5 research outputs found

    TOWARDS AUTONOMOUS VERTICAL LANDING ON SHIP-DECKS USING COMPUTER VISION

    Get PDF
    The objective of this dissertation is to develop and demonstrate autonomous ship-board landing with computer vision. The problem is hard primarily due to the unpredictable stochastic nature of deck motion. The work involves a fundamental understanding of how vision works, what are needed to implement it, how it interacts with aircraft controls, the necessary and sufficient hardware, and software, how it differs from human vision, its limits, and finally the avenues of growth in the context of aircraft landing. The ship-deck motion dataset is provided by the U.S. Navy. This data is analyzed to gain fundamental understanding and is then used to replicate stochastic deck motion in a laboratory setting on a six degrees of freedom motion platform, also called Stewart platform. The method uses a shaping filter derived from the dataset to excite the platform. An autonomous quadrotor UAV aircraft is designed and fabricated for experimental testing of vision-based landing methods. The entire structure, avionics architecture, and flight controls for the aircraft are completely developed in-house. This provides the flexibility and fundamental understanding needed for this research. A fiducial-based vision system is first designed for detection and tracking of ship-deck. This is then utilized to design a tracking controller with the best possible bandwidth to track the deck with minimum error. Systematic experiments are conducted with static, sinusoidal, and stochastic motions to quantify the tracking performance. A feature-based vision system is designed next. Simple experiments are used to quantitatively and qualitatively evaluate the superior robustness of feature-based vision under various degraded visual conditions. This includes: (1) partial occlusion, (2) illumination variation, (3) glare, and (4) water distortion. The weight and power penalty for using feature-based vision are also determined. The results show that it is possible to autonomously land on ship-deck using computer vision alone. An autonomous aircraft can be constructed with only an IMU and a Visual Odometry software running on stereo camera. The aircraft then only needs a monocular, global shutter, high frame rate camera as an extra sensor to detect ship-deck and estimate its relative position. The relative velocity however needs to be derived using Kalman filter on the position signal. For the filter, knowledge of disturbance/motion spectrum is not needed, but a white noise disturbance model is sufficient. For control, a minimum bandwidth of 0.15 Hz is required. For vision, a fiducial is not needed. A feature-rich landing area is all that is required. The limits of the algorithm are set by occlusion(80\% tolerable), illumination (20,000 lux-0.01 lux), angle of landing (up to 45 degrees), 2D nature of features, and motion blur. Future research should extend the capability to 3D features and use of event-based cameras. Feature-based vision is more versatile and human-like than fiducial-based, but at the cost of 20 times higher computing power which is increasingly possible with modern processors. The goal is not an imitation of nature but derive inspiration from it and overcome its limitations. The feature-based landing opens a window towards emulating the best of human training and cognition, without its burden of latency, fatigue, and divided attention

    A Summary of NASA Rotary Wing Research: Circa 20082018

    Get PDF
    The general public may not know that the first A in NASA stands for Aeronautics. If they do know, they will very likely be surprised that in addition to airplanes, the A includes research in helicopters, tiltrotors, and other vehicles adorned with rotors. There is, arguably, no subsonic air vehicle more difficult to accurately analyze than a vehicle with lift-producing rotors. No wonder that NASA has conducted rotary wing research since the days of the NACA and has partnered, since 1965, with the U.S. Army in order to overcome some of the most challenging obstacles to understanding the behavior of these vehicles. Since 2006, NASA rotary wing research has been performed under several different project names [Gorton et al., 2015]: Subsonic Rotary Wing (SRW) (20062012), Rotary Wing (RW) (20122014), and Revolutionary Vertical Lift Technology (RVLT) (2014present). In 2009, the SRW Project published a report that assessed the status of NASA rotorcraft research; in particular, the predictive capability of NASA rotorcraft tools was addressed for a number of technical disciplines. A brief history of NASA rotorcraft research through 2009 was also provided [Yamauchi and Young, 2009]. Gorton et al. [2015] describes the system studies during 20092011 that informed the SRW/RW/RVLT project investment prioritization and organization. The authors also provided the status of research in the RW Project in engines, drive systems, aeromechanics, and impact dynamics as related to structural dynamics of vertical lift vehicles. Since 2009, the focus of research has shifted from large civil VTOL transports, to environmentally clean aircraft, to electrified VTOL aircraft for the urban air mobility (UAM) market. The changing focus of rotorcraft research has been a reflection of the evolving strategic direction of the NASA Aeronautics Research Mission Directorate (ARMD). By 2014, the project had been renamed the Revolutionary Vertical Lift Technology Project. In response to the 2014 NASA Strategic Plan, ARMD developed six Strategic Thrusts. Strategic Thrust 3B was defined as the Ultra-Efficient Commercial VehiclesVertical Lift Aircraft. Hochstetler et al. [2017] uses Thrust 3B as an example for developing metrics usable by ARMD to measure the effectiveness of each of the Strategic Thrusts. The authors provide near-, mid-, and long-term outcomes for Thrust 3B with corresponding benefits and capabilities. The importance of VTOL research, especially with the rapidly expanding UAM market, eventually resulted in a new Strategic Thrust (to begin in 2020): Thrust 4Safe, Quiet, and Affordable Vertical Lift Air Vehicles. The underlying rotary wing analysis tools used by NASA are still applicable to traditional rotorcraft and have been expanded in capability to accommodate the growing number of VTOL configurations designed for UAM. The top-level goal of the RVLT Project remains unchanged since 2006: Develop and validate tools, technologies and concepts to overcome key barriers for vertical lift vehicles. In 2019, NASA rotary wing/VTOL research has never been more important for supporting new aircraft and advancements in technology. 2 A decade is a reasonable interval to pause and take stock of progress and accomplishments. In 10 years, digital technology has propelled progress in computational efficiency by orders of magnitude and expanded capabilities in measurement techniques. The purpose of this report is to provide a compilation of the NASA rotary wing research from ~2008 to ~2018. Brief summaries of publications from NASA, NASA-funded, and NASA-supported research are provided in 12 chapters: Acoustics, Aeromechanics, Computational Fluid Dynamics (External Flow), Experimental Methods, Flight Dynamics and Control, Drive Systems, Engines, Crashworthiness, Icing, Structures and Materials, Conceptual Design and System Analysis, and Mars Helicopter. We hope this report serves as a useful reference for future NASA vertical lift researchers

    Proceedings, MSVSCC 2012

    Get PDF
    Proceedings of the 6th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 19, 2012 at VMASC in Suffolk, Virginia

    Proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress

    Get PDF
    Published proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress, hosted by York University, 27-30 May 2018
    corecore