1,103 research outputs found

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    A Centralized Model for Establishing End-to-End Communication Services via Management Agents

    Get PDF
    This paper presents a centralized approach for establishing end-to-end communication services via management agents. The main proposal is the modular architecture of the third-party based Service Establishment Agent (SEA). The SEA manages inter-provider service negotiation process with per-domain management agents through an appropriate signaling agent. It also receives and interprets end-toend service requests, selects inter-domain paths, performs mapping of service classes among domains on the path, and evaluates conformance of the offered service level with the required one. It allows implementation of different algorithms for the aforementioned functions as well as their selection and combination according to the predefined management policies. Simulation results show that the proposed model significantly outperforms the distributed model in terms of service negotiation times. In the prototype development process, a policy-based solution for mapping of service classes was implemented. The performance evaluation shows that processing requirements for handling multiple service requests are modest, while benefit of the SEA approach is the lack of need to build long-term consensus among providers about technical choices for achieving network interconnection. The SEA architecture is completely independent of the quality of service mechanisms available in particular domains.</p

    Combinatorial Auction-based Mechanisms for Composite Web Service Selection

    Get PDF
    Composite service selection presents the opportunity for the rapid development of complex applications using existing web services. It refers to the problem of selecting a set of web services from a large pool of available candidates to logically compose them to achieve value-added composite services. The aim of service selection is to choose the best set of services based on the functional and non-functional (quality related) requirements of a composite service requester. The current service selection approaches mostly assume that web services are offered as single independent entities; there is no possibility for bundling. Moreover, the current research has mainly focused on solving the problem for a single composite service. There is a limited research to date on how the presence of multiple requests for composite services affects the performance of service selection approaches. Addressing these two aspects can significantly enhance the application of composite service selection approaches in the real-world. We develop new approaches for the composite web service selection problem by addressing both the bundling and multiple requests issues. In particular, we propose two mechanisms based on combinatorial auction models, where the provisioning of multiple services are auctioned simultaneously and service providers can bid to offer combinations of web services. We mapped these mechanisms to Integer Linear Programing models and conducted extensive simulations to evaluate them. The results of our experimentation show that bundling can lead to cost reductions compared to when services are offered independently. Moreover, the simultaneous consideration of a set of requests enhances the success rate of the mechanism in allocating services to requests. By considering all composite service requests at the same time, the mechanism achieves more homogenous prices which can be a determining factor for the service requester in choosing the best composite service selection mechanism to deploy

    Mass Customization of Cloud Services - Engineering, Negotiation and Optimization

    Get PDF
    Several challenges hinder the entry of mass customization principles into Cloud computing: Firstly, the service engineering on provider side needs to be automated. Secondly, there has to be a suitable negotiation mechanism helping provider and consumer on finding an agreement on Quality-of-Service and price. Thirdly, finding the optimal configuration requires adequate and efficient optimization techniques. The work at hand addresses these challenges through technical and economic contributions

    Cloudbus Toolkit for Market-Oriented Cloud Computing

    Full text link
    This keynote paper: (1) presents the 21st century vision of computing and identifies various IT paradigms promising to deliver computing as a utility; (2) defines the architecture for creating market-oriented Clouds and computing atmosphere by leveraging technologies such as virtual machines; (3) provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; (4) presents the work carried out as part of our new Cloud Computing initiative, called Cloudbus: (i) Aneka, a Platform as a Service software system containing SDK (Software Development Kit) for construction of Cloud applications and deployment on private or public Clouds, in addition to supporting market-oriented resource management; (ii) internetworking of Clouds for dynamic creation of federated computing environments for scaling of elastic applications; (iii) creation of 3rd party Cloud brokering services for building content delivery networks and e-Science applications and their deployment on capabilities of IaaS providers such as Amazon along with Grid mashups; (iv) CloudSim supporting modelling and simulation of Clouds for performance studies; (v) Energy Efficient Resource Allocation Mechanisms and Techniques for creation and management of Green Clouds; and (vi) pathways for future research.Comment: 21 pages, 6 figures, 2 tables, Conference pape

    A Methodology for Engineering Collaborative and ad-hoc Mobile Applications using SyD Middleware

    Get PDF
    Todayā€™s web applications are more collaborative and utilize standard and ubiquitous Internet protocols. We have earlier developed System on Mobile Devices (SyD) middleware to rapidly develop and deploy collaborative applications over heterogeneous and possibly mobile devices hosting web objects. In this paper, we present the software engineering methodology for developing SyD-enabled web applications and illustrate it through a case study on two representative applications: (i) a calendar of meeting application, which is a collaborative application and (ii) a travel application which is an ad-hoc collaborative application. SyD-enabled web objects allow us to create a collaborative application rapidly with limited coding effort. In this case study, the modular software architecture allowed us to hide the inherent heterogeneity among devices, data stores, and networks by presenting a uniform and persistent object view of mobile objects interacting through XML/SOAP requests and responses. The performance results we obtained show that the application scales well as we increase the group size and adapts well within the constraints of mobile devices

    Support for flexible and transparent distributed computing

    Get PDF
    Modern distributed computing developed from the traditional supercomputing community rooted firmly in the culture of batch management. Therefore, the field has been dominated by queuing-based resource managers and work flow based job submission environments where static resource demands needed be determined and reserved prior to launching executions. This has made it difficult to support resource environments (e.g. Grid, Cloud) where the available resources as well as the resource requirements of applications may be both dynamic and unpredictable. This thesis introduces a flexible execution model where the compute capacity can be adapted to fit the needs of applications as they change during execution. Resource provision in this model is based on a fine-grained, self-service approach instead of the traditional one-time, system-level model. The thesis introduces a middleware based Application Agent (AA) that provides a platform for the applications to dynamically interact and negotiate resources with the underlying resource infrastructure. We also consider the issue of transparency, i.e., hiding the provision and management of the distributed environment. This is the key to attracting public to use the technology. The AA not only replaces user-controlled process of preparing and executing an application with a transparent software-controlled process, it also hides the complexity of selecting right resources to ensure execution QoS. This service is provided by an On-line Feedback-based Automatic Resource Configuration (OAC) mechanism cooperating with the flexible execution model. The AA constantly monitors utility-based feedbacks from the application during execution and thus is able to learn its behaviour and resource characteristics. This allows it to automatically compose the most efficient execution environment on the fly and satisfy any execution requirements defined by users. Two policies are introduced to supervise the information learning and resource tuning in the OAC. The Utility Classification policy classifies hosts according to their historical performance contributions to the application. According to this classification, the AA chooses high utility hosts and withdraws low utility hosts to configure an optimum environment. The Desired Processing Power Estimation (DPPE) policy dynamically configures the execution environment according to the estimated desired total processing power needed to satisfy usersā€™ execution requirements. Through the introducing of flexibility and transparency, a user is able to run a dynamic/normal distributed application anywhere with optimised execution performance, without managing distributed resources. Based on the standalone model, the thesis further introduces a federated resource negotiation framework as a step forward towards an autonomous multi-user distributed computing world

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon
    • ā€¦
    corecore