
Semi-Automatic Semantic Enrichment of Raw
Sensor Data?

Nicolas Legeay1, Mark Roantree2, Gareth J.F. Jones1, Noel E. O’Connor1, and
Alan F. Smeaton1

1 Centre for Digital Video Processing & Adaptive Information Cluster,
Dublin City University, Ireland

2 Interoperable Systems Group, Dublin City University, Ireland -
mark@computing.dcu.ie

Abstract. One of the more recent sources of large volumes of gener-
ated data is sensor devices, where dedicated sensing equipment is used
to monitor events and happenings in a wide range of domains, includ-
ing monitoring human biometrics. In recent trials to examine the effects
that key moments in movies have on the human body, we fitted fitted
with a number of biometric sensor devices and monitored them as they
watched a range of different movies in groups. The purpose of these ex-
periments was to examine the correlation between humans’ highlights in
movies as observed from biometric sensors, and highlights in the same
movies as identified by our automatic movie analysis techniques. How-
ever, the problem with this type of experiment is that both the analysis
of the video stream and the sensor data readings are not directly usable
in their raw form because of the sheer volume of low-level data values
generated both from the sensors and from the movie analysis. This work
describes the semi-automated enrichment of both video analysis and sen-
sor data and the mechanism used to query the data in both centralised
environments, and in a peer-to-peer architecture when the number of
sensor devices grows to large numbers. We present and validate a scal-
able means of semi-automating the semantic enrichment of sensor data,
thereby providing a means of large-scale sensor management.

1 Introduction

We are currently witnessing a groundswell of interest in pervasive computing
and ubiquitous sensing which strives to develop and deploy sensing technology
all around us. We are also seeing the emergence of applications such as environ-
mental monitoring and ambient assisted living which leverage the data gathered
and present us with useful applications. However, most of the developments in
this area have been concerned with either developing the sensing technologies,
or the infrastructure (middlewear) to gather this data and the issues which have
been addressed include things like power consumption on the devices, security
? This work is partly supported by Science Foundation Ireland under Grant No.

03/IN.3/I361

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11310418?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of data transmission, networking challenges in gathering and storing the data
and fault tolerance in the event of network and/or device failure. If we assume
these issues can be solved, or are at least will be addressed successfully in the
short term, we are then left to develop applications which are robust, scalable
and flexible, and at such time the issues of high-level querying of the gathered
data becomes a major issue.

The problem we address in this paper is how to manage, in an efficient and
scalable way, and most importantly in a way that is flexible from an application
developer or end user’s point of view, large volumes of sensed and gathered
data. In this, we have a broad definition of sensor data and we include raw data
values taken directly from sensor devices such as a heart rate monitor work by a
human, as well as derived data values such as the frame or time offsets of action
sequences which appear in a movie. In the case of the former there would be
little doubt that the heart rate monitor readings are sensor values, whereas the
latter still corresponds to data values, taken from a data stream, albeit with some
intermediate processing (audio-visual analysis in this case). We now describe the
motivation for our work.

1.1 Motivation and Contribution

To design a scalable system to manage sensor data, it is firstly necessary to enrich
the data by adding structure and semantics in order to facilitate manipulation by
query languages. Secondly, in order to improve efficiency the architecture should
be suitably generic to make it applicable to other domains. Specifically, it should
not be necessary to redesign the system or write new program code when new
sensor devices are added. Finally, when the number of sensor devices increases
to very large numbers, the system should be capable of scaling accordingly.

The contribution of the research work reported here is the development of
an architecture that is both generic, and has the capability to scale to very large
numbers. In this respect, our XSENSE architecture facilitates the addition of new
sensor devices by requiring that the knowledge worker or user provides only a
short script with structural information regarding the sensor output. Scalability
is provided in the form of a Peer-to-Peer (P2P) architecture that classifies sensors
into clusters, but otherwise contains no upper limit on the numbers of sensors
in the network.

The paper is structured as follows: in §2, a description of sensor networks
is provided and in particular the sensor network we use in our experiments,
together with the issues involved in this particular domain; in §3, we describe our
solution to problems of scale and processing by way of a processing architecture
that transforms raw data and provides semantically rich files; in §4, we provide
scalability by removing the centralised component and replacing it with a Peer-
to-Peer Information System; in §5, we demonstrate workable query response
times for distributed queries; a discussion on related research is provided in §6
and finally in §7, we offer some conclusions.

2 Sensor Network Background

In previous work [9], we reported a study conducted to investigate the potential
correlations between human subject responses to emotional stimuli in movies,
and observed biometric responses. This was motivated by the desire to extend
our approach to film analysis by capturing real physiological reactions of movie
viewers. Existing approaches to movie analysis use audio-visual (AV) feature
extraction coupled with machine learning algorithms to index movies in terms
of key semantic events – dialogs, exciting sequences, emotional montages, etc.
However, such approaches work on the audio-visual signal only and do not take
into account the visceral human response to viewed content. As such, they are in-
trinsically limited in terms of the level of semantic information they can extract.
However, integrating and combining viewer response with AV signal analysis
has the potential to significantly extend such approaches toward really useful
semantic-based indexing.

For the study, we created a controlled cinema-like environment and instru-
mented both this and movie watchers, in a variety of ways. We also performed our
AV analysis on all films watched by our viewers and synchronised these analysis
results with the captured biometric responses. The instrumented environment,
termed the “CDVPlex”, was designed to replicate a true cinematic experience as
closely as possible. It corresponded to an air-conditioned windowless room with
comfortable seating for up to 4 people, in which a Dolby 5.1 surround sound
system, DVD player and large-screen digital projector were installed.

We gathered a total of 6 biometric sensor data feeds from each of our par-
ticipants, via 3 different sensor devices, as follows:

– Polar S610iTM heart-rate monitor. This consists of a fabric band which
fits around a person’s chest and detects and logs their heartrate, sampled
every few seconds.

– BodyMedia SenseWear R©. This sensor array is worn around the upper
arm and measures and logs the following: galvanic skin response, a mea-
sure of skin conductivity which is affected by perspiration; skin temperature,
which is linearly reflective of the body’s core temperature activities; heat flux
which is the rate of heat being dissipated by the body; subject motion using
an in-built accelerometer.

– Smart Chairs. Each of the chairs used had a specially designed foam-based
pressure sensor [2] integrated into its backrest to record changes in viewer
posture.

The participants were 43 staff and student volunteers from across the university.
In total, 37 full length feature films of 10 different genres (e.g. Action/Adventure,
Animation, Documentary, Horror, etc.) were shown, resulting in over 500 hours
of recorded biometric data from the set of sensors.

As outlined in [9], this gathered data, when combined with automatically de-
tected movie events (see section 3.1) is potentially a hugely valuable resource for

modeling and integrating human responses with automatic content structuring
and indexing. Unfortunately, the value of this resource is significantly reduced
in the absence of a seamless and efficient means to perform semantic queries
against this repository. In this paper, we report our work on using XML for the
semantic enrichment of this gathered sensor data.

2.1 Describing the Network

In order to employ any data management utility for a large volume of informa-
tion such as is the case here, a user needs a compact yet detailed description of
the overall system components, in our case the sensors, their data, and how they
inter-operate. In figure 1, the Sensor Network is represented as an UML class di-
agram. The principal class is the Experiment class, where one instance is created
for each experiment. Each experiment requires a single movie (Movie class) and
multiple viewers (Viewer class). The Movie has a set of static attributes associ-
ated with that movie, together with dynamic data (captured by the Event class)
that is generated as the movie is processed by our video event detection software
[5]. Each Viewer is associated with a Person class that captures static informa-
tion about the viewer, and four other classes containing dynamic information: 3
types of Sensor class and a single Feedback class.

BodySensor
NumPeaks : dynamic
HeatRate : dynamic
SkinTemp : dytnamic
CoverTemp : dynamic
GSR_average : dynamic
event : dynamic

HeartSensor
Params : dynamic
Note : dynamic
IntTimes : dynamic
ExtraData : dynamic
Summary : dynamic
HRZones : dynamic
HRData : dynamic

BackSensor
val1 : dynamic
val2 : dynamic
val3 : dynamic
val4 : dynamic

*1 1

Person
ID : static
Gender : static
Smoker : static
Height : static
Weight : static
Hand : static
AgeClass : static
MovieView : static
CinemaGo : static
MovieGenre : static

1

Sensor
Time : dynamic

*

*

Viewer
Viewer : Person : static
BodySensor : Sensor : dynamic
HeartSensor : Sensor : dynamic
BackSensor : Sensor : dynamic
Highlights : Feedback : dynamic 11

*

*

Feedback
Time : dynamic

1

*

1

*

Event
Time : dynamic
FrameData : dynamic
ShotData : dynamic
EventData : dynamic

1

*

Experiment
Name : static
Date : static
Duration : static
ViewerSet : Viewer : dynamic
Movie : Movie : dynamic *1

Movie
MovieName : static
MovieID : static
Runtime : static
Director : static

*

1

1 **1

File: C:\PAPERS\2007 XSENSE2\Experiment.mdl Thu Feb 15 17:18:39 2007 Class Diagram: Logical View / Main Page 1

Fig. 1. Class Model for the Sensor Network

One property of these experiments that cannot be captured in Figure 1 is
the Time dependency across all of the classes containing dynamic information.

All experiments are time-related and the classes Sensor, Feedback and Event,
are bound together using the start time of the movie.

2.2 Calibration and Normalisation Issues

Sensor networks generally have two forms of data: static and dynamic. Static
data is not generated by sensors or from the video analysis process. It refers
to information regarding the movie, the experiment or an individual person (a
viewer). Static data generated during experiments includes Personal Details,
Movie Preferences and Movie Opinions. Dynamic data includes movie semantics
regarding scenes, shots, events and Movie Highlights & Feelings. Sensor data
involves the generation of biometric sensor data, heart rate and backrest pressure
on the sensors in the chairs.

Fig. 2. Sensor Data Graph

Two important points are clear from figure 2: there is a strict timing relation-
ship across sensor sources, and some experimental data will contain anomalies,
eg. before watching the movies, participants logged up to 3 hours of biometric
data in order to establish their baseline biometric values but the duration of this
baseline varied considerably from person to person and from movie to movie.
Thus, sensor output is influenced by the users’ actions in many cases.

There is a synchronisation activiy carried out at the beginning and end of
each movie showing movie for each of the sensors’ measurements. A synchroni-
sation process is also required to link information concerning viewers’ reactions
and movies’ events. These are the events that have been identified using the se-
mantic analysis of audio and video contents of the shots (described later in §3).
Movie data includes all data related to a movie and is independent of Viewer
data. Viewer data includes all data related to a viewer during an experiment
for a movie and is generated during the experiments. They are three sources of
sensors data: body sensor data generated by the armband, heart-rate given by
the HR device and the backrest pressure as measured on the chairs. Thus, one
of the issues for the sensor network is how to facilitate the calibration of sensor
data by associating timing events across many of the sensor output streams.

3 XSENSE System Architecture

The XSENSE Architecture illustrated in figure 3 comprises six layers, with each
pair of layers joined by a processor performing a key activity in the enrichment
process. Layer 0 contains raw multimedia files that use processor P0 (described
in the next section) to extract meaningful content. The files generated are tex-
tual and contain timing and event data that is quite similar to raw sensor data.
At Layer 1, raw text files (both sensor and multimedia metadata files) are con-
verted by Process P1 into basic XML files and using Process P2, stylesheets are
automatically generated to enrich the basic XML files. By Layer 4, the output
from the previous two layers are combined (by Process P3) to form semantically
rich sensor data files. At this point, sensor files are autonomous with no rela-
tionship across files (indicating for example, that they were used in the same
experiment or that their times are synchronised). The final process (P4) adds
relationship semantics to link sensor files at the global layer.

3.1 Extracting Multimedia Semantics

In order to extract semantics from the video content, a process corresponding
to P0 in figure 3, we employ a movie indexing framework capable of automati-
cally detecting three different kinds of semantic events – dialogues between two
or more characters, exciting sequences (e.g. car chases, fight scenes, etc) and
emotionally laden musical sequences [18, 14, 13]. The approach relies on a series
of AV feature extraction processes, designed to mimic well-known film creation
principles. For example, when filming a dialogue sequence, the director needs
to ensure that the audience can clearly interpret the words being spoken and
uses a relaxed filming style with little camera movement, large amounts of shot
repetition and clearly audible speech [15]. Conversely, when shooting an exciting
part of a film, the director uses fast-paced editing combined with high amounts
of movement [16]. Emotionally laden events, on the other hand, are shot with
a strong musical soundtrack, usually combined with slower paced editing and
filming style [15, 6].

Layer L0 (binary multimedia)

Layer L1 (sensor and meta- data)

Layer L2 (structured XML files)

Layer L3 (sensor stylesheets)

Layer L4 (semantic XML files)

Layer L5 (hyper-linked files)

P1: Text Parser & XML Converter

xml xml

P2: Transformation Description

P3: Enrichment

semantic xml

P4: Integration & Separation

XML database

P0: Multimedia Semantic Extraction

MM extractions raw sensor data

Fig. 3. XSENSE Processing Architecture

We extract a set of AV features to detect the presence of these character-
istics. We characterise editing pace by detecting the rate of occurrence of shot
boundaries using a standard colour histogram technique. To measure onscreen
motion, we use MPEG-7 motion intensity for local motion (e.g. character move-
ment) [17] as well as a measure of global camera movement [18]. A support vector
machine based classifier is used to classify the audio track into one of: speech,
music, silence and other audio. A set of Finite State Machines (FSMs) are then
employed to detect parts of a film where particular combinations of features are
prominent. For example, in order to detect dialogue events, we detect temporal
segments which contain various combinations of speech shots, still cameras and
repeating shots. Similar rules are employed for the other event types. An evalu-
ation over ten films of very different genres and origins in [18], found that 95%
of Dialogue events, 94% of Exciting events and 90% of Musical events as judged
by multiple viewers were detected by the system, which indicates the usefulness
of system for detecting semantically important sequences in movies.

3.2 Processors for Generating Sensor Semantics

Each of the layers in the XSENSE Architecture are joined by processors that
operate to build the final sensor database. In this section, we provide a more
detailed description of the functionality of each processor. The innovation in the

XSENSE architecture is its generic nature: it was designed to accommodate a
heterogeneous collection of sensors. By providing basic scripts and the XSENSE
Term Database (a small terminology database), XSENSE can integrate most or
all sensor data formats.

Example 1. Raw Sensor Data
File : EVK Action.evtkey
176 183 177 179 181
423 431 425 427 429

P1: Text to XML Conversion At layer 1, raw sensor files contain no semantic
information and at this point, it is only possible to add structural information
to the sensor file. Example 1 illustrates a subset of a multimedia event file. The
output from this process is a basic XML file with structural semantics but not
the real content semantics as required by a query processor. Firstly, a naming
convention (located in the XSENSE Term Database) is applied to sensor data
files to enable the parser to recognize the type of sensor file. For example, a
file that contains action events is renamed to EVT Action.events. Example 2
illustrates the same sensor data after structural information has automatically
been added.

Example 2. XML Structure (output from P1)
<?xml version=“1.0” encoding=“UTF-8”?>
<document>

<event>
<startShot>176</startShot>
<endShot>183</endShot>
<keyShot-group>

<keyShot><value>177</value></keyShot>
<keyShot><value>179</value></keyShot>
<keyShot><value>181</value></keyShot>

</keyShot-group>
</event>

The XSENSE System uses ServingXML schema [11] to provide a generic
process for incorporating new types of sensor devices. A ServingXML service de-
scribes the sequence of tasks that create a set of rules to coordinate the activities
of the parser. The activity for the knowledge worker who is charged with man-
aging and manipulating such sensor data is to provide a short script describing
the file structure. The output for the next layer is a set of XML data files of the
type shown in Example 2.

P2: Transformation Description The aim of this process is to create an
XSLT stylesheet describing the transformations necessary to create a seman-
tically enriched XML sensor file. Each sensor file has its own time format or

an implicit time interval (eg. a reading every second). In this situation, this
XSLT stylesheet describes how to transform timing information into the system
time format and how to normalize times. In XSENSE, there are currently four
transformation categories.

– Semantic Transformation. Rules for file naming and deriving information
from the content.

– Structural Transformation. Rules for changing entity or attribute names and
for changing information groupings.

– Normalisation. Rules for content format normalization (i.e. date format),
generating IDs and synchronising time information.

– File Transformation. Rules to merge several XML files, divide XML files,
and generating new files.

The output from this process is the stylesheet for this sensor type. Once created,
the stylesheet will be reused for all sensors of this type, eliminating P2 from the
next iteration of the process.

P3: Semantic Enrichment The aim of the formatting process is to trans-
form a basic XML file into a semantically enriched file by applying the XSLT
stylesheet. Processors P1 and P2 generated the structured XML file and XSLT
stylesheet respectively. The ServingXML service is updated by process P3 in
order to facilitate the XSLT transformations and build the enriched data files.
When a sensor that has been processed previously is detected by the system,
the ServingXML service updates are not required.

Example 3. Enriched XML File
<?xml version=“1.0” encoding=“UTF-8”?>
<events>

<event type=“Action”>
<startShot id=“176”/>
<endShot id=“183”/>
<keyShot id=“177”/>
<keyShot id=“179”/>
<keyShot id=“181”/>

</event>

Example 3 illustrates how the sensor data used in the prvious two exam-
ples can now be queried using the standard XPath language. The Saxon XSLT
Processor [10] manages all transformations for this process.

P4: Integration and Separation At this point, XML files contain information
relating to a single sensor file. The aim of this process is to add information from
other sensors’ files, to merge several XML files or to generate new files. Those
transformations are once again described in XSLT stylesheets. This is neces-
sary as most sensor networks contain sensors that while physically autonomous,
operate in relation to other sensors to deliver the overall monitoring process.

In our sample domain, events files of different types are merged and sorted
according to the time they occur in the movie. Sensor files are edited to ensure
that links referring to the same experiment, heart monitor, film event etc. are
preserved. This process ensures that users need not be aware of implicit rela-
tionships across the sensor network: instead they are explicitly created inside
sensor documents. This provides an added advantage when sensor networks are
very large and require a distributed architecture to manage scalability. In the
Appendix, we provide a subset of the files created for the sensor data used in
the examples in this section. This file is automatically created after user input
(script data) to the ServingXML process.

3.3 Building Sensor and Movie Databases

The sensor network comprises 33 experiments, covering 29 movies, and a total
of 171 sensor outputs, creating 316Mb of raw data. The XSense architecture
requires that sensor files follow a specific naming convention and that binary
files be converted to text files.

When all of the sensor data for a particular experiment is generated, this
causes the creation of an experiment XML file (by processor P4). This experi-
ment xml file contains timing information for both the movie and experiment.
However, some information such as movie id, title and language are entered man-
ually before they are stored in the XML (eXist) database. Table 1 presents the
times for the creation of the database (approx 1 hour and 50 minutes).

Input Output Time

P1 171 sensor files (316MB) 171 raw XML files
P3 171 raw XML files 188 enriched files (651MB) 23 min

P4
(incl. manual 188 enriched files (651MB) 221 linked files (651MB) 1h 27min
editing) (+ 27 min)

Total 171 sensor files (316MB) 221 linked files (651MB) 1h 50min
Table 1. Creation of the Experiment database

Movie Database. The analysis of the 29 films generated 268 semantic files,
however, processor 4 merges all XML documents generated for the same film.
Unlike sensor files from experiments, movie analysis files are small (less than
1MB) and can be merged. The generated movie file must be edited to add the
movie id, the movie title and language before files are inserted into the eXist
XML database. Table 2 presents the timing for each processor. As both processes
run in parallel, the movie database is created before the sensor database.

Input Output Time

P1 268 text files (2.3MB) 268 raw XML files
P3 268 raw XML files 326 enriched files 8 min

P4
(incl. manual 326 enriched files (44.2MB) 29 movie files (24.7MB) 36 min
editing) (+ 30 min)

Total 268 text files (2.3MB) 29 movie files (24.7MB) 44 min
Table 2. Creation of the Movie database

4 Managing a Large Sensor Network

As many sensor networks comprise very high volumes of sensors and data, a cen-
tralised approach to data management would gradually reduce in performance.
In prior work [1], we developed a distributed information system architecture
that operated over a Peer-to-Peer (P2P) network. The XPeer architecture was
effectively a logical IS architecture that provides the scalable benefits of P2P
systems with the information management functionality of traditional database
systems. In this section, we describe how XSENSE was extended with P2P con-
cepts to facilitate scalable data management for data generated for a larger
sensor network.

4.1 XSENSE-Peer Architecture

Using XSENSE-Peer, a sensor is modelled as a peer. Peers sharing common
information are grouped into a cluster and managed by a super-peer. In the
CDVPlex context, the definition of a cluster is flexible and might contain all
heart-monitor data, or all data for a specified experiment, or all experiments that
contained no gender mix among the users, for example. In §5, we will describe
the results from using a number of clusters that were formed in this way. Clusters
of peers are referenced by domains. Queries are sent to chosen domains and then
routed using super-peers to the appropriate clusters. In this example, we have a
single domain, CDVPlex, and all clusters belong to this domain.

System overview In XSENSE-Peer, each peer makes its sensor data available
in the form of a service. A special client peer called a Query Peer reads XPath
queries, sends them to Cluster Peers and retrieves responses. A Repository
Peer receives metadata queries from both Query Peers or Cluster Peers. A
Cluster Peer receives XPath queries from Query Peers and passes the query
to all Data Peers in its cluster. It aggregates responses and returns the result
back to the Query Peer. Figure 4 provides an overview of the query process.

1. The Query Peer passes keywords to the Repository Peer requesting ids of
suitable Cluster Peers.

2. The query is sent to the ClusterPeers.

Fig. 4. P2P Query Processing

3. Cluster Peers request the ids of the Data Peers within their respective clus-
ter from the Repository Peer. This step can be eliminated by loading this
information at startup but we chose to leave it in place for our experiments.
This was to enable a system where sensors can come and go in a random
fashion.

4. Data Peers send results to their Cluster Peers

5. Cluster Peers send the final result to the QueryPeer.

5 Experiments

In this section, we report on a series of queries and their performance over a
P2P network of sensor documents. Experiments were run on 3.2GHz Pentium
IV machines, each with 1GB of RAM using the Windows XP Pro operating
system and the P2P Query Processor was implemented using Java Virtual Ma-
chine (JVM) version 1.5. Each peer required a separate JVM (even on the same
machine) to emulate a properly distributed environment and experiments were
run three times with their times averaged to produce the final query response
time.

Fig. 5. JXTA Peers Network

5.1 Implementation with JXTA

JXTA provides the platform to implement the logical XSENSE-Peer layer. It
defines an API of P2P protocols based on exchanges of XML messages to manage
the basic services of a P2P application. The 6 protocols are:

– Peer Discovery Protocol: a searching mechanism with a local cache.
– Peer Resolver Protocol: to process request/response over the entire network.
– Peer Information Protocol: to provide peer status.
– Peer Membership Protocol: to manage the authentication of a peer.
– Pipe Binding Protocol: to manages pipe creation and connection.
– Endpoint Routing Protocol: to define the physical routes between peers.

The main components of JXTA are:

– Peer: a single JXTA instance.
– PeerGroup: a logical clustering of peers.
– Service: a function running inside a PeerGroup on some or all of its peers.
– Pipe: a virtual communication channel for document and data exchange.
– Advertisement: an XML document that describes any resource in a P2P

network (peers, peergroups, pipes, services, etc).
– Rendezvous Peer: a special peer to caches advertisements and make them

available within a PeerGroup.

With these features of JXTA, it was relatively easy to map the logical
XSENSE-Peer structure to the implementation model required to run a series
of experiments.

XPath Queries C P Time

Q1 //base-uri() 3 34 8.672s

Q2 //experiment/title 1 10 2.856s

Q3 //experiment/@movieId/string() 1 10 4.131s

Q4 //experiment//timestamp 1 10 2.329s

Q5 //experiment[@movieId=’tt0147612’]/title 3 34 6.699s

Q6 //experiment[@movieId=’tt0147612’]/title 1 10 3.279s

Q7 //experiment[title=’Happiness’]
//timestamp[@name=’ExperimentBegin’]//text() 3 34 9.493s

Q8 //experiment[title=’Happiness’]
//timestamp[@name=’ExperimentBegin’]//text() 1 10 3.362s

Q9 //document-uri(sensorData[descendant::interval
/startDateTime<’2005-08-01T00:00:00’]) 3 34 9.652s

Q10 //sensorData[@type=’HRSensor’ and
@personCode=’14’]//intervals 3 34 8.179s

Q11 //sensorData[@type=’HRSensor’ and
@personCode=’14’]//intervals 3 20 5.953s

Q12 //sensorData[@personCode=’28’]/@type/string() 1 12 7.913s

Q13 //sensorData[@type=’HRSensor’]/@deviceId/string() 3 34 7.621s

Q14 //sensorData[@type=’HRSensor’]/@deviceId/string() 1 12 4.087s
Table 3. P2P Sensor Network Response Times

Peer Network The metabase contains a description of peers, their clusters
and domains and their keywords. In this experiment, the keyword cdvplex is
common to all peers and for example, all Data Peers linked to heart-rate monitors
files have got the keyword HRSensor. The network is comprised of 250 peers (221
sensor files and 29 movie files) including the 3 clusters using the 30 DataPeers
shown in figure 5. Clusters are not disjoint: there are 3 heart-rate monitor files in
the Happiness experiments which also belong to the hear-rate monitor cluster.

– The first cluster contains Data Peers with sensor documents for the exper-
iment using the film “Happiness”. Peers in this cluster share the keyword
“experiment”.

– The second cluster concerns DataPeers with heart-rate monitor documents.
Peers in this cluster share the keyword “HRM”.

– The third cluster groups DataPeers linked to sensor files concerning female
viewers. Those peers contain the keyword “female”.

Comment on Results Table 3 illustrates the performance for a set of 14
queries run over the P2P network. Columns C and P represent the number
of Clusters and Data Peers respectively. Unlike more low-level approaches to
P2P searching, we use a metabase that contains information and location of
domains and clusters. Thus, we route our queries to specified clusters of sensors.
In general, we discovered that a single peer responded with sensor data inside
200ms to 300ms. When we scaled to larger numbers of peers, the times rose

linearly. Table 3 demonstrates that locating the correct peers does not cause a
high overhead on the system unlike conventional large scale architectures, where
it is not gneerally guaranteed that all sensors can be reached. Furthermore,
traditional sensor networks (as will be shown later in our discussion on related
research) tend to employ low-level query languages as these networks contain a
semantic deficit between query language and representation of data. This is not
the case with our network as our broad range of queries demonstrate.

Our experiments indicate that if cluster sizes are kept reasonably small there
is no need to integrate the sensor data sources. However, if clusters are very
large, then a single peer should be be used to integrate and cache sensor data.
This will consifderably reduce the query response times.

6 Related Research

In this section, we examine related research under two different criteria: their
ability to provide generic frameworks for sensor management and querying, and
in their ability to generate meaningful semantics for complex sensor data (eg.
multimedia).

While sensor networks are now quite popular, there is not a great deal of
published work in the area of semantic enrichment for sensor networks, nor in
the area of evaluating performance over enriched sensor sources. Instead, most
of the published work covers the use of XML for reasons of interoperability [8]
or evaluates query processing using simple methods, operating at the network
level [4].

In [8], they provide a template for incorporating non-XML sources into an
XML environment. They tackle the same issue as that faced by knowledge work-
ers in sensor networks: converting data to a usable format. Their approach is
similar to XSENSE in that they use their Data Format Description Language to
generate the XML representation of data. This is similar to our usage of Serv-
ingXML to meet the same goals although their approach requires a lot more
user input as descriptions can often be quite lengthy. The key contribution of
their work is that no conversion of sensor data is necessary as they create a
view definition to interpret the raw data. On the negative side, they provide
only a template system that has not been applied to any domain (instead they
provide some use-case descriptions) and no query reponse times are possible. In
this respect, their query optimiser will face problems when converting between
the view definition and the physical data.

In [12] and [4], they process and query the raw streams and avoid conversion
to XML. This has its benefits as the construction times for XML repositories
(both centralised and distributed) are often reported to be quite large, and we
have reported similar issues here. In [12], their approach is to enrich raw data
into semantic streams and process these streams as they are generated. Their
usage of constraints on the data streams provides a useful query mechanism with
possibilities for optimisation. However, this work is still theoretical and contains
no evidence of experiments or query times. In [4], they employ the concept of

proximity queries where network nodes monitor and record interesting events in
their locality. While their results are positive in terms of cost, queries are still at
a relatively low level (no common format for query expression) and it is difficult
to see how this type of proximity network can be applied in general terms due
to the complexity of the technologies involved.

In [3], they provide semantic clusters within their sensor network. This is a
similar approach to our work, where we cluster related groups of sensors. They
also adopt a semi-automated approach and are capable of generating metadata
to describe sensors and thus, support query processing. However, their object-
oriented approach is likely to lead to problems with interoperability and this
could be exacerbated through the lack of common query language. While this can
be addressed with a canonical layer (probably using XML) for interoperability,
it is likely to have performance related issues.

7 Conclusions

As sensor networks become more pervasive, the volumes of data generated will
pose challenges to managing the stream of data values in an efficient, scalable,
and yet useful manner. This data will include data readings from sensing de-
vices, such as the biometric sensing devices we have used in this paper. It will
also include data values derived from analysis of raw sensed data, such as the
highlights and event detection results from an audio-visual data stream which
we have illustrated in this paper through our analysis of movie video. While
many differing solutions exist for efficiently managing the raw data values, we
are more concerned in the work reported here on allowing semantic enrichment
of the raw data to take place and to facilitate subsequent high level queries. To
address this we have presented and used the XSENSE architecture, extended
with Peer-2-Peer concepts and implementation, to realise scalable management
of sensor data at a semantic level. We have demonstrated this in operation using
a dataset of 33 experiments covering 29 movies and a total of 171 sensor outputs,
realising a data volume of 316 MB of raw data. Our implementation has been
tested using a collection of different semantic query types and response time
performance, on a standard desktop machine, has been good.

There are many directions in which we intend to pursue further work. As
clusters of sensors inside specified domains have similar properties to tree-based
systems, we intend to optimise distributed XSENSE queries by extending tech-
niques previously developed for XML trees [7]. We also intend to examine issues
of real-time ingestion of sensor data, and real-time querying. Finally, we will
also address questions of how to handle instances of sensors dropping out of the
sensing process, and then returning later, usually done in order to save power
consumption on the device.

References

1. Bellahsène Z. and Roantree M. Querying Distributed Data in a Super-Peer based
Architecture, in: Proc. 15th International Conference on Database and Expert Sys-

tem Applications, LNCS 3180, pp. 296-305, 2004.
2. Dunne, L.E., Brady, S., Smyth, B. and Diamond, D. Initial development and testing

of a novel foam-based pressure sensor for wearable sensing. Journal of NeuroEngi-
neering and Rehabilitation, 2:1, pp.4-, 2005.

3. Kawashima H., Hirota Y., Satake S., and Imai M. MeT: A Real World Oriented
Metadata Management System for Semantic Sensor Networks. 3rd International
Workshop on Data Management for Sensor Networks (DMSN), pp. 13-18, 2006.

4. Kotidis Y. Processing Proximity Queries in Sensor Networks. 3rd International
Workshop on Data Management for Sensor Networks (DMSN), pp. 1-6, 2006.

5. Lehane B and O’Connor N, Movie Indexing via Event Detection, WIAMIS06 -
7th International Workshop on Image Analysis for Multimedia Interactive Services,
Incheon, Korea, 19-21 April 2006.

6. Lehane, B., O’Connor, N.E., Smeaton, A.F. and Lee, H. A System For Event-Based
Film Browsing. In Proceedings TIDSE 2006 – 3rd International Conference on Tech-
nologies for Interactive Digital Storytelling and Entertainment. Springer Lecture
Notes in Computer Science (LNCS) Vol 4326, pp. 334-345, 2006.

7. O’Connor M., Bellahsene Z. and Roantree M. An Extended Preorder Index for Op-
timising XPath Expressions. Proceedings of 3rd XML Database Symposium, LNCS
Vol. 3671, Springer, pp 114-128, 2005.

8. Rose K., Malaika S., and Schloss R. Virtual XML: A toolbox and use cases for the
XML World View. IBM Systems Journal 45:2, pp. 411-424, 2006.

9. Rothwell, S., Lehane, B., Chan, C.H., Smeaton, A.F., OConnor, N.E., Jones, G.J.F.
and Diamond, D. The CDVPlex Biometric Cinema: Sensing Physiological Responses
to Emotional Stimuli in Film. in: Proc. Pervasive 2006 - the 4th International Con-
ference on Pervasive Computing, 7-10 May 2006, Dublin, Ireland.

10. Saxon Project.

at: URL saxon.sourceforge.net, 2007.
11. ServingXML Project.

at: URL servingxml.sourceforge.net, 2007.
12. Whitehouse K., Zhao F., and Liu J. Semantic Streams: a Framework for

Composable Semantic Interpretation of Sensor Data. 3rd European Workshop
on Wireless Sensor Networks (EWSN), LNCS 3868, pp. 5-20, 2006.

13. Lehane B., and O’Connor N. Movie Indexing via Event Detection 7th In-
ternational Workshop on Image Analysis for Multimedia Interactive Services,
Incheon, Korea, 19-21 April, 2006

14. Lehane B. and O’Connor N. Action Sequence Detection in Motion Pictures
The International Workshop on Multidisciplinary Image, Video, and Audio
Retrieval and Mining 2004

15. Bordwell B., and Thompson K., Film Art: An Introduction McGraw-Hill
1997

16. Dancyger K. The Technique of Film and Video Editing. History, Theory and
Practice Focal Press, 2002

17. Manjunath B.S., Salember P., and Sikora T. Introduction to MPEG-7, Mul-
timedia content description language John Wiley and Sons ltd 2002

18. Lehane B., and O’Connor N. and Murphy N. Dialogue Scene Detection in
Movies International Conference on Image and Video Retrieval (CIVR), pp
286-296, Singapore, 20-22 July 2005

Appendix A. Semantic File for Film Happiness.xml
<movie movieId=“tt0147612” langCode=“eng”>

<title>Happiness</title>
<movieStructure>

<scene id=“0”>
<cluster id=“0”>

<shot id=“0”>
<keyFrame id=“0”/>

</shot>
...

</cluster>
...

</scene>
...

</movieStructure>
<events>

<event id=“0” type=“Dialogue”>
<startShot id=“0”/>
<endShot id=“3”/>
<keyShot id=“2”/>
<keyShot id=“1”/>
<keyShot id=“99999999”/>

</event>
...
<event id=“18” type=“Action”>

<startShot id=“176”/>
<endShot id=“183”/>
<keyShot id=“177”/>
<keyShot id=“179”/>
<keyShot id=“181”/>

</event>
...

</events>
<shots>

<shot id=“0”>
<startFrame id=“0”/>
<keyFrame id=“0”/>
<endFrame id=“30”/>
<startTime>0</startTime>
<endTime>1001</endTime>
<motionIntensity>0</motionIntensity>
<percentCameraMovement>0.2</percentCameraMovement>
<percentSilence>0</percentSilence>
<percentSilenceMusic>1</percentSilenceMusic>
<percentSpeech>0</percentSpeech>
<percentMusic>0</percentMusic>
<percentOtherAudio>0</percentOtherAudio>

</shot>
</shots> </movie>

