6 research outputs found

    A Review on Features’ Robustness in High Diversity Mobile Traffic Classifications

    Get PDF
    Mobile traffics are becoming more dominant due to growing usage of mobile devices and proliferation of IoT. The influx of mobile traffics introduce some new challenges in traffic classifications; namely the diversity complexity and behavioral dynamism complexity. Existing traffic classifications methods are designed for classifying standard protocols and user applications with more deterministic behaviors in small diversity. Currently, flow statistics, payload signature and heuristic traffic attributes are some of the most effective features used to discriminate traffic classes. In this paper, we investigate the correlations of these features to the less-deterministic user application traffic classes based on corresponding classification accuracy. Then, we evaluate the impact of large-scale classification on feature's robustness based on sign of diminishing accuracy. Our experimental results consolidate the needs for unsupervised feature learning to address the dynamism of mobile application behavioral traits for accurate classification on rapidly growing mobile traffics

    A Methodology for Performance Benchmarking of Mobile Networks for Internet Video Streaming

    Get PDF
    International audienceVideo streaming is a dominant contributor to the global Internet traffic. Consequently, gauging network performance w.r.t. the video Quality of Experience (QoE) is of paramount importance to both telecom operators and regulators. Modern video streaming systems, e.g. YouTube, have huge catalogs of billions of different videos that vary significantly in content type. Owing to this difference, the QoE of different videos as perceived by end users can vary for the same network Quality of Service (QoS). In this paper, we present a methodology for benchmarking performance of mobile operators w.r.t Internet video that considers this variation in QoE. We take a data-driven approach to build a predictive model using supervised machine learning (ML) that takes into account a wide range of videos and network conditions. To that end, we first build and analyze a large catalog of YouTube videos. We then propose and demonstrate a framework of controlled experimentation based on active learning to build the training data for the targeted ML model. Using this model, we then devise YouScore, an estimate of the percentage of YouTube videos that may play out smoothly under a given network condition. Finally, to demonstrate the benchmarking utility of YouScore, we apply it on an open dataset of real user mobile network measurements to compare performance of mobile operators for video streaming

    Uma abordagem preditiva de DASH QoE baseada em aprendizado de máquina em multi-access edge computing

    Get PDF
    Orientador: Christian Rodolfo Esteve RothenbergDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: O tráfego de serviços de vídeo multimídia está crescendo rapidamente nas redes móveis nos últimos anos. Os serviços de vídeo que usam técnicas de Dynamic Adaptive Streaming sobre HTTP (DASH) dominaram o tráfego total da Internet para transportar o tráfego de vídeo. Espera-se que as operadoras de rede móvel (Mobile Network Operators - MNOs) continuem atendendo a essa demanda crescente por tráfego de vídeo suportado por DASH, ao mesmo tempo em que fornecem uma alta qualidade de experiência (Quality of Experience - QoE) aos usuários finais. Além disso, as operadoras precisam ter um conhecimento claro acerca da qualidade de vídeo percebida pelos usuários finais e relacioná-la com o monitoramento em nível de rede, ou com informações de telemetria para identificação de problemas, análise da causa raiz e predição de padrões. Para garantir um gerenciamento de tráfego de rede com reconhecimento de QoE, um pré-requisito é que os MNOs monitorem o tráfego de rede passivamente e realizem medições efetivas de indicadores-chave de desempenho (Key Performance Indicators - KPIs) de QoE, como resoluções, eventos de paralisação, entre outros, que influenciam diretamente a percepção do usuário final. Muitas abordagens da literatura foram propostas para medir os KPIs com o objetivo de fornecer uma qualidade de serviço de vídeo aceitável. A maioria das soluções exige consciência de contexto do usuário final, o que não é viável do ponto de vista do MNO. No entanto, Deep Packet Inspection (DPI), outra solução mais amplamente usada para estimar os KPIs diretamente do tráfego de rede, não é mais uma solução conveniente para as operadoras devido à adoção de criptografia de streaming de vídeo fim-a-fim sobre TCP (HTTPs) e QUIC. Portanto, o aprendizado de máquina (Machine Learning - ML) passou a ser recentemente aceito como uma solução bem reconhecida para estimar KPIs de QoE, analisando os padrões de tráfego criptografados bem como estatísticas como qualidade de serviço (Quality of Service - QoS). Este trabalho apresenta uma abordagem mais refinada e leve, baseada em aprendizado de máquina, denominada Edge QoE Probe, para estimar QoE do usuário final para o serviço de vídeo DASH, monitorando passivamente o tráfego de rede criptografado na borda da rede. Nossa abordagem pode avaliar vários KPIs de QoE, como por exemplo resolução, taxa de bits, proporção de paralisação, entre outros, tanto em tempo real quanto por sessão. Além disso, neste trabalho investigamos o desempenho do vídeo DASH sobre o protocolo de transporte tradicional TCP (HTTPs) e QUIC. Para este propósito, avaliamos experimentalmente diferentes traces de rede celular em um ambiente emulado de alta fidelidade e comparamos o desempenho comportamental de algoritmos Adaptive Bitrate Streaming (ABS) considerando KPIs de QoE sobre TCP (HTTPs) e QUIC. Nossos resultados empíricos mostram que os algoritmos tradicionais de ABS usando QUIC como transporte precisariam alterações específicas para melhorar o desempenho em termos de QoE de vídeo baseados em DASHAbstract: Multimedia video services traffic is rapidly growing in mobile networks in recent years. Video services using Dynamic Adaptive Streaming over HTTP (DASH) techniques have dominated the total internet traffic to carry video traffic. Mobile Network Operators (MNOs) are expected to run on with this growing demand for DASH-supported video traffic while providing a high Quality of Experience (QoE) to the end-users. Besides, operators need to have a crystal notion of video quality perceived by the end-users and correlate them with network-level monitoring or telemetry information for problem identification, root cause analysis, and pattern prediction. To ensure QoE–aware network traffic management, a prerequisite for the MNOs is to monitor the network traffic passively and measure objective QoE Key Performance Indicators (KPIs) (such as resolutions and stalling events) effectively that directly influence end-user subjective feedback. Many literature approaches have been proposed to measure the KPIs aimed to deliver acceptable video service quality. Most of the solutions require end-user awareness, which is not viable from the MNOs' perspective. However, Deep Packet Inspection (DPI), another most widely used solution to estimate the KPIs directly from network traffic, is not a convenient solution anymore for the operators due to the adoption of end-to-end video streaming encryption over TCP (HTTPs) and QUIC transport protocol. Hence, in recent, Machine Learning (ML) has been accepted as a well-recognized solution for estimating QoE KPIs by analyzing the encrypted traffic patterns and statistics as Quality of Service (QoS). This work presents an ML-based lightweight and fine-grained Edge QoE Probe approach to estimate the end-user QoE for DASH video service by passively monitoring the encrypted network traffic on the edge of the network. Our approach can assess numerous QoE KPIs (such as resolution, bit-rate, quality switches, startup delay, and stall ratio) both in a real-time and per-session manner. Moreover, we investigate the DASH video service performance over the traditional TCP (HTTPs) and QUIC transport protocol in this work. For this purpose, we experimentally evaluate different cellular network traces in a high-fidelity emulated testbed and compare the behavioral performance of Adaptive Bitrate Streaming (ABS) algorithms considering QoE KPIs over TCP (HTTPs) and QUIC. Our empirical results show that QUIC suffers from traditional state-of-the-art ABS algorithms' ineffectiveness to improve video streaming performance without specific changesMestradoEngenharia de ComputaçãoMestre em Engenharia ElétricaFuncam

    Improving ABR Video Streaming Design with Systematic QoE Measurement and Cross Layer Analysis

    Full text link
    Adaptive Bitrate streaming (ABR) has been widely adopted by mobile video services to deliver satisfying Quality of Experience (QoE) over cellular network with time-varying bandwidth conditions. To build an ABR service, a wide range of critical components spanning different entities need to be determined. It is challenging to achieve designs with good QoE properties, as the streaming performance depends on complex interactions among the various factors. To make it more complex, many design decisions also involve tradeoffs among different QoE metrics. To address this challenge, in this dissertation, we build four systems to provide systematic support for video QoE measurements and cross-layer analysis. First, we build a general black-box measurement platform based on standard ABR protocols and common UI designs. It analyzes HTTP information in the network traffic and correlates UI events of mobile video apps to reveal ABR design and identify QoE issues. Second, to address the challenge brought by increasingly adopted encryption protocols such HTTPS and QUIC, we develop a technique called CSI to infer ABR video adaptation behavior based on packet size and timing information still available in the encrypted traffic. Third, we explore a conceptually very different approach to QoE measurement --- utilizing the on-device recording capability to record the video displayed on the mobile device screen and measuring delivered QoE from this recording. We design a novel system VideoEye to conduct such screen-recording-based QoE analysis. Lastly, to understand the interaction of existing video streaming system design with the new transport protocol QUIC, we build a platform WIQ to perform what-if analysis and measure the video QoE impact of QUIC without the need of modifying the server or client implementation. Leveraging these systems, we perform measurements on popular streaming services, understand the QoE implications of various ABR design, identify a wide range of QoE issues and develop best practices.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/155039/1/xsc_1.pd
    corecore