12,756 research outputs found

    On an evaluation of transformation languages in a fully XML-driven framework for video content adaptation

    Get PDF
    Bitstream Structure Descriptions (BSDs) allow taking the complexity of transforming scalable bitstreams from the compressed domain to the semantic domain. These descriptions are an essential part of an XUL-driven video adaptation framework. The performance of a BSD transformation engine is very important in such an architecture. This paper evaluates the efficiency of XML-based transformation languages in our video adaptation framework. XSLT, STX, and a hybrid solution are compared to each other in terms of execution times, memory consumption, and user-friendliness. Our experiments show that STX is the preferred solution when speed and low-memory are important. The hybrid solution is competitive in terms of memory consumption and is more user-friendly than STX. Although XSLT is relative fast, its memory consumption is very high

    A Framework for Rapid Development and Portable Execution of Packet-Handling Applications

    Get PDF
    This paper presents a framework that enables the execution of packet-handling applications (such as sniffers, firewalls, intrusion detectors, etc.) on different hardware platforms. This framework is centered on the NetVM - a novel, portable, and efficient virtual processor targeted for packet-based processing - and the NetPDL - a language dissociating applications from protocol specifications. In addition, a high-level programming language that enables rapid development of packet-based applications is presented

    Semi-automatic semantic enrichment of raw sensor data

    Get PDF
    One of the more recent sources of large volumes of generated data is sensor devices, where dedicated sensing equipment is used to monitor events and happenings in a wide range of domains, including monitoring human biometrics. In recent trials to examine the effects that key moments in movies have on the human body, we fitted fitted with a number of biometric sensor devices and monitored them as they watched a range of dierent movies in groups. The purpose of these experiments was to examine the correlation between humans' highlights in movies as observed from biometric sensors, and highlights in the same movies as identified by our automatic movie analysis techniques. However,the problem with this type of experiment is that both the analysis of the video stream and the sensor data readings are not directly usable in their raw form because of the sheer volume of low-level data values generated both from the sensors and from the movie analysis. This work describes the semi-automated enrichment of both video analysis and sensor data and the mechanism used to query the data in both centralised environments, and in a peer-to-peer architecture when the number of sensor devices grows to large numbers. We present and validate a scalable means of semi-automating the semantic enrichment of sensor data, thereby providing a means of large-scale sensor management

    Implementation and Deployment of a Library of the High-level Application Programming Interfaces (SemSorGrid4Env)

    No full text
    The high-level API service is designed to support rapid development of thin web applications and mashups beyond the state of the art in GIS, while maintaining compatibility with existing tools and expectations. It provides a fully configurable API, while maintaining a separation of concerns between domain experts, service administrators and mashup developers. It adheres to REST and Linked Data principles, and provides a novel bridge between standards-based (OGC O&M) and Semantic Web approaches. This document discusses the background motivations for the HLAPI (including experiences gained from any previously implemented versions), before moving onto specific details of the final implementation, including configuration and deployment instructions, as well as a full tutorial to assist mashup developers with using the exposed observation data

    End-to-End QoS Support for a Medical Grid Service Infrastructure

    No full text
    Quality of Service support is an important prerequisite for the adoption of Grid technologies for medical applications. The GEMSS Grid infrastructure addressed this issue by offering end-to-end QoS in the form of explicit timeliness guarantees for compute-intensive medical simulation services. Within GEMSS, parallel applications installed on clusters or other HPC hardware may be exposed as QoS-aware Grid services for which clients may dynamically negotiate QoS constraints with respect to response time and price using Service Level Agreements. The GEMSS infrastructure and middleware is based on standard Web services technology and relies on a reservation based approach to QoS coupled with application specific performance models. In this paper we present an overview of the GEMSS infrastructure, describe the available QoS and security mechanisms, and demonstrate the effectiveness of our methods with a Grid-enabled medical imaging service

    Web and Semantic Web Query Languages

    Get PDF
    A number of techniques have been developed to facilitate powerful data retrieval on the Web and Semantic Web. Three categories of Web query languages can be distinguished, according to the format of the data they can retrieve: XML, RDF and Topic Maps. This article introduces the spectrum of languages falling into these categories and summarises their salient aspects. The languages are introduced using common sample data and query types. Key aspects of the query languages considered are stressed in a conclusion
    corecore