strategies do not exist in general. Despite this, we find that a large portion of multi-choice strategies can invade and resist invasion by strategies that lack behavioral diversity -- so that even well-mixed populations will tend to evolve behavioral diversity.Comment: 26 pages, 4 figure

    Small games and long memories promote cooperation

    Get PDF
    Complex social behaviors lie at the heart of many of the challenges facing evolutionary biology, sociology, economics, and beyond. For evolutionary biologists in particular the question is often how such behaviors can arise \textit{de novo} in a simple evolving system. How can group behaviors such as collective action, or decision making that accounts for memories of past experience, emerge and persist? Evolutionary game theory provides a framework for formalizing these questions and admitting them to rigorous study. Here we develop such a framework to study the evolution of sustained collective action in multi-player public-goods games, in which players have arbitrarily long memories of prior rounds of play and can react to their experience in an arbitrary way. To study this problem we construct a coordinate system for memory-mm strategies in iterated nn-player games that permits us to characterize all the cooperative strategies that resist invasion by any mutant strategy, and thus stabilize cooperative behavior. We show that while larger games inevitably make cooperation harder to evolve, there nevertheless always exists a positive volume of strategies that stabilize cooperation provided the population size is large enough. We also show that, when games are small, longer-memory strategies make cooperation easier to evolve, by increasing the number of ways to stabilize cooperation. Finally we explore the co-evolution of behavior and memory capacity, and we find that longer-memory strategies tend to evolve in small games, which in turn drives the evolution of cooperation even when the benefits for cooperation are low

    Linear algebraic structure of zero-determinant strategies in repeated games

    Full text link
    Zero-determinant (ZD) strategies, a recently found novel class of strategies in repeated games, has attracted much attention in evolutionary game theory. A ZD strategy unilaterally enforces a linear relation between average payoffs of players. Although existence and evolutional stability of ZD strategies have been studied in simple games, their mathematical properties have not been well-known yet. For example, what happens when more than one players employ ZD strategies have not been clarified. In this paper, we provide a general framework for investigating situations where more than one players employ ZD strategies in terms of linear algebra. First, we theoretically prove that a set of linear relations of average payoffs enforced by ZD strategies always has solutions, which implies that incompatible linear relations are impossible. Second, we prove that linear payoff relations are independent of each other under some conditions. These results hold for general games with public monitoring including perfect-monitoring games. Furthermore, we provide a simple example of a two-player game in which one player can simultaneously enforce two linear relations, that is, simultaneously control her and her opponent's average payoffs. All of these results elucidate general mathematical properties of ZD strategies.Comment: 19 pages, 2 figure

    Defection and extortion as unexpected catalysts of unconditional cooperation in structured populations

    Get PDF
    We study the evolution of cooperation in the spatial prisoner's dilemma game, where besides unconditional cooperation and defection, tit-for-tat, win-stay-lose-shift and extortion are the five competing strategies. While pairwise imitation fails to sustain unconditional cooperation and extortion regardless of game parametrization, myopic updating gives rise to the coexistence of all five strategies if the temptation to defect is sufficiently large or if the degree distribution of the interaction network is heterogeneous. This counterintuitive evolutionary outcome emerges as a result of an unexpected chain of strategy invasions. Firstly, defectors emerge and coarsen spontaneously among players adopting win-stay-lose-shift. Secondly, extortioners and players adopting tit-for-tat emerge and spread via neutral drift among the emerged defectors. And lastly, among the extortioners, cooperators become viable too. These recurrent evolutionary invasions yield a five-strategy phase that is stable irrespective of the system size and the structure of the interaction network, and they reveal the most unexpected mechanism that stabilizes extortion and cooperation in an evolutionary setting.Comment: 7 two-column pages, 5 figures; accepted for publication in Scientific Reports [related work available at http://arxiv.org/abs/1401.8294

    Cooperation and control in multiplayer social dilemmas

    No full text
    Direct reciprocity and conditional cooperation are important mechanisms to prevent free riding in social dilemmas. However, in large groups, these mechanisms may become ineffective because they require single individuals to have a substantial influence on their peers. However, the recent discovery of zero-determinant strategies in the iterated prisoner’s dilemma suggests that we may have underestimated the degree of control that a single player can exert. Here, we develop a theory for zero-determinant strategies for iterated multiplayer social dilemmas, with any number of involved players. We distinguish several particularly interesting subclasses of strategies: fair strategies ensure that the own payoff matches the average payoff of the group; extortionate strategies allow a player to perform above average; and generous strategies let a player perform below average. We use this theory to describe strategies that sustain cooperation, including generalized variants of Tit-for-Tat and Win-Stay Lose-Shift. Moreover, we explore two models that show how individuals can further enhance their strategic options by coordinating their play with others. Our results highlight the importance of individual control and coordination to succeed in large groups
    • …
    corecore