29,672 research outputs found

    XML with incomplete information

    Get PDF
    We study models of incomplete information for XML, their computational properties, and query answering. While our approach is motivated by the study of relational incompleteness, incomplete information in XML documents may appear not only as null values but also as missing structural information. Our goal is to provide a classification of incomplete descriptions of XML documents, and separate features- or groups of features- that lead to hard computational problems from those that admit efficient algorithms. Our classification of incomplete information is based on the combination of null values with partial structural descriptions of documents. The key computational problems we consider are consistency of partial descriptions, representability of complete documents by incomplete ones, and query answering. We show how factors such as schema information, the presence of node ids, and missing structural information affect the complexity of these main computational problems, and find robust classes of incomplete XML descriptions tha

    On Incomplete XML Documents with Integrity Constraints

    Get PDF
    Abstract. We consider incomplete specifications of XML documents in the presence of schema information and integrity constraints. We show that integrity constraints such as keys and foreign keys affect consistency of such specifications. We prove that the consistency problem for incomplete specifications with keys and foreign keys can always be solved in NP. We then show a dichotomy result, classifying the complexity of the problem as NP-complete or PTIME, depending on the precise set of features used in incomplete descriptions.

    Trees in Trees: Is the Incomplete Information about a Tree Consistent?

    Get PDF
    We are interested in the following problem: given a tree automaton Aut and an incomplete tree description P, does a tree T exist such that T is accepted by Aut and consistent with P? A tree description is a tree-like structure which provides incomplete information about the shape of T. We show that this problem can be solved in polynomial time as long as Aut and the set of possible arrangements that can be forced by P are fixed. We show how our result is related to an open problem in the theory of incomplete XML information

    Benchmarking Summarizability Processing in XML Warehouses with Complex Hierarchies

    Full text link
    Business Intelligence plays an important role in decision making. Based on data warehouses and Online Analytical Processing, a business intelligence tool can be used to analyze complex data. Still, summarizability issues in data warehouses cause ineffective analyses that may become critical problems to businesses. To settle this issue, many researchers have studied and proposed various solutions, both in relational and XML data warehouses. However, they find difficulty in evaluating the performance of their proposals since the available benchmarks lack complex hierarchies. In order to contribute to summarizability analysis, this paper proposes an extension to the XML warehouse benchmark (XWeB) with complex hierarchies. The benchmark enables us to generate XML data warehouses with scalable complex hierarchies as well as summarizability processing. We experimentally demonstrated that complex hierarchies can definitely be included into a benchmark dataset, and that our benchmark is able to compare two alternative approaches dealing with summarizability issues.Comment: 15th International Workshop on Data Warehousing and OLAP (DOLAP 2012), Maui : United States (2012

    Data Model and Query Constructs for Versatile Web Query Languages

    Get PDF
    As the Semantic Web is gaining momentum, the need for truly versatile query languages becomes increasingly apparent. A Web query language is called versatile if it can access in the same query program data in different formats (e.g. XML and RDF). Most query languages are not versatile: they have not been specifically designed to cope with both worlds, providing a uniform language and common constructs to query and transform data in various formats. Moreover, most of them do not provide a flexible data model that is powerful enough to naturally convey both Semantic Web data formats (especially RDF and Topic Maps) and XML. This article highlights challenges related to the data model and language constructs for querying both standard Web and Semantic Web data with an emphasis on facilitating sophisticated reasoning. It is shown that Xcerpt’s data model and querying constructs are particularly well-suited for the Semantic Web, but that some adjustments of the Xcerpt syntax allow for even more effective and natural querying of RDF and Topic Maps

    Identification of Design Principles

    Get PDF
    This report identifies those design principles for a (possibly new) query and transformation language for the Web supporting inference that are considered essential. Based upon these design principles an initial strawman is selected. Scenarios for querying the Semantic Web illustrate the design principles and their reflection in the initial strawman, i.e., a first draft of the query language to be designed and implemented by the REWERSE working group I4

    Data integration through service-based mediation for web-enabled information systems

    Get PDF
    The Web and its underlying platform technologies have often been used to integrate existing software and information systems. Traditional techniques for data representation and transformations between documents are not sufficient to support a flexible and maintainable data integration solution that meets the requirements of modern complex Web-enabled software and information systems. The difficulty arises from the high degree of complexity of data structures, for example in business and technology applications, and from the constant change of data and its representation. In the Web context, where the Web platform is used to integrate different organisations or software systems, additionally the problem of heterogeneity arises. We introduce a specific data integration solution for Web applications such as Web-enabled information systems. Our contribution is an integration technology framework for Web-enabled information systems comprising, firstly, a data integration technique based on the declarative specification of transformation rules and the construction of connectors that handle the integration and, secondly, a mediator architecture based on information services and the constructed connectors to handle the integration process

    Completing Queries: Rewriting of IncompleteWeb Queries under Schema Constraints

    Get PDF
    Reactive Web systems, Web services, and Web-based publish/ subscribe systems communicate events as XML messages, and in many cases require composite event detection: it is not sufficient to react to single event messages, but events have to be considered in relation to other events that are received over time. Emphasizing language design and formal semantics, we describe the rule-based query language XChangeEQ for detecting composite events. XChangeEQ is designed to completely cover and integrate the four complementary querying dimensions: event data, event composition, temporal relationships, and event accumulation. Semantics are provided as model and fixpoint theories; while this is an established approach for rule languages, it has not been applied for event queries before

    Effective and Efficient Data Access in the Versatile Web Query Language Xcerpt

    Get PDF
    Access to Web data has become an integral part of many applications and services. In the past, such data has usually been accessed through human-tailoredHTMLinterfaces.Nowadays, rich client interfaces in desktop applications or, increasingly, in browser-based clients ease data access and allow more complex client processing based on XML or RDF data retrieved throughWeb service interfaces. Convenient specifications of the data processing on the client and flexible, expressive service interfaces for data access become essential in this context.Web query languages such as XQuery, XSLT, SPARQL, or Xcerpt have been tailored specifically for such a setting: declarative and efficient access and processing ofWeb data. Xcerpt stands apart among these languages by its versatility, i.e., its ability to access not just oneWeb format but many. In this demonstration, two aspects of Xcerpt are illustrated in detail: The first part of the demonstration focuses on Xcerpt’s pattern matching constructs and rules to enable effective and versatile data access. It uses a concrete practical use case from bibliography management to illustrate these language features. Xcerpt’s visual companion language visXcerpt is used to provide an intuitive interface to both data and queries. The second part of the demonstration shows recent advancements in Xcerpt’s implementation focusing on experimental evaluation of recent complexity results and optimization techniques, as well as scalability over a number of usage scenarios and input sizes
    corecore