28,212 research outputs found

    CT dose reduction factors in the thousands using X-ray phase contrast

    Full text link
    Phase-contrast X-ray imaging can improve the visibility of weakly absorbing objects (e.g. soft tissues) by an order of magnitude or more compared to conventional radiographs. Previously, it has been shown that combining phase retrieval with computed tomography (CT) can increase the signal-to-noise ratio (SNR) by up to two orders of magnitude over conventional CT at the same radiation dose, without loss of image quality. Our experiments reveal that as radiation dose decreases, the relative improvement in SNR increases. We discovered this enhancement can be traded for a reduction in dose greater than the square of the gain in SNR. Upon reducing the dose 300 fold, the phase-retrieved SNR was still almost 10 times larger than the absorption contrast data. This reveals the potential for dose reduction factors in the tens of thousands without loss in image quality, which would have a profound impact on medical and industrial imaging applications

    MRI of the lung (3/3)-current applications and future perspectives

    Get PDF
    BACKGROUND: MRI of the lung is recommended in a number of clinical indications. Having a non-radiation alternative is particularly attractive in children and young subjects, or pregnant women. METHODS: Provided there is sufficient expertise, magnetic resonance imaging (MRI) may be considered as the preferential modality in specific clinical conditions such as cystic fibrosis and acute pulmonary embolism, since additional functional information on respiratory mechanics and regional lung perfusion is provided. In other cases, such as tumours and pneumonia in children, lung MRI may be considered an alternative or adjunct to other modalities with at least similar diagnostic value. RESULTS: In interstitial lung disease, the clinical utility of MRI remains to be proven, but it could provide additional information that will be beneficial in research, or at some stage in clinical practice. Customised protocols for chest imaging combine fast breath-hold acquisitions from a "buffet" of sequences. Having introduced details of imaging protocols in previous articles, the aim of this manuscript is to discuss the advantages and limitations of lung MRI in current clinical practice. CONCLUSION: New developments and future perspectives such as motion-compensated imaging with self-navigated sequences or fast Fourier decomposition MRI for non-contrast enhanced ventilation- and perfusion-weighted imaging of the lung are discussed. Main Messages • MRI evolves as a third lung imaging modality, combining morphological and functional information. • It may be considered first choice in cystic fibrosis and pulmonary embolism of young and pregnant patients. • In other cases (tumours, pneumonia in children), it is an alternative or adjunct to X-ray and CT. • In interstitial lung disease, it serves for research, but the clinical value remains to be proven. • New users are advised to make themselves familiar with the particular advantages and limitations

    Reducing Radiation Dose to the Female Breast during CT Coronary Angiography: A Simulation Study Comparing Breast Shielding, Angular Tube Current Modulation, Reduced kV, and Partial Angle Protocols Using an Unknown-location Signal-detectability Metric

    Get PDF
    Purpose: The authors compared the performance of five protocols intended to reduce dose to the breast during computed tomography (CT) coronary angiography scans using a model observer unknown-location signal-detectability metric. Methods: The authors simulated CT images of an anthropomorphic female thorax phantom for a 120 kV reference protocol and five “dose reduction” protocols intended to reduce dose to the breast: 120 kV partial angle (posteriorly centered), 120 kV tube-current modulated (TCM), 120 kV with shielded breasts, 80 kV, and 80 kV partial angle (posteriorly centered). Two image quality tasks were investigated: the detection and localization of 4-mm, 3.25 mg/ml and 1-mm, 6.0 mg/ml iodine contrast signals randomly located in the heart region. For each protocol, the authors plotted the signal detectability, as quantified by the area under the exponentially transformed free response characteristic curve estimator (AˆFE), as well as noise and contrast-to-noise ratio (CNR) versus breast and lung dose. In addition, the authors quantified each protocol\u27s dose performance as the percent difference in dose relative to the reference protocol achieved while maintaining equivalentAˆFE. Results: For the 4-mm signal-size task, the 80 kV full scan and 80 kV partial angle protocols decreased dose to the breast (80.5% and 85.3%, respectively) and lung (80.5% and 76.7%, respectively) withAˆFE= 0.96, but also resulted in an approximate three-fold increase in image noise. The 120 kV partial protocol reduced dose to the breast (17.6%) at the expense of increased lung dose (25.3%). The TCM algorithm decreased dose to the breast (6.0%) and lung (10.4%). Breast shielding increased breast dose (67.8%) and lung dose (103.4%). The 80 kV and 80 kV partial protocols demonstrated greater dose reductions for the 4-mm task than for the 1-mm task, and the shielded protocol showed a larger increase in dose for the 4-mm task than for the 1-mm task. In general, the CNR curves indicate a similar relative ranking of protocol performance as the correspondingAˆFEcurves, however, the CNR metric overestimated the performance of the shielded protocol for both tasks, leading to corresponding underestimates in the relative dose increases compared to those obtained when using theAˆFEmetric. Conclusions: The 80 kV and 80 kV partial angle protocols demonstrated the greatest reduction to breast and lung dose, however, the subsequent increase in image noise may be deemed clinically unacceptable. Tube output for these protocols can be adjusted to achieve a more desirable noise level with lesser breast dose savings. Breast shielding increased breast and lung dose when maintaining equivalentAˆFE. The results demonstrated that comparisons of dose performance depend on both the image quality metric and the specific task, and that CNR may not be a reliable metric of signal detectability

    The clinical application of PET/CT: a contemporary review

    Get PDF
    The combination of positron emission tomography (PET) scanners and x-ray computed tomography (CT) scanners into a single PET/CT scanner has resulted in vast improvements in the diagnosis of disease, particularly in the field of oncology. A decade on from the publication of the details of the first PET/CT scanner, we review the technology and applications of the modality. We examine the design aspects of combining two different imaging types into a single scanner, and the artefacts produced such as attenuation correction, motion and CT truncation artefacts. The article also provides a discussion and literature review of the applications of PET/CT to date, covering detection of tumours, radiotherapy treatment planning, patient management, and applications external to the field of oncology

    Focal Spot, Spring 2005

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1099/thumbnail.jp

    Focal Spot, Winter 1984/85

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1039/thumbnail.jp

    Focal Spot, Spring 2004

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1096/thumbnail.jp

    Radiation-induced lung damage promotes breast cancer lung-metastasis through CXCR4 signaling

    Get PDF
    Radiotherapy is a mainstay in the postoperative treatment of breast cancer as it reduces the risks of local recurrence and mortality after both conservative surgery and mastectomy. Despite recent efforts to decrease irradiation volumes through accelerated partial irradiation techniques, late cardiac and pulmonary toxicity still occurs after breast irradiation. The importance of this pulmonary injury towards lung metastasis is unclear. Preirradiation of lung epithelial cells induces DNA damage, p53 activation and a secretome enriched in the chemokines SDF-1/CXCL12 and MIF. Irradiated lung epithelial cells stimulate adhesion, spreading, growth, and (transendothelial) migration of human MDA-MB-231 and murine 4T1 breast cancer cells. These metastasis-associated cellular activities were largely mimicked by recombinant CXCL12 and MIF. Moreover, an allosteric inhibitor of the CXCR4 receptor prevented the metastasis-associated cellular activities stimulated by the secretome of irradiated lung epithelial cells. Furthermore, partial (10%) irradiation of the right lung significantly stimulated breast cancer lung-specific metastasis in the syngeneic, orthotopic 4T1 breast cancer model. Our results warrant further investigation of the potential pro-metastatic effects of radiation and indicate the need to develop efficient drugs that will be successful in combination with radiotherapy to prevent therapy-induced spread of cancer cells
    corecore