5,043 research outputs found

    Quantifying biogenic bias in screening libraries.

    Get PDF
    In lead discovery, libraries of 10(6) molecules are screened for biological activity. Given the over 10(60) drug-like molecules thought possible, such screens might never succeed. The fact that they do, even occasionally, implies a biased selection of library molecules. We have developed a method to quantify the bias in screening libraries toward biogenic molecules. With this approach, we consider what is missing from screening libraries and how they can be optimized

    Virtual screening for NS5B inhibitors of Hepatitis C virus

    Get PDF
    Hepatitis C Virus (HCV) infection is a serious cause of chronic liver disease worldwide with more than 170 million infected individuals at a risk of developing significant morbidity and mortality. To date there is no effective drug for the treatment or vaccine to prevent this infection. The present study aims to discover novel inhibitors which target an allosteric binding site of RNA dependent RNA polymerase enzyme of HCV. A structure based virtual screening of Zinc database by computational docking and the post docking analysis of energy calculations and interactions followed by ADMET studies were conducted. Our study revealed 10 compounds which has more potential than the existing inhibitor to be considered as lead compounds.
&#xa

    Identification of Small-Molecule Inhibitors against Meso-2, 6-Diaminopimelate Dehydrogenase from Porphyromonas gingivalis

    Get PDF
    Species-specific antimicrobial therapy has the potential to combat the increasing threat of antibiotic resistance and alteration of the human microbiome. We therefore set out to demonstrate the beginning of a pathogen-selective drug discovery method using the periodontal pathogen Porphyromonas gingivalis as a model. Through our knowledge of metabolic networks and essential genes we identified a “druggable” essential target, meso-diaminopimelate dehydrogenase, which is found in a limited number of species. We adopted a high-throughput virtual screen method on the ZINC chemical library to select a group of potential small-molecule inhibitors. Meso-diaminopimelate dehydrogenase from P. gingivaliswas first expressed and purified in Escherichia coli then characterized for enzymatic inhibitor screening studies. Several inhibitors with similar structural scaffolds containing a sulfonamide core and aromatic substituents showed dose-dependent inhibition. These compounds were further assayed showing reasonable whole-cell activity and the inhibition mechanism was determined. We conclude that the establishment of this target and screening strategy provides a model for the future development of new antimicrobials

    Identification of novel 2-benzoxazolinone derivatives with specific inhibitory activity against the HIV-1 nucleocapsid protein

    Get PDF
    In this report, we present a new benzoxazole derivative endowed with inhibitory activity against the HIV-1 nucleocapsid protein (NC). NC is a 55-residue basic protein with nucleic acid chaperone properties, which has emerged as a novel and potential pharmacological target against HIV-1. In the pursuit of novel NC-inhibitor chemotypes, we performed virtual screening and in vitro biological evaluation of a large library of chemical entities. We found that compounds sharing a benzoxazolinone moiety displayed putative inhibitory properties, which we further investigated by considering a series of chemical analogues. This approach provided valuable information on the structure-activity relationships of these compounds and, in the process, demonstrated that their anti-NC activity could be finely tuned by the addition of specific substituents to the initial benzoxazolinone scaffold. This study represents the starting point for the possible development of a new class of antiretroviral agents targeting the HIV-1 NC protein

    Structure based inhibitor design targeting glycogen phosphorylase b. Virtual screening, synthesis, biochemical and biological assessment of novel N-acyl-β-d-glucopyranosylamines

    Get PDF
    Glycogen phosphorylase (GP) is a validated target for the development of new type 2 diabetes treatments. Exploiting the Zinc docking database, we report the in silico screening of 1888 β- D-glucopyranose-NH-CO-R putative GP inhibitors differing only in their R groups. CombiGlide and GOLD docking programs with different scoring functions were employed with the best performing methods combined in a “consensus scoring” approach to ranking of ligand binding affinities for the active site. Six selected candidates from the screening were then synthesized and their inhibitory potency was assessed both in vitro and ex vivo. Their inhibition constants’ values, in vitro, ranged from 5 to 377 µM while two of them were effective at causing inactivation of GP in rat hepatocytes at low µM concentrations. The crystal structures of GP in complex with the inhibitors were defined and provided the structural basis for their inhibitory potency and data for further structure based design of more potent inhibitors
    corecore