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Abstract  

Composite service selection presents the opportunity for rapid development of complex 

applications using existing web services. It refers to the problem of selecting a set of web 

services from a large pool of available candidates to logically compose them to achieve value-

added composite services. With the growing number of web services on the Internet, it is very 

likely to find services, which provide a similar functionality but are differentiated based on their 

Quality of Service offers and price. The aim of service selection is to choose the best set of 

services based on the requirements of a composite service requester. The current service 

selection approaches mostly assume that web services are offered as single independent entities. 

Thus, if a service provider is interested in offering a combination of services, there is no 

possibility for bundling. Such an assumption ignores the dependencies between constituent 

services of a composition, which can strongly affect the service providers’ preferences in 

offering bundles of web services. Moreover, the current research has mainly focused on solving 

the problem for a single composite service. There is a limited research to date on how the 

presence of multiple, simultaneous requests for composite services affects the performance of 

service selection approaches. Addressing these two aspects significantly enhances the 

application of composite service selection approaches for real-world practices. Accordingly, 

our central aim in this thesis is to develop new approaches for the composite web service 

selection problem by addressing both the bundling and multiple requests issues. In particular, 

we propose two mechanisms based on combinatorial auction models: a single auction 

mechanism and a simultaneous auction mechanism. We build on well-established theories from 

mechanism design and auction theory. The proposed approach based on combinatorial auctions 

allows multiple items to be auctioned at the same time and providers can bid to offer a 

combination of services. 

The single auction mechanism aims to procure the composite service at the lowest price subject 

to a set of allocation constraints. The set of constraints addresses the service requester’s 

preferences and constraints about different aspects of the composite service, such as quality of 

service or budget. We performed extensive experiments through simulation to study the impact 

of bundling on the cost of the composite service. The results indicate that bundling can reduce 

the cost compared to when services are offered independently. However, the results show that 

the cost reduction applies only up to a certain threshold for the size of bundles. Beyond this 

threshold, with more crowded bundles, the cost tends to increase rather than decrease. 
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The proposed simultaneous auction mechanism aims to solve the problem for multiple requests, 

by matching the requests with offers at specific intervals. The objective of the mechanism is to 

procure services at the lowest price given the requesters’ set of allocation constraints. To 

prevent the complete failure of the mechanism in the case of some requests being infeasible due 

to the imposed allocation constraints, the proposed mechanism minimizes the cost for the 

largest set of feasible requests. The simultaneous auction mechanism is supported by empirical 

evaluations through conducting extensive simulation experiments. The experiments compare 

the performance of the simultaneous auction with two greedy mechanisms which allocate 

services to requests one at a time: firstly, the single auction mechanism when applied to a set 

of requests one at a time, and secondly, a fixed-price mechanism where each service requester 

fixes the price to be paid for the requested composite service. The evaluations show that, firstly, 

the simultaneous auction mechanism achieves significantly higher success rate (that is the ratio 

of the feasible service requests to all requests) in allocating service offers to composite service 

requests compared to the other two mechanisms. Secondly, despite the greedy strategy of the 

single auction mechanism, the average price of a composite service achieved by simultaneous 

auction is not significantly different from that of the single auction. More importantly, both 

auction-based mechanisms achieve significantly lower prices compared to the fixed price 

mechanism. Thirdly, the simultaneous auction mechanism obtains more homogenous prices for 

the set of composite services while the prices achieved by single auction mechanism are 

seriously affected by their order of being considered for service selection. To summarize, the 

proposed simultaneous auction mechanism enhances the success rate of composite service 

selection, without losing its optimality in terms of the price of the composite service. By 

considering all composite services at the same time, it achieves more homogenous prices which 

can be a determining factor for the service requester when choosing which composite service 

selection mechanism to attend.  
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Chapter 1 

1 Introduction  

1.1 Preliminary 

Web service technology has transformed the Internet from solely being a source of 

information to a more advanced level of the “Internet of services”, presenting Internet 

users with access to a wide range of services. The service-enabled Internet is realized 

through the open, Internet-oriented and standards-based interfaces of web services and 

the standards-based technologies that they use to communicate with one another. These 

characteristics enable the creation of services which can be easily discovered and 

consumed by external users independent of their hardware, operating system or 

programming environment. 

Single web services usually are designed to offer limited atomic functionalities such as 

searching in Google, obtaining the weather condition of a region or showing the location 

of a vehicle on a map by getting its geographic specification. Such a design adheres to 

the fundamental service-oriented computing design principle of “reusability”; the limited 

atomic functionality makes it easier to reuse web services as building blocks in different 

applications. However, what users need is generally a complex functionality which might 

not be found in a single web service, such as planning a trip, online patient follow-up, 

applying for admission to a university or protein sequence analysis. The most natural 

solution to make the complex functionality appears to be integrating the appropriate set 
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of web services in a proper sequence so that they can jointly achieve the required 

functionality, a process known as web service composition. 

Web service composition (WSC) has been an active research area in service-oriented 

computing for more than 10 years. One major reason for such interest among researchers 

is the promise of the rapid development of software systems with low development cost. 

The exciting idea of creating complex applications by composing existing concrete 

services has the potential to change the way organizations build or procure their software 

applications. This can also lead to significant time and money savings at both the 

development and the maintenance stages of the software system lifecycle. 

With the constantly growing number of available online web services that can perform 

similar functionalities at different levels of quality and price, one major challenge in 

building a composite service is to select the most appropriate web services for 

composition. This is referred to in the literature as quality-aware or quality-driven service 

selection for web service composition (Zeng et al. 2003; Canfora et al. 2005; Michlmayr 

et al. 2010; He et al. 2014). From now on, we will refer to it as composite web service 

selection. More formally, composite web service selection is the process of selecting the 

“optimal” set of web services that can collectively achieve a specific complex 

functionality when logically composed together, from the pool of available services. 

Optimality is defined based on the composite service requester’s requirements, 

preferences and constraints about the composite service characteristics such as the quality 

and price. 

We argue that web services’ characteristics and their execution context (including their 

users, providers and execution environment) present particular challenges to the 

composite service selection process for which adequate resolutions cannot be found in 

the current approaches. In this thesis, we have viewed composite service selection as a 

complex resource allocation problem. We have investigated the application of auction 

theory to solve this problem which can improve the existing research on web services 

regarding the vital issues that have been largely ignored so far. 
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1.2 Motivation: Issues in Composite Service Selection 

Composite service selection is widely acknowledged to be a complex problem. Several 

issues contribute to this complexity. While some of these issues have been extensively 

studied in the literature, some others have not received the attention they deserve. Among 

the issues receiving the attention of the research community, we can name: the NP-

hardness and scalability of composite service selection; the non-sequential structures in a 

composite service; aggregation models for quality attributes; and the difficulty of 

determining the trade-off between various quality attributes from the requester’s 

perspective, to be discussed in more details in section 3.3 (Web Service Selection 

Challenges). In this research, we have identified and addressed three additional important 

issues that we believe have not received the attention they deserve. These issues are 

discussed below:  

1.2.1 Dependencies between Constituent Web Services of a Composite 

Service 

The dominant assumption in the existing service selection literature is that web services 

are offered as independent entities. Even if a provider offers more than one service, the 

offers are considered to be independent. In other words, providers cannot offer bundles 

of web services. We argue that this assumption does not consider the dependencies that 

exist between web services participating in a composition.  

Atomic web services that form the composite service are dependent on each other based 

on different factors such as input/output data, execution time or domain related 

constraints (Yang and Papazoglou 2002; Milanovic and Malek 2004; Verma et al. 2004; 

Omer and Schill 2009). The existence of these dependencies has implications for web 

service providers: the dependencies can lead to complementarity effects among web 

services. For example, the complementarity effects may help service provider offer a 

bundle of services with a lower price or improved quality level. Such possibilities create 

strong motivation for the service providers to offer their services in bundles, rather than 

offering individual services separately. 
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A composite service selection approach cannot achieve the optimal solution for the 

service requester if it does not support the needs of service providers in expressing their 

preferences for bundling of web services. 

1.2.2 Price Determination for Web Services 

In the extant literature, there are two trends in the assumption about the pricing models 

of web services. The first, which is also more dominant, is that web services are offered 

at a fixed predetermined price. The second model is that the price of each web service is 

determined through a negotiation process between the service requester and service 

providers. The first assumption is the basis of the optimization-based composite service 

selection approaches and the second one is the basis for the negotiation-based approaches, 

each of which will be discussed in detail in Chapter 3 (Literature Review). 

In the first model, the price is fixed for all consumers and, in the best scenario, we can 

imagine that when providers realize the need to change the price of their offers, they have 

to determine a new price and update the web service specification accordingly. This is a 

pricing strategy known as posted-price or fixed pricing (Wang 1993). This means that the 

complexity of determining the price of a web service is completely left to service 

providers.  

Such a pricing strategy has major complications for web service providers. From the 

pricing theory perspective, web services are considered to be products with low 

specificity, meaning that it is possible to sell them over and over with a very low marginal 

cost. This is due to the open, Internet-oriented and standards-based interfaces of web 

services. Therefore, service providers face the problem of pricing their web services based 

on the supply and demand from the requesters and providers’ sides, rather than the cost 

of production. However, such information about supply and demand is neither readily 

available, nor easy to obtain.  

There is a constant fluctuation in the supply and demand of web services offered over the 

Internet due to its open and changing nature. This means that the service providers need 

to constantly monitor the market to be able to set the prices at the most profitable level. 

Clearly, such a continuous monitoring of the market will cost providers considerable time 

and money. Considering the nature of web services in typically offering limited 
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functionality at a relatively low price, such a pricing strategy is unlikely to be profitable 

for service providers.  

In the second pricing model, the price is completely flexible and determined through 

(automated) negotiation process between the service providers’ and requester’s software 

agents. This pricing model still has not found practical applications due to the complexity 

involved in an automated negotiation process. The current proposals with a negotiation-

based pricing model have tried to reduce the complexity by creating a simplified model 

of the negotiation process through imposing restricting assumptions on the strategies, 

tactics and utility functions of the negotiators. As a result, it is not very likely that these 

approaches find practical applications in the web services domain in near future. 

1.2.3 Web Services’ Market: Solving the Problem for Multiple Requests 

Composite services have been recognized as a crucial part of web service marketplaces 

(Papazoglou 2003; Yarom et al. 2004; Weinhardt et al. 2011b). These marketplaces create 

the opportunities for service providers and requesters to meet and trade single and 

composite web service (Papazoglou 2003). However, very limited research has been done 

to examine how such marketplaces affect composite service selection. The presence of 

multiple composite services extends the composite service selection problem to what we 

call the “multiple composite service selection” problem.  

The existing approaches mainly solve the problem for a single request with no further 

discussion about solving the problem for multiple requests, neither simultaneously nor 

one by one. To the best of our knowledge, our work is one of the very first studies to 

investigate composite service selection in the presence of multiple requests for composite 

services. 

This is an important issue to study in service selection that its resolution has the potential 

to enhance the practicality of web service selection approaches as the research considers 

a more realistic setting where there are likely to be multiple requests for composite 

services. This consideration and the results can significantly impact the design and 

development of web services’ marketplaces. 
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1.3 Research Objectives  

Our central objective in this thesis is to develop new approaches for the composite web 

service selection problem taking into account the complementarities between web 

services forming a composition, the necessity for more dynamic pricing mechanisms, and 

the need to cater for the presence of multiple requests. We address the research gap by 

conducting this study with three main objectives: 

 Identify the important issues that need to be considered in a composite service 

selection approach, namely, complementarity effects among web services 

forming a composition, the complexities related to price determination in web 

services, and the presence of multiple composite services,  

 Introduce and develop new approaches based on auction theory to incorporate 

the above-mentioned requirements in the process of selecting web services, 

 Demonstrate the specific properties of these approaches which make them 

suitable for web services and their execution environment through performing 

comprehensive and objective evaluations of the proposed approaches. 

Thus, the aim of this thesis is to investigate how auction theory can be used to facilitate 

composite service selection and to improve our understanding of the fundamentals behind 

it. Building on the current theories and developments in web service technology, auction 

theory, mechanism design and mathematical optimization, this study proposes a novel 

approach to address the web service selection problem.  

1.4 Contributions 

1.4.1 A Combinatorial Auction Mechanism for Composite Service Selection  

We propose an auction-based mechanism to solve the composite service selection 

problem. As the proposed mechanism aims to solve the problem for a single composite 

service request, we refer to it as the “single auction mechanism” (Chapter 5).  

A design based on auction models in general, and combinatorial auctions in particular 

achieves these desirable properties: (1) enhances dynamic pricing for composite services 

compared to a fixed pricing strategy; (2) facilitates price determination of single and 

composite services by sending constant feedback about the status of supply and demand 
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obtained from the information revealed after each auction; and (3) accommodates the 

need for bundling web services due to the inter-service dependencies between constituent 

services of a composition.  

By considering the dependencies between web services of a composition and offering 

services in bundles according to those dependencies, service providers are enabled to: (1) 

offer discount over the price of the bundled services by internalizing some of the cost of 

service provisioning, and (2) improve the quality of bundled services by having more 

control over the communication and execution of the bundle. These can enhance the 

providers’ competitive power in the market as well as the consumer’s loyalty.  

The single auction mechanism aims to procure the composite service at the lowest price 

subject to a set of allocation constraints. The set of constraints addresses the service 

requester’s preferences and constraints about different aspects of the composite service, 

such as quality of service or budget. The proposed mechanism is formulated as an Integer 

Linear Programming (ILP) problem. 

 Studying the Impact of Bundling on the Cost of a Composite Service 

While there are other proposals on application of combinatorial auctions to solve the 

composite service selection problem, to the best of our knowledge no other research has 

studied the impact of bundling, in terms of the bundle size, on the performance of the 

composite service selection approach, in terms of the achieved cost for the composite 

service. The result of this study is important for both service providers and requesters. On 

one hand, service providers can increase their chance of winning the service selection 

auction by choosing the right size for their bundles which consequently leads to increase 

in their profit. On the other hand, in a market where many providers claim to offer 

discounts over bundle of items, service requesters can reduce their cost of service 

provisioning by understanding how the bundle size affects the cost of the composite 

services. 

 Introducing and Measuring the Cohesion of a Composite Service 

We introduce the concept of “cohesion” of a composite service and propose a technique 

to measure it. The proposed notion of cohesion enables the service requesters to manage 

the dependency of a composite service to its service providers which affects important 

quality (non-functional) requirements such as the maintainability, reliability and 
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(provider-) dependability of the composite service. The cohesion is defined based on 

direct data dependencies between the participant services offered by the same provider. 

It is measured as the sum of the cohesion of the bundles winning the auction to execute 

the composition. We have developed a resource allocation constraint that enables the 

service requester to define a lower and an upper bound for the cohesion of the composite 

service. The single auction mechanism checks this constraint while looking for the 

optimal service allocation for the composite service.  

  Identify the Need and Develop Constraints to Manage the Configuration of 

Composite Service Provisioning 

We recognize the service requester’s need to manage the configuration of service 

providers in the execution of a composite service. More specifically, we identified two 

important patterns of the service providers’ involvement in the composition: a set of tasks 

need to be executed by “the same provider” or by “different providers”. These patterns 

are very important in the context of service requester’s security and privacy concerns. We 

have developed two resource allocation constraints corresponding to each of the patterns, 

which are added to the ILP formulation of the single auction mechanism.  

1.4.2 Composite Service Selection in the Presence of Multiple Requests  

We introduce the multiple composite service selection problem by extending the 

composite service selection to include multiple requests for composite services. To the 

best of our knowledge, this is the first study to consider, investigate and propose solution 

for composite service selection in the presence of multiple requests (Chapter 6). 

The results of this study is critically important for designing and managing web services’ 

marketplaces where service requesters and providers meet to trade single and composite 

services. However, very limited study has been done to examine how such a marketplace 

impacts the composite service selection process. All existing service selection approaches 

solve the problem for a single request and no discussion exists about solving the problem 

for multiple requests, neither simultaneously nor one by one. 
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 Proposing Two Simultaneous Auction Mechanisms to Solve the Multiple 

Composite Service Selection Problem 

We propose a novel mechanism based on combinatorial auctions to match multiple 

composite service requests with the web service offers simultaneously. The proposed 

“simultaneous auction” mechanism comes in two variations: Full-Matching and Partial-

Matching mechanisms. 

The Full-Matching mechanism aims to procure services for all the requests at the lowest 

price, given the requesters’ set of allocation constraints. Consequently, if there are any 

requests that are not feasible due to the service requester’s budget or quality constraints, 

the whole auction fails and no request, even the feasible ones, will be assigned any 

services. The Partial-Matching mechanism aims to prevent the auction failure in such 

circumstances by solving the composite service selection problem for the largest set of 

feasible requests. More specifically, the Partial-Matching mechanism minimizes the cost 

for the largest set of feasible requests. The proposed Partial-Matching simultaneous 

auction mechanism is supported with empirical evaluations by conducting extensive 

simulations. 

 Studying the Impact of Simultaneous Consideration of Multiple Requests 

on the Performance of the Composite Service Selection Approach   

We conducted extensive simulations to study the impact of simultaneously considering 

multiple requests on the performance of the service selection mechanism. To perform this 

study, we compared the simultaneous auction (the Partial-Matching mechanism) with two 

other mechanisms which solve the composite service selection problem for multiple 

requests, one at a time. We also defined the important performance metrics for our 

problem domain which are: (1) the success rate of the mechanism in finding the optimal 

service allocation for the composite service requests, (2) the average cost of procuring a 

composite service, and (3) the time to find the optimal allocations. 

This study is performed in specific sections of the web services’ market. This is the first 

study that aims to focus on particular market sections for web services rather than a 

generic market. We believe that such a setting is a more realistic scenario for the 

evaluation the proposed approaches, compared to a generic setting for web services’ 

market. 
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This study and its results have important implications for web service market makers 

(independent parties who create and maintain the web service markets) as well as the 

market’s participants (service requesters and providers). On one hand, it provides 

insightful guidelines for market makers on designing the appropriate service selection 

mechanism based on their target market participants. On the other hand, the results of this 

study help service providers and requesters making more informed decisions about the 

type of service selection mechanism to attend, considering their priorities for the different 

performance metrics such as the need to a fast allocation mechanism or finding the lowest 

prices for the composite services.  

1.4.3 Design of a Comprehensive Simulation-based Evaluation Process   

We designed a simulation-based evaluation process that improves the clarity of the 

evaluation process of service selection approaches. The evaluation process enforces a 

clear specification for a specific set of elements that can be used as a framework for 

simulation-based experiments on composite service selection approaches. These elements 

are: 

1. Defining the performance metrics 

2. Establishing the baseline for comparison 

3. Determining the scenarios to be investigated 

4. Specifying the simulation’s data generation model 

5. Determining the seeding of the simulation’s parameters 

We have also designed a baseline which can be used for the evaluation of service selection 

approaches that are based on dynamic pricing strategy, that is, the auction-based and 

negotiation-based approaches. Being an alternative to the dynamic pricing strategy, the 

baseline is founded on a fixed pricing strategy where the service requesters fix the price 

to be paid for the composite services. This design is based on the specific characteristics 

of the composite service selection problem and will be discussed in more details in 

subsection 6.4.2.2 (Fixed-price Mechanism). 

Moreover, we have designed the simulation to be performed in particular sections of the 

web services markets, rather than a generic market. Considering of such sections is 

particularly important in the evaluation of web service selection approaches as the 

publicly available data for web service offers and composite service requests are very 
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limited. Therefore, it is very important to make the data generation part of the simulation 

as realistic as possible.  

Based on the information we collected from the existing web services directories online, 

we decided to perform experiments in specific market sections for web services, rather 

than a general market as it would be rather difficult to have any estimate for the number 

of service providers, requesters and the type of the web service offers and requests in a 

generic market for web services. The market sections are designed based on important 

factors distinguishing these sections. This will be further discussed in subsection 6.4.3 

(Scenarios to Investigate: Market Sections). 

1.5 Research Methodology 

To address the proposed research objective, we designed and employed a research 

methodology which has three parts: (1) designing of an auction-based mechanism, (2) 

modelling of the proposed mechanism, and (3) evaluating the proposed mechanism using 

simulations.  

The design of an auction-based mechanism for composite service selection requires 

answering two important questions: (1) what are the elements of an auction model? (2) 

how is an auction model for service selection different from auction models in other 

domains such as transportation, communication networks or cloud computing? The 

answer to the first question defines the elements of an auction model, to be discussed in 

subsection 2.4.2 (Auction Design Elements). The answer to the second question specifies 

the particular requirements of the composite service selection problem to an auction-

based solution which differentiate the auction model in this domain from other domains, 

to be discussed in subsection 4.3.1 (Designing the Auction-based Mechanism).  

In the second part, the elements of the auction-based mechanism are modelled 

mathematically. The proposed mechanism is mapped to an Integer Linear Programming 

problem and implemented mathematically using a language called AMPL1. 

Finally, the proposed auction-based mechanism is evaluated by conducting simulations. 

The design of the evaluation process was a challenge for our study, as this research is one 

                                                 

1 A Modelling Language for Mathematical Programming <http://www.ampl.com/> 

http://www.ampl.com/
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of the first studies, which apply auction theory to composite service selection and its 

extension, namely multiple composite service selection. First we designed an evaluation 

process for the single auction mechanism. The evaluation process was later revised and 

extended to be applied on the proposed simultaneous mechanism.  

1.6 Thesis Organization 

Chapter 2 presents the fundamental concepts about web service technology, auctions and 

mechanism design. Chapter 3 expands on the extant literature on composite service 

selection, covering optimization-based, negotiation-based and auction-based approaches 

to service selection. Chapter 4 describes the four theoretical pillars of our research and 

the research methodology that we followed to develop an auction-based approach for the 

composite service selection problem. Chapter 5 introduces the design of an auction 

mechanism for service selection for a single composite service, along with the findings 

of the proposed mechanism’s evaluation. Chapter 6 extends the composite service 

selection problem to the setting with more than one request for composite services. Two 

mechanisms are introduced: Full-Matching and Partial-Matching. The results of the 

experimental simulation to evaluate the proposed mechanisms are also presented in this 

chapter. Chapter 7 concludes with a summary of general research issues, contributions, 

empirical analysis, limitations, and future outlook. 
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Chapter 2  

2 Foundation and Basic Concepts 

2.1 Introduction  

In this chapter, we present the basic concepts related to the three main streams of the 

current study, covering concepts from web service technologies, auction theory and 

mechanism design.  

In section 2.2, we give an introduction to web service technology, including a discussion 

of the definition and characteristics of web services and a review of the web service 

composition (WSC) process and its objective. This section closes by outlining a lifecycle 

for the WSC process to give a clearer understanding of what is involved in a typical WSC 

process. The WSC lifecycle was proposed by Moghaddam (2011).   

Section 2.3 introduces auction theory. We present a broader picture of markets before 

drilling down to auctions as the most dominant trading mechanism in markets. This 

section includes a discussion of the definition and classification of auctions and of one of 

their important characteristics, namely, dynamic pricing. We then discuss in more detail 

a specific type of auction, called the combinatorial auction, which has a central role in 

our study as it allows for the auctioning of multiple items simultaneously.  

Section 2.4 presents mechanism design for auctions and the main challenge of mechanism 

designers: how to design a mechanism that achieves the designer’s set of desirable 

properties despite the selfish behavior of rational participants. We then introduce the most 

important set of desirable properties for auctions. The three design elements of an auction, 
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namely the bidding language, the allocation rules and the payment rule, are discussed at 

the end of this section. 

2.2 Web Services Technology 

2.2.1 Web Services 

Web services have been advancing as the technology of choice for realizing service-

oriented computing. Web services are self-contained, modular business applications with 

open, Internet-oriented, standards-based interfaces (UDDI Consortium 2001). A technical 

definition, focusing on the technologies involved, defines web services as:  

“A Web service is a software system designed to support interoperable machine-

to-machine interaction over a network. It has an interface described in a machine-

processable format (specifically WSDL2). Other systems interact with the Web 

service in a manner prescribed by its description using SOAP3-messages, typically 

conveyed using HTTP with an XML serialization in conjunction with other Web-

related standards.” (W3C Working Group Note 11 2004) 

Web services communicate directly with each other via standards-based technologies 

such as XML messaging. Open standards-based communications give customers and 

suppliers the opportunity to access different web services independent of their hardware, 

operating system or even programming environment. This flexibility means that 

businesses can expose their business applications as web services which can be easily 

discovered and consumed by external parties.  

2.2.2 Web Service Composition 

Although a single web service has its own value for its users, the functionalities offered 

by the individual web services are generally limited atomic functionalities to follow the 

fundamental service-oriented computing design principles, such as “reusability” (Erl 

                                                 

2 Web Services Description Language (WSDL) is an XML-based interface description language which is 

used to specify the functionality offered by a web service. 
3 Simple Object Access Protocol (SOAP) is an XML-based protocol for exchange of information in a 

distributed decentralized environment. 
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2005, chap.9). For example, an atomic web service may retrieve a map of a location, 

obtain the weather conditions of a region, search in Google or show the location of a 

vehicle on a map.  

However, what the service requesters mostly require are complex functionalities that 

cannot be obtained from a single web service, such as planning a trip (McIlraith et al. 

2001), online patient follow-up (Omer and Schill 2009), protein sequence analysis 

(Thakkar et al. 2005; Medjahed and Atif 2007) or constructing a map of the landing area 

annotated with weather, meteorology and tidal conditions (Kim et al. 2009). 

Therefore, it is desirable to logically connect several atomic web services to satisfy 

complex functional requirements. The true potential of web services can only be achieved 

through assembling web services into more powerful workflows and other applications 

with more sophisticated functionalities, leveraging the loose coupling characteristics of 

service-oriented architecture (SOA). This process is called web service composition. 

Web service composition (WSC) refers to the process of combining different web 

services to provide a value-added service (Medjahed and Bouguettaya 2005). It does not 

involve the physical integration of all components; rather, the basic components that 

participate in the composition remain separate from the composite web service (Charfi 

and Mezini 2004). 

Composition of web services enables the building of cross-enterprise applications on the 

Web (Alonso et al. 2004). This is mainly motivated by three factors. First, tomorrow’s 

Web is expected to be highly populated with web services. Second, the adoption of XML-

based messaging over well-established protocols enables communication among 

disparate systems. Third, the use of a document-based messaging model in web services 

caters for loosely coupled relationships among applications owned by different 

organizations (Medjahed and Bouguettaya 2005).  

Due to the promise of rapid development of software systems with a low development 

cost, web service composition has been an active research area for more than 10 years. 

Despite the slow progress in adoption of WSC approaches by industry, many researchers 

in service-oriented computing believe that it has the potential to significantly impact 

software development and maintenance methodologies and practices. 
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2.2.3 WSC Lifecycle 

To discuss the detail of what is involved in a typical WSC process, we have defined the 

web service composition (WSC) lifecycle (Moghaddam 2011). The presented lifecycle 

gives a comprehensive view of all the stages in WSC which will help us to precisely 

position our research problem. 

In our discussion, we will use “service requester” to refer to the user who requires a 

complex functionality that can be built by composing existing web services offered by 

service providers. We have divided the WSC process into five stages, as illustrated in 

Fig 2.1.  

The first stage is called goal specification. In this stage, the service requester’s goal and 

preferences are defined. Following this, the high-level goal is semi-automatically 

decomposed into an abstract business process (BP). The BP comprises a set of tasks, each 

with clearly defined functionality, along with the control and data flow between them. 

The Quality of Service (QoS) requirements for the end-to-end BP and for each 

participating task are also specified.  

 

Fig 2.1. Web service composition lifecycle 

In the next stage, web service discovery, web services that match the tasks’ functional and 

non-functional requirements are located by searching a service registry that holds 

information about available web services. The objective of service discovery is to find a 
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service match for each of the BP’s tasks. At this stage, it is very likely that more than one 

candidate will be found for each task that, while satisfying the required functionality, may 

have different levels of quality and price.  

The next stage, web service selection, aims to select those web services that best match 

the service requester’s preferences and constraints. This can be defined at two levels: first 

at a local level for each task and its corresponding web service and, second, at the end-

to-end level for the whole composite service. The preferences and constraints are mainly 

about the quality of the service and price. After choosing the best match for all tasks in 

the BP, each task is bound to the selected web service to create the concrete composite 

service.  

During the composite service execution stage, the composite service is executed. With 

each execution, an instance of the composite service is created. The service instance is 

continuously monitored for any failure or change in its status at the final stage of WSC, 

namely, composite service maintenance and monitoring. 

This research focuses on the third stage of the WSC lifecycle, namely, web service 

selection. The application of web service selection is found not only in the context of 

WSC, but also in the context of the complex processes that are partly made up of web 

services and partly from legacy systems, such as some scientific workflows. We will 

present a detailed discussion of the web service selection process in the next chapter. We 

will also include a detailed review and analysis of the current literature on service 

selection approaches.  

2.3 Markets and Auctions 

In general, markets are physical or virtual meeting points where buyers and sellers interact 

to set prices and exchange goods and services. The prices represent the values of the 

goods and services in terms of money. People and firms voluntarily exchange different 

commodities at the price level. Prices also serve as signals to producers and consumers: 

if, for example, consumers demand more of an item, its price will increase and this signals 

to producers to increase production. That is, prices balance supply and demand by 

coordinating the decisions of producers and consumers in a market. 
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In a market, there is no higher authority to direct the behavior of the market participants. 

Rather, it is the “invisible hand” of the marketplace that allocates goods and sets the 

prices. This remarkable property of a competitive market economy was first recognized 

by Adam Smith. In his book, “The Wealth of Nations” (Smith 1904, Book IV, Chapter 

2), he argues that “every individual ... neither intends to promote the public interest, nor 

knows how much he is promoting it ... he intends only his own security; and by directing 

that industry in such a manner as its produce may be of the greatest value, he intends only 

his own gain, and he is in this, as in many other cases, led by an invisible hand to promote 

an end which was no part of his intention”. Smith's insight about the functioning of the 

market mechanism has been an important inspiration to neo-classical economy. It has 

been shown that with perfect competition and no externalities,4 a market achieves 

maximum economic efficiency in allocating goods and services.  

Auctions have been used as the major trading mechanism in markets for many years. In 

the economics literature, an auction is defined as “a market institution with an explicit set 

of rules determining resource allocation and prices on the basis of bids from the market 

participants” (McAfee and McMillan 1987a, p.701). Auctions are used when there is no 

standard value for the item to be traded and there is a need for price discovery. 

The application of auction models to solve computer science problems is not new. They 

have been proposed to solve resource allocation problems (Ferguson et al. 1996) and 

distributed control problems in distributed environments. Concrete examples include 

resource scheduling in manufacturing information systems (Kutanoglu and Wu 1999); 

flow control in virtual circuit-based computer networks (Ferguson 1989); providing a 

QoS guarantee in packet networks (Sairamesh et al. 1995); data migration and replication 

with the objective of minimizing the transaction response time (Ferguson 1989); air-

conditioning control (Huberman and Clearwater 1995); and coordination for robot 

navigation (Sierra et al. 2000). These problems share several common characteristics that 

lean them towards being modelled as an auction: 

                                                 

4 Externalities refer to the cost and/or benefit of an exchange accruing to a third party not involved in the 

transaction (Mundt 1993). In a situation where externalities exist, an action of an economic entity affects 

the utility of another entity, in either a positive or negative way, and there is no mechanism to compensate 

for the impact (Cornes 1996, p.5). Pollution produced by a manufacturer is a typical example of a negative 

externality which imposes cost on its neighboring community. An example of a positive externality is 

improving the appearance of one’s property where neighbors also benefit from a nicer view. 
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 Large number of entities, for example, users, applications, machines 

 Heterogeneity of entities 

 A changing set of resources and users 

 Resources belonging to different organizations 

 Satisfaction of users determined by the simultaneous allocation of resources  

More recently, auctions have been used to solve practical problems. One successful 

example is the application of auctions to automate online advertisement trading, also 

known as ad auction or real-time bidding (RTB), in which online advertising space is 

bought and sold (Edelman et al. 2007; Varian 2007). Ad auction has been employed by 

major companies including Yahoo, MSN, Google and Facebook to improve the 

profitability of selling their ad spaces. Traditionally, vendors wanting to sell their ad space 

would segment the audience into bundles according to some characteristics such as age 

or behavior and sell those segments at predetermined prices to advertisers interested in 

buying the ad spaces (Ross 2013). Advertisers would then have to pay a fixed price for 

each impression5 in a bundle regardless of their preferences or the relevance of an 

impression to them. Ad auctions answered the need for more dynamic pricing 

mechanisms. Their implementation has significantly improved the price determination 

for these companies: Weide (2013) demonstrated that, with 49% annual growth, RTB 

spending will grow from $2.7 million in 2012 to $20.8 billion by 2017 in the United 

States. Europe and Japan are heading in the same direction. 

2.3.1 Dynamic Pricing  

At the heart of auction theory is the concept of dynamic pricing. Dynamic pricing is 

defined in contrast with the traditional static pricing in which the sellers fix the price. 

Pricing has been a difficult business problem especially when it comes to pricing an item 

which does not have a standard value. Setting the right price for a product or service goes 

beyond the estimation of the cost and a minimum profit: rather, it is governed by a 

complex set of variables which, among others, include supply and demand, competitor 

pricing and the lifecycle of the product. More formally, the price determination problem 

                                                 

5 An impression (in the context of online advertising) is a measure of the number of times an ad is seen, 

whether it is clicked on or not (Wikipedia 2014). 
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is to price a finished product so as to maximize the total expected revenue over the finite 

sales horizon (Gallego and Ryzin 1997). 

Pricing can be divided into two categories: static (fixed) and dynamic. In a fixed pricing 

approach, the prices are fixed by the sellers and might be changed in long term based on 

market fluctuations (Schwind 2007, p.30). Market fluctuations are changes in the 

complex set of variables, mentioned above. For many products and services, these 

variables change constantly, making it costly for producers to frequently adjust the prices 

based on the fluctuations. Static pricing for such products incurs implicit and explicit 

costs for businesses as they need to: 

1. Spend time and money to obtain relevant information and make decisions 

about whether, when and how to change their prices, 

2. Prepare customers for the new prices through further communication, 

education and efforts to convince them (Bergen et al. 2003).  

In dynamic pricing, the price of a good or service is determined by the market. There are 

four major configurations of dynamic pricing, depending on the number of buyers and 

sellers involved (see Fig 2.2): 

 One buyer, one seller: negotiation 

 One buyer, many sellers: reverse or procurement auction 

 Many buyers, one seller: direct auction 

 Many buyers, many sellers: exchange  

Buyers 

Many (Direct) Auction Exchange 

One Haggle (Negotiation) Reverse Auction 

 

One Many 

Sellers 

Fig 2.2. Categorization of dynamic pricing, adopted from Stein et al. (2003) 

In the context of our problem, negotiation has been employed by some researchers to 

solve the composite service selection problem. The idea of negotiation-based service 

selection approaches is to have automated agents performing negotiation on behalf of a 
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service requester and the service providers in order to reach an agreement on the price 

and quality of the offered services.  

However, to address the inherent complexity in a negotiation process, these approaches 

need to: (1) rely on simplifying assumptions and straightforward techniques to develop 

automated negotiators, and (2) address the composite service selection problem at a local 

level for a single web service, rather than at a global level for a composite service. The 

fact that only simplified models have been actualized means that the application of 

realistic automated negotiation techniques for the web service selection problem appears 

to be unfeasible, at least for the near future. We will present a detailed study of these 

approaches in section 3.6 (Negotiation-based Approaches). 

Our research develops an approach for web service selection based on auction models. 

Auctions are known to be the most widely used mechanism for dynamic pricing (Bichler 

2001). They have been proven to be a success in achieving dynamic pricing and also in 

solving complex problems with the help of well-established theories from economics and 

mechanism design.  

2.3.2 Auction Categories 

Auctions can be categorized based on different attributes. Some of the important 

categorizations which are meaningful in the context of our problem domain have been 

summarized in Table 2.1. These categories are not necessarily exclusive; for example, an 

auction can be multi-attribute, iterative and combinatorial. 

 Direct/reverse auction (Bichler et al. 2006): Traditionally, auctions have been 

used for selling products, that is, (direct) auctions. However, the same theory 

applies when the auctioneer aims to buy some products or services. This is called 

a reverse or procurement auction. Procurement auctions are popular mechanisms 

for supply chain management. 

 Single-item/multi-item (combinatorial) auctions (de Vries and Vohra 2003; 

Blumrosen and Nisan 2007): It is possible to simultaneously auction more than 

one item which is called a multi-item auction. In such an auction, bidders might 

be allowed to bid only for single items (a non-combinatorial auction) or they 

might be able to express their preferences in more complex ways by bidding for a 
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combination or bundle of items. This leads to an important category of auctions 

that has attracted the attention of researchers and practitioners in auction theory 

and mechanism design during recent years, known as combinatorial auctions. We 

will focus on this auction model in the next subsection (2.3.3). 

 Single-dimensional/multi-dimensional auctions (Parsons et al. 2011): In 

conventional auctions, the bidders only express the price of what they are willing 

to buy or sell. This is known as a single-dimensional auction where the only 

important aspect of a bid is the price. In a multi-dimensional auction, other aspects 

of the item are also part of the bid, such as the quality.  

 Single-sided/double-sided (exchange) auctions (McAfee and McMillan 1987b; 

Parsons et al. 2011): In a single-sided auction, only one side (either seller or buyer) 

submits their bids and the auctioneer decides the winners of the auction. In a 

double-sided or exchange auction, both buyers and sellers submit their bids and 

the auctioneer’s job is to match the buyers and sellers.  

 One-shot/iterative auctions (Parkes 2006): A one-shot auction consists only of a 

single round of bidding during which the bidders submit their bids. In an iterative 

auction, there are multiple rounds of bidding. At the end of each round, there is a 

flow of information from the auctioneer to the bidders about the current status of 

the auction, for example, the amount of the current winning bid. This information 

helps the bidders to adjust their bids for the next round. The outcome of the 

auction will be determined at the end of the last round.  

 Single-unit/multi-unit auction (Klemperer 1999): In single-unit auctions, there is 

only one copy of each item being auctioned, whereas multi-unit auctions have 

many copies of the same item being auctioned.  

Due to the particular characteristics of our problem domain, combinatorial auctions have 

a central role in developing a solution for the composite service selection problem. 

Therefore, we have provided a detailed study of this category of auctions in the next 

section. 
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Table 2.1. Categorization of auctions 

Basis for Categorizing Different Categories 

Sell or buy (Direct) auction Reverse or  

procurement auction 

Number of items under auction Single item Multiple items 

Simultaneous bidding for 

multiple items 

Single items 

(non-combinatorial auctions) 

Combinatorial auctions 

Bids information Single-dimensional Multi-dimensional or  

multi-attribute 

Bidding participants Single-sided Double-sided or  

exchange 

Rounds in an auction One-shot or  

single-round 

Iterative auctions or 

multi-round 

Number of units under auction Single unit Multiple units 

 

2.3.3 Combinatorial Auctions 

In traditional auctions, as we know them, one item is auctioned at a time. However, in 

many auctions, bidders care in complex ways about the combination of items that they 

want to win. Imagine a buyer who wants to purchase a return ticket to a particular 

destination from an online auction site that sells airline tickets. In the traditional way of 

auctioning, she has to attend two separate auctions and win two tickets, one to and one 

from that destination. If she wins in only one of the auctions, she will end up with a one-

way ticket which is of no value to her. Such a bidder strongly prefers an auction model 

that allows her to bid for the two items together as a bundle. In other words, the 

satisfaction of such a bidder is determined by the simultaneous allocation of the items.  

In combinatorial auctions, multiple distinct items are simultaneously auctioned and the 

bidders can bid for any combination of items, or bundles. Bundling is particularly 

important when bidders have preferences not just for specific items but for bundles due 

to the complementarity or substitutability effects that exist among the items (de Vries and 

Vohra 2003).  

Two items are said to be substitutes (have substitutability effect) if their combined value 

is less than the sum of their individual values (Shoham and Leyton-Brown 2009, p.362). 
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An example of items being substitutes is two tickets to two movies which are shown at 

the same time. 

Complementarity is the opposite effect of substitutability: two items are said to be 

complementary if their joint value exceeds the sum of their individual values (Shoham 

and Leyton-Brown 2009, p.362). As an example consider a left shoe and a right shoe. The 

combinatorial auctions where items to be bundles have complementarity effect have been 

categorized, based on the types of complementarity dependencies between items, into the 

following groups:  

1. Path in space: 

In this class, the bidders are interested in purchasing the connection between two 

points. The points are equivalent to the items under auction and they are connected 

to each other if they have accessibility relationship. Examples of auctions with 

this type of dependency are auctions to allocate truck routes, gas pipeline 

networks, network bandwidth and right to railway tracks. 

2. Proximity in space: 

Here, the complementarity arises from adjacency in two-dimensional space. 

Example of this class of auction includes: sale of adjacent pieces of real states, 

drilling right (in adjacent lots) and the spectrum auctions (to some extend).  

3. Temporal matching: 

Here, the complementarity arises from a temporal relationship between items. In 

the general temporal matching dependency with single quantity items, there are m 

distinct items, and each bidder wants 1 time slice from a set of j <= m items with 

some constraints over how the times of different items relate to one another. 

Example includes the auction over airport take-off and landing rights where j=2. 

4. Temporal scheduling: 

In this class, a bidder has a job, requiring some amount of one or more resources’ 

time, with a deadline by which the job should have been completed. The auction 

is over the time slots of the resources. Example includes distributed job-shop 

scheduling with one resource, and also allocating grid resources to the tasks. 
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5. Arbitrary dependencies: 

In this category, the dependencies are due to some kind of regularity in the 

complementarity relationships between the items. Example includes any auction 

of different, indivisible goods which have dependencies to each other, such as 

semiconductor parts, or collectables, or the right to emit some quantity of different 

pollutants produced by the same industrial process. The combinatorial auction for 

procuring a composite service is another example in this group (Leyton-Brown et 

al. 2000).  

Bundling of complementary or substitute items allows the bidders to more fully express 

their preferences which often leads to greater economic efficiency (allocating items to 

those who value them most) and greater auction revenue (Cramton et al. 2006, p.8).  

Combinatorial auctions have been proposed and/or applied for practical applications in 

various industries. Examples include combinatorial auctions for supply chain 

management (industrial procurement) (Chen et al. 2011); procurement of school meals 

(Olivares et al. 2012); procuring transportation (logistics) services (Sheffi 2004; 

Srivastava et al. 2008); allocating bus routes to private operators (Cantillon and 

Pesendorfer 2006); allocating airport arrival and departure slots to competing airlines 

(Rassenti et al. 1982); and resource allocation in the cloud (Zaman and Grosu 2013). 

Combinatorial auctions can be either direct or procurement auctions. In the direct 

combinatorial auction, there are multiple items or service for sale. While in the 

combinatorial procurement auction, there is a buyer who is interested in a combination of 

products or services and the sellers bid to provision these products or services.  

In practice, combinatorial procurement auctions have been successfully applied by online 

platforms for industrial procurement. Examples of sourcing companies who have 

implemented combinatorial procurement auctions for strategic sourcing and supply chain 

include Logistics.com6, CombineNet now part of SciQuest7, and TradeExtensions8. The 

motivations behind designing a combinatorial procurement auction have been described 

as: 

                                                 

6 <http://www.logistics.com/> 
7 <http://www.sciquest.com/> 
8 <http://www.tradeextensions.com/> 

http://www.logistics.com/
http://www.sciquest.com/
http://www.tradeextensions.com/
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1. Cost saving: Combinatorial bids represent the complementarity or substitutability 

effects among the items which lead to production and/or transportation cost 

savings for the bidders. This eventually improves the procurement cost for the 

bid-taker.  

2. Time efficiency: Combinatorial bidding allows all sides to instantaneously 

express their complex preferences for the items through package bids and saves 

them from the need to attend different auctions to attain what they want.  

3. Impacting on the market structure: In complex procurement scenarios with many 

items to be procured, refusing the combinatorial bids will restrict the competition 

to only big suppliers who are able to offer all the items. On the other hand, 

combinatorial auctions allow the splitting of a big contract into smaller parts thus 

making it possible for smaller suppliers to enter the competition. This, in turn, can 

lead to more cost saving for the bid-taker (Bichler et al. 2006).  

The bid-taker of the combinatorial auction (buyer in a direct auction or the seller in a 

reverse or procurement auction) receives a set of price offers for various combinations of 

auctioned items and faces the problem of choosing the set of offers which maximizes the 

bid-taker’s revenue or economic efficiency, as will be discussed in more detail in 

subsection 2.4.2.2. This problem, known as the winner determination problem (WDP), is 

NP-complete in the general case and intractable (Sandholm 2002). We will discuss this 

aspect of combinatorial auctions later in subsection 7.2.1, when discussing the limitations 

of our proposed auction-based approach for composite service selection. 

2.4 Mechanism Design 

The 2007 Nobel Memorial Prize in economic sciences was awarded to Leonid Hurwicz, 

Eric Maskin and Roger Myerson “for having laid the foundations of mechanism design 

theory” (Royal Swedish Academy of Sciences 2007). The Nobel Prize was awarded for 

their work spanning 50 years in this field. 

Mechanism design is a sub-field of microeconomics and game theory that has an 

engineering perspective. In this field, the focus is on problems involving multiple, 

rational, self-interested players with private information about their preferences. The 

objective of mechanism design is to design a mechanism to achieve a given outcome. 

This objective is the reverse of the focus in traditional economics and game theory which 
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is to analyze the performance or outcome of a given mechanism. That is the reason 

mechanism design is sometimes called reverse game theory. The basic question in 

mechanism design is how to design an economic system so that the selfish behavior of 

participants leads to “desirable properties”. 

The importance of mechanism design is that it studies real problems and it has found real 

applications. Recently, mechanism design has found several important applications in 

electronic market design, distributed scheduling problems and combinatorial resource 

allocation problems. Mechanism design has also laid the principles for designing 

auctions.  

2.4.1 Auction Properties 

Here, we introduce the important set of desirable properties for auctions. Auction 

designers may consider any subset of the following desirable properties for the auction to 

achieve. These properties are neither mutually exclusive nor it is always possible to 

achieve them simultaneously, that is, some of these properties conflict. In this regard, we 

introduce an important impossibility theorem, proven by Myerson and Satterthwaite 

(1983), which we will refer to for the analysis of our proposed auction models in 

subsections 4.3.1.3 and 7.2.2.5. 

Please note that in the discussion of these properties, the assumption is that participants 

have quasi-linear utility or quasi-linear preferences in the form of 𝑢𝑖 = 𝑣𝑖(𝑎) − 𝑝𝑖, where 

𝑢𝑖 is the utility of participant 𝑖 after attending the auction. Also, 𝑣𝑖 is the valuation 

function of participant 𝑖 that maps the possible outcomes of the auction (the allocation of 

the items to bidders), 𝐴, to real numbers, that is, 𝑣𝑖: 𝐴 → 𝑅. The quantitative value 𝑣𝑖(𝑎) 

represents the value that participant 𝑖 assigns to the outcome 𝑎 ∈ 𝐴. We also define the 

monetary transfer by participant 𝑖 to/from the auction as 𝑝𝑖 ∈ 𝑅. If 𝑝𝑖 > 0 then participant 

𝑖 will pay some money, and if 𝑝𝑖 < 0 then participant 𝑖 will receive the money.  

Having a quasi-linear utility function means participant 𝑖’s utility is their value for the 

auction outcome less their payment. Assuming a quasi-linear utility for the participants 

implies three important things:  

1. The mechanism can charge the participants or award them some monetary 

amount. 
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2. A participant’s degree of preference for any outcome is independent from their 

degree of preference for having to pay some amount to the mechanism. This 

means that a participant’s utility for an outcome is independent from the amount 

of money they have in their pocket. 

3. A participant’s utility depends only on their own monetary transfer, and they do 

not care about the money paid or received by other agents (Shoham and Leyton-

Brown 2009, p.280). 

2.4.1.1 Efficiency 

In auction theory, the design of an auction aims to achieve either of the two objectives: 

efficiency or revenue maximization (Parsons et al. 2011; Ausubel 2003). These two 

objectives are not mutually exclusive, yet, it is not always possible to achieve them 

simultaneously. 

An efficient auction design is concerned with achieving allocative efficiency, that is to 

maximize the total value over all bidders (Parsons et al. 2011). Here, the goal is to design 

a mechanism that collects the participants’ reported valuation functions and, based on 

these reports, selects an outcome a* that maximizes the total value. More precisely: 𝑎∗ ∈

𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴  ∑ 𝑣𝑖(𝑎)𝑖 . This efficiency is referred to as the ex post efficiency as it is tested 

at the ex post stage of the auction.  

This is achieved when the items under auction are put in the hands of those who value 

them most (Ausubel 2003). In the mechanism design language, the total value of the 

outcome to all the participants is also referred to as the social welfare, and therefore, this 

objective is also known as maximizing the social welfare. 

As an example, consider an auction of one item where the bidders’ valuation functions 

are 𝑣𝑖: {𝑇, 𝐹} → 𝑅, from either receiving (T) or not receiving (F) the item, and for all 

participants, the valuation of not receiving the item is zero: ∑ 𝑣𝑖(𝐹)𝑖 = 0. As a result, the 

social welfare is equal to the valuation of the one bidder who has won the item. This 

means that in order to maximize the social welfare, the item should be awarded to the 

bidder who values it most. A well-known efficient auction is the second-price (Vickrey) 

auction for a single item where the bidder with the highest bid wins the auction, but pays 

the second highest bid (Vickrey 1961). This auction will be discussed further in 

subsection 2.4.2.3. 
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When an auction is designed with the objective of achieving allocative efficiency, it 

means that the auctioneer is assumed not to be seeking their own benefit. Rather, the 

auctioneer aims to maximize the happiness (social welfare) across all participants. An 

example can be a government interested in maximizing the social welfare (Shoham and 

Leyton-Brown 2009, p.300). Even in the case of private companies, they might decide to 

maximize allocation efficiency rather than to maximize the profit on the basis that the 

long-term relationship with customers and customers’ loyalty are more important than 

the short-term profit (Karlin and Peres 2014, p.272). 

2.4.1.2 Revenue Maximization (Cost Minimization) 

The other objective function discussed in the literature is to maximize the revenue for the 

seller in a direct auction, or to minimize the cost for the buyer in a reverse (procurement) 

auction. Auctions with this objective are called optimal auctions and were first studied by 

Myerson in his seminal paper (1981).    

In general, allocation efficiency and revenue maximization are in conflict (Ausubel and 

Cramton 1999; Parkes 2001). A broad research area in auction theory has focused on 

studying the relationship of these two objectives and how to design auctions that can 

simultaneously get close to the two objectives as much as possible, such as the analysis 

performed by Aggarwal et al. (2009). 

Revenue maximization seems to be a natural choice in auction design as the assumption 

is that all participants, including the auctioneer, are self-interested entities who are 

interested in maximizing their revenue rather than efficiency. This objective is more likely 

to be pursued if the auctioneer (or the bid-taker) benefits from high market power, for 

example, due to being a monopoly. However in reality, even private companies aim to 

maximize their profit in long-term rather than a single auction which means that their 

objective includes both revenue maximization and economic efficiency (Likhodedov and 

Sandholm 2003). 

2.4.1.3 Budget-balanced 

An auction is said to be budget-balanced if, regardless of participants’ types (preferences 

over possible outcomes), the auction collects and distributes the same amount of money 

from and to the participants (Shoham and Leyton-Brown 2009, p.286). In other words, 

no net payment “into” or “out of” the system is required (no funding or subsidy, nor the 
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loss of money). More precisely, the auction is (strongly) budget-balanced if, regardless 

of participants’ types, we have: ∑ 𝑝𝑖𝑖 = 0. 

There is a weaker sense of budget-balanced where it is possible to have a net payment 

from participants to the mechanism, but no net payment from the mechanism to the 

participants. In other words, the auction will never take a loss, but it may take a profit 

(Shoham and Leyton-Brown 2009, p.286). This is called a weakly budget-balanced 

auction and we have: ∑ 𝑝𝑖𝑖 ≥ 0.  

Budget-balanced is an important property to consider in an auction design, as there is 

little incentive to run an auction that loses money or needs to be subsidized. 

2.4.1.4 Pareto Optimal 

An auction is Pareto optimal if its allocation rule achieves a Pareto optimal outcome. An 

outcome is said to be Pareto optimal if there is no other outcome that will make at least 

one participant better off without making at least one other participant worse off (Pardalos 

et al. 2008, p.482). In other words, with a Pareto optimal outcome, no participant can be 

made happier without making at least one other participant less happy. Accordingly, an 

outcome is not Pareto-efficient if there is another outcome that can make at least one 

participant happier while keeping everyone else at least as happy as in the non-Pareto-

efficient outcome. More specifically for the context of auction design, an auction is 

proven to be Pareto-efficient if and only if it is allocative-efficient and budget-balanced 

(Garg et al. 2008; Parkes 2001). 

2.4.1.5 Individual Rationality  

Another important property of an auction is individual rationality, also known as 

voluntary participation constraint (Parkes 2001, p.34). It is about the extent of the 

willingness of participants to attend the auction, based on the information they have about 

the auction rules. More precisely, this property defines the level of expected utility that a 

participant can receive by attending the auction and generally requires that the utility of 

the participants be greater or equal than their utility before participation in the mechanism 

(Shoham and Leyton-Brown 2009, p.286). This implies that, in an auction with the 

individual rationality property, the participants prefer to attend the auction and are not 

forced to do so. 
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The most natural form is called interim individual rationality. It states that no individual 

wants to leave the auction when they know their own type, but only have expectations 

over the other individuals’ types and the auction outcome in terms of allocations and 

payments (Jackson 2003). In other words, participants expect a positive utility from 

attending the auction: 𝐸[𝑢𝑖]  ≥  �̅�𝑖, where 𝑢𝑖 is the utility of participant 𝑖 after attending 

the auction, and �̅�𝑖 is the utility that participant 𝑖 receives by withdrawing from the auction 

(or not participating in the auction at all). 

The strong form is called ex-post individual rationality and it requires that no individual 

participant wishes to walk away from the auction after the auction outcome is fully 

specified at the ex-post stage of the auction (Jackson 2003). More precisely: 𝑢𝑖 ≥ �̅�𝑖. 

2.4.1.6 Incentive Compatibility 

Incentive compatibility respects the fact that participants have private information about 

their valuation for the items under auction which they might or might not report truthfully. 

An auction is said to be incentive compatible (aka truthful, or strategy proof) if, for each 

participant 𝑖, truthful reporting maximizes their utility, regardless of other participants’ 

choices. In this setting, truthfulness is said to be the dominant strategy for participant 𝑖 

(Jackson 2003).  

In the real world, selfish participants tend to strategically report their value untruthfully, 

in order to maximize their own utility. Therefore, having a truthful mechanism does not 

seem to be very realistic. The immediate question that comes to mind is then “why has 

incentive compatibility been an important auction property to study throughout the 

mechanism design research?”  

To answer this question, we need to go back to the principal question that mechanism 

design tries to answer: “how can an economic system be designed so that the selfish 

behavior of the participants leads to desirable properties?”. Suppose that the goal of the 

auction designer is to achieve an outcome that maximizes the social welfare, that is, the 

cumulative value of the outcome to all participants. The designer should design an auction 

that collects the bidders’ reported valuations, which might be truthful or not, and selects 

an outcome (an allocation of items to bidders) and a payment function so that the social 

welfare is maximized. This means that the designer needs to analyze all possible strategic 

behaviors of bidders in order to predict the outcome. Analyzing such a complex space is 
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not easy, if at all possible. However, there is a simple, yet extremely useful principle in 

mechanism design called the revelation principle that simplifies the design of auctions. 

The revelation principle (Gibbard 1973; Myerson 1979; Myerson 1981) states that under 

quite weak conditions, there is an equivalent direct9 incentive-compatible auction for any 

arbitrary auction that achieves the same outcome. This principle made it possible for 

researchers to focus exclusively on direct incentive-compatible mechanisms to do the 

theoretical analysis of what is possible (possibility results) and what is not (impossibility 

results) in the space of direct mechanisms. 

The design problem thus becomes easier for the auction designer. If they want to achieve 

a set of desirable outcomes, they need to install the right incentives for the bidders to 

make them behave in a certain way that will lead to these outcomes. Giving the right 

incentives is usually done by designing the right payment rule which will be further 

discussed in subsection 2.4.2.3.  

2.4.1.7 Myerson–Satterthwaite Impossibility Theorem 

As we explained before, some of the discussed desirable properties cannot be achieved 

simultaneously. One such set is recognized in the Myerson–Satterthwaite Impossibility 

theorem (Myerson and Satterthwaite 1983). The impossibility result states that even in a 

simple bargaining problem between one seller and one buyer for a single item, there is no 

allocation mechanism that is incentive compatible and (interim) individually rational that 

can achieve (ex post) efficiency without outside subsidies (being budget-balanced). The 

assumption is that both buyer and seller’s valuation for the item is independent private 

value (IPV), that is, they have a private value for the item which is not known to the others 

and is also independent from the valuations of others for the item (Parsons et al. 2011). 

As a result, the auction designer has to trade off some of the properties to achieve the 

others in the auction. As individual rationality seems to be the principal requirement in 

many auction settings (if the bidders are not to be forced to attend the auction), the trade-

                                                 

9 In mechanism design, a direct mechanism is one in which the only action available to the participants is 

to announce their private information (or their types) (Shoham and Leyton-Brown 2009, p.277). With this 

definition, we can see that a sealed-bid auction is a direct mechanism, but an iterative auction is an indirect 

one. 
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off is usually done between the three other properties: incentive compatibility, allocation 

efficiency and budget-balanced.   

2.4.2 Auction Design Elements  

Any auction designer needs to make decisions regarding three aspects of an auction, 

which we have called auction design elements. Many researchers, such as Wurman et al. 

(1998) and Bichler et al. (2006), have recognized these aspects, although under different 

names. These elements are: 

1) The auction protocol which may be referred to as the bidding language: The 

syntax, semantics and sequence of message exchange in the auction.  

2) Allocation rule(s), also known as the winner determination problem (WDP) in 

single-sided auctions, or the matching algorithm in double-sided auctions: It 

specifies how the item(s) will be allocated to bidders. 

3) Payment rule(s), also referred to as the pricing model/scheme or the incentive 

implications: The payment to (from) bidders in a direct (reverse) auction is 

determined here. 

2.4.2.1 The Bidding Language (The Auction Protocol) 

The auction protocol determines the structure of the messages sent from the bidders to 

the auctioneer (the bid), the structure of the information feedback sent from the auctioneer 

to the bidders, and the sequence of the message exchange between the auction’s 

participants. 

In the simplest form, the bid structure contains a price offer (or request) to buy (or sell) a 

single item under auction. The simplest feedback from the auctioneer to the bidders can 

be a signal indicating whether the bid is accepted or rejected. This is the auction protocol 

followed by sealed-bid auctions for a single-unit item. In the first round, the bidders 

submit their bids, and in the next round, the winner is determined. 

This simple protocol can be extended along different aspects. The first aspect is along the 

bidding language. If the auction’s requirements dictate that the bid structure needs to 

transfer more information about the bidder’s offer rather than simply the price, then there 

should be enough support in the bidding language. For example, in a procurement auction, 

the bidders might also need to specify the quality level for their offers, or the delivery 
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time. A bidding language supporting such a structure is called a multi-attribute bidding 

language. 

In some auctions, more than one item is auctioned simultaneously. If items under auction 

are homogeneous (multiple copies of the same item), bidders should be able to specify in 

their bids the number of items that they intend to buy or sell. On the other hand, when the 

items are heterogeneous, bidders might prefer to bid for a combination of the items, or 

bundles. Multi-unit auctions and combinatorial auctions are the auctions that correspond 

to these two settings. The bidding language should have enough support for each setting 

to enable bidders to more fully express their preferences. 

In combinatorial auctions, the auction designer might decide to limit the bidding 

possibilities to prevent communication problems. The issue is that in a combinatorial 

auction with many items under auction, if bidders are allowed to bid on any combination 

of items, the number of possible bid submissions can theoretically grow exponentially. 

This can lead to a huge amount of message exchange between bidders and the auctioneer, 

significantly affecting the decision-making process involved in the winner determination 

problem. Therefore, the auction designer might limit the number of bid submissions or 

the number of items in a bid or impose a special structure (sequence) for the items in a 

bundle. 

Apart from the structure of the bid, the auction designer needs to specify the number of 

bids that each bidder can submit. If a bidder is allowed to submit more than one bid, the 

designer needs to specify what the relationship between the bids can be, in other words, 

how the bids can be combined. This relationship can be one of the following types: 

 OR bids: With the OR combination of bids, the bidders can submit several bids 

and they may have any subset of their bids being a winner. The designer might 

restrict the number of bids in an OR phrase to control the communication effort. 

 XOR bids: In XOR combination, the bidders can submit several bids. However, 

they can have at the most one winning bid, that is, the bids are mutually exclusive. 

 Combination of OR and XOR bids: It is also possible to allow the bidders to 

have both OR and XOR types in their bid submissions. Such a language is strongly 
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expressive; however, the complexity of the language and the communication 

effort are challenging for bidders and the auctioneer.    

 OR* bids: This type simultaneously has the simplicity of the OR type and the 

expressivity of the XOR type by using the concept of dummy items in an auction. 

The bids are combined by OR; however, if a bidder needs to have an XOR 

relationship between two bids, they can add the same dummy item to both bids. 

With the restriction that no item can be won more than once, the dummy items 

simulate the XOR relationship (Nisan 2000). 

The design of the auction protocol is based on the problem domain requirements. 

Meanwhile, in designing the bidding language, the auction designer specifically needs to 

consider the trade-off in designing any language which is the expressiveness of the 

language versus its simplicity. 

The information feedback in the simple auction protocol can also be extended when the 

auction is iterative. In these auctions, the designer needs to specify how much and what 

information to reveal at the end of each round of bidding. Examples of such information 

include information about the current winning bid, the current winner’s identity and the 

identities of those who have dropped out. Decisions regarding the information feedback 

significantly affect the competition among the bidders which, in turn, impacts on the 

auctioneer’s revenue and/or the economic efficiency of the auction. Due to its importance, 

the study of information feedback has been central to the analysis of multi-round auctions 

for decades. 

2.4.2.2 Allocation Rules (Winner Determination Problem) 

The set of allocation rules, more famously known as the winner determination problem 

(WDP), determines which bidders have won and how the items are allocated to them. The 

auction designer needs to consider two main components here: the auction objective and 

the set of allocation constraints. 

As discussed in subsections 2.4.1.1 and 2.4.1.2, the two popular objectives that an 

auctioneer might have are economic efficiency and revenue maximization (de Vries and 

Vohra 2003). The two objectives are not mutually exclusive; however, it is not possible 
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to achieve both at the same time in all situations. The auction designer needs to formulate 

the auction’s objective based on the problem domain requirements. 

The second component of the allocation rule is the set of allocation constraints. There are 

several types of allocation constraint that the auction designer might need to add to the 

WDP formulation. One well-known constraint concerns the reservation price of the seller 

(direct auction) or budget constraint of a buyer (reverse auction).  

There are other allocation constraints which are important in reverse auctions. One such 

constraint is in relation to the quality of the items to be procured. The quality constraint 

might be demanded at the level of “a single item” or at the level of “a set of items”. For 

example, the auctioneer might be interested in the delivery time of all items under auction 

collectively, and not in the individual items’ delivery time.  

Another important constraint in the context of procurement auctions is about managing 

the extent of the dependency on suppliers. The two extremes are: (1) procuring all items 

from as few suppliers as possible, and (2) selecting as many different suppliers as 

possible. The first case might lead to a high exposure if some of the suppliers are not able 

to deliver their promise, and the second case can create a high overhead cost of managing 

too many suppliers (Bichler et al. 2006). Therefore, the auction designer might set 

limitations on the minimum and maximum number of winning suppliers to avoid 

depending on too few suppliers or on too many of them. This constraint is also referred 

to as the market share as the designer aims to control the share of the market won by the 

individual suppliers. 

2.4.2.3 Payment Rule (Pricing Scheme) 

In the familiar form of auctions, the winners usually have to pay their bid as the price to 

obtain the item. However, for many auctions, that is not the case. In mechanism design, 

the pricing scheme is a strong measure employed by mechanism designers to install their 

desirable properties in the auction. Through the payment rules, they install the appropriate 

incentives for the mechanism’s participants to guide their behavior in a certain way that 

will lead to the mechanism’s desirable properties. 

One of the important desirable properties in auctions is incentive compatibility or 

truthfulness, discussed in subsection 2.4.1.6. Based on the revelation principle (Gibbard 

1973; Myerson 1979; Myerson 1981), a mechanism designer is able to study the direct 
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incentive-compatible equivalent of any arbitrary mechanism to predict the possible 

outcome. Therefore, the focus of researchers in mechanism design is to design payment 

rules which lead to incentive-compatible mechanisms. 

For a single item, the well-known truthful mechanism is the Vickrey auction, also known 

as the sealed-bid second-price auction. In this auction, the bidder with the highest bid 

wins the auction, but they will only pay the second highest bid as the price for the item. 

For example, if the highest bid is $10 and the second highest bid is $8, the bidder with 

the $10 bid wins, but only pays $8. First analyzed through a game-theoretic approach, 

William Vickrey (1961) demonstrated that in this auction, bidders with independent 

private values (IPV) cannot increase their utility by manipulating the declared valuation. 

Therefore, their dominant strategy is to be truthful and bid their true value for the item.  

Despite being very popular among researchers in auction theory, the Vickrey auction did 

not find much practical application (Ausubel and Milgrom 2006). One important factor 

contributing to this unpopularity in practice is the possibility of very low revenue for the 

auctioneer even in the case of high competition among the bidders for high-valued items. 

McMillan (1994) describes a second-price auction for radio spectrum held by the New 

Zealand government in 1990 which led to embarrassing results. In one extreme case, 

despite an existing buyer bidding NZ$100,000 for a license, the final price paid was the 

second-highest bid of NZ$6.  

The Vickrey auction was later expanded by Clarke (1971) and Groves (1973) to a more 

general competitive process where multiple items with interdependent values are 

auctioned. The extension is known as the Vickrey–Clarke–Groves (VCG) mechanism and 

is both economically efficient and incentive-compatible.  

The allocation rule in the VCG mechanism assumes that the received bids are truthful, 

and therefore, chooses an allocation that maximizes the economic efficiency based on the 

received bids. The designed payment rule ensures that the bidders have no incentive to 

not tell the truth. The payment to each winning bidder, 𝑖, has two parts:  

 a payment made by bidder 𝑖 to the mechanism for winning the item(s) which is 

equal to the sum of the values of all winning bids if bidder 𝑖 does not participate 

in the auction. This is calculated by taking bidder 𝑖 out from the competition, and 

finding the best allocation without their presence, 
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 a refund paid by the mechanism to bidder 𝑖 to incentivize truthfulness which is 

equal to the sum of the values of all winning bids except that of bidder 𝑖. 

As an example, consider an auction to sell three items, A, B and C, where we have four 

bidders with these bids: bidder1={A, $20}, bidder2={B, $10}, bidder3={BC, $80} and 

bidder4={ABC, $80}. The winners will be bidder1 and bidder3 with a total value of $100. 

The amount that needs to be paid by bidder1 is $90 – $80 = $10, rather than $20. The first 

amount is calculated by taking bidder1 out from the competition and determining the total 

value of the winning bids again, and the second amount comes from the sum of the current 

winning bids without the bid from bidder1. Similarly, bidder3 has to pay $60 ($80 – $20) 

instead of his original bid of $80. The reduction in the winning bidders’ payments is in 

fact a concession awarded to them by the mechanism for being truthful.  

In the VCG mechanism, both parts in the payment function to a bidder are independent 

of the bidder’s declared value. Therefore, bidders have no incentive for strategically 

manipulating their declared valuations, as the manipulation will not increase their gained 

utility. The mathematical proof can also be found in Nisan et al. (2007, p.219). 

Similar to the second-price sealed-bid auction, the VCG mechanism is “lovely in theory 

but lonely in practice” (Ausubel and Milgrom 2006). There are a number of serious 

limitations that have prevented the VCG payment formulation from finding practical 

applications including (Ausubel and Milgrom 2006; Rothkopf 2007):   

 Too complex to compute when the number of bidders is too high, 

 Reveals a lot of information, 

 Possible to have very low-revenue outcomes, 

 Highly susceptible to collusion,  

 Requires unlimited budgets (for the bidder side in a direct auction) or else it 

will cause problems (it will be complex for a bidder with budget constraints 

to determine how to bid). 

2.5 Conclusion  

In this chapter, we presented the basic concepts underlying our research along three main 

pillars: the web service technology, auction theory and mechanism design. In web service 

technology, we discussed the characteristics of web services, the importance of web 
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service composition and introduced the lifecycle of web service composition. The 

proposed lifecycle decomposes the WSC into five stages, positioning our research in the 

second stage, as web service selection.  

Then, we presented the broader picture on markets before focusing on auctions as the 

most widespread allocation mechanism in markets. We discussed dynamic pricing as the 

central pricing mechanism in auctions. Following this, a general categorization of markets 

was presented. Among these categories, we discussed combinatorial auctions in more 

details as the basis of our proposed mechanism for composite web service selection. 

Lastly, we discussed the mechanism design approach in designing an auction and an 

important set of desirable properties that auction designers consider when designing an 

auction. We also discussed the essential elements in designing an auction, namely, the 

auction protocol, the allocation rules and the pricing scheme. 
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Chapter 3  

3 Literature Review 

3.1 Introduction  

In this chapter, we present a comprehensive review of the current literature on composite 

web service selection approaches. In section 3.2, the research problem, composite web 

service selection problem, is discussed in more details. In section 3.3, we examine the 

main challenges and issues involved in this research area.  

We have categorized composite service selection approaches to three main categories: 

optimization-based approaches, negotiation-based approaches and auction-based 

approaches. We discuss the basis of our categorization in section 3.4. The extant literature 

on each of these categories are discussed in sections 3.5 (optimization-based approaches), 

3.6 (negotiation-based), 3.7 (hybrid of optimization and negotiation approaches) and 3.8 

(the emerging auction-based approaches). 

Parts of this chapter have been previously published as a book chapter in (Moghaddam 

and Davis 2014). It has been updated with more recent studies to be included in this thesis. 

The last two challenges on the list and the literature on auction-based approaches are 

presented here for the first time. 

3.2 Research Problem: Composite Web Services Selection 

As briefly introduced in the introduction chapter, section 1.1, composite web service 

selection refers to the problem of selecting an optimal set of web services that can 

collectively achieve a specific complex functionality, from the pool of available web 
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services. The collaboration and execution of this set of web services forms a composite 

web service and the user who needs the composite service to achieve the complex 

functionality is known as the composite service requester. To achieve the complex 

functionality, web services need to be executed in a specific sequence. The specification 

of the right sequence can be defined at a high level, as an abstract business process (BP).  

As discussed in subsection 2.2.3, the business process comprises a set of tasks, each with 

clear functionality, along with the control and data flow among them. To create the 

concrete composite service, the service requester needs to find (at least) one concrete web 

service to execute each task.  

Moreover, the selected web services need to satisfy the preferences and constraints of the 

composite service requester about the quality of service (QoS) and cost of the 

composition. The quality of a service is defined by a set of quality of service attributes 

(such as the response time, availability and reputation) that are important and relevant to 

that web service (to be discussed in more details in subsection 3.4).  

These preferences and constraints may need to be addressed at two levels: at the level of 

a single service and at the level of the composite service. For example, the requester may 

require that the response time of a specific service does not last longer than a maximum 

threshold for the input data of the service to remain valid. Imagine a web service which 

receives the geographic location of a moving vehicle and displays its location on a map. 

If the execution of this service takes long, the displayed position will not be valid. At the 

same time, the requester may need the end-to-end response time of the composite service 

not to take longer than a specific time for the composite service to be useful. 

As discussed in subsection 2.2.3 (WSC Lifecycle), composite service selection is a 

critical stage in the web service composition process (WSC). However, it is worth 

mentioning that composite service selection might be a problem in areas other than WSC. 

For example, in many scientific workflows, it is required that a combination of different 

types of services be selected to realize the workflow, such as a combination of web 

services and legacy software applications. In this case, the composite web service 

selection is meaningful for that part of workflow where web services are required. 
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Regardless of the context of the composite service selection problem, its objective is to 

find the “optimal” web services based on the service requester’s preferences and 

constraints over different criteria such as quality of service and price.  

3.3 Web Service Selection Challenges  

Web service selection is considered to be a complex problem. The complexity partly 

arises from different challenges that researchers in this area have to confront with. Some 

of these challenges have already been recognized and received the attention of the 

research community. These are:  

1. The NP-hardness of the service selection problem and scalability,  

2. The need to distinguish the abstract business process from its possible set of 

execution paths,  

3. Defining the aggregation functions for the QoS attributes to measure the end-to-

end quality of the composite service,  

4. Elicitation of the importance of the different QoS attributes from the service 

requester’s perspective (Moghaddam and Davis 2014). 

However, some important issues have not received the attention they deserve from the 

web service research community, including: 

5. Existing dependencies between constituent services of a composition, 

6. Price determination for web services, 

7. The presence of multiple requests for composite services. 

In this section, we discuss these challenges and how they have been addressed by the 

current literature on composite web service selection. 

NP-hardness and Scalability:   

Composite service selection can be modelled as a Multi-dimensional Multi-choice 

Knapsack Problem (MMKP) (Yu et al. 2007), which is known to be an NP-hard problem 

in the strong sense (Parra-Hernandez and Dimopoulos 2005). This means that there is no 

polynomial time algorithm to find the optimal solution. Such a limitation can especially 

complicate finding an optimal solution for large problem instances.  



43 

 

As a consequence, there is a need for heuristic approaches when the problem size is too 

large to be solved by optimal solution procedures (Parra-Hernandez and Dimopoulos 

2005). A number of heuristic algorithms have been proposed in the literature to find near-

optimal solutions. Good exemplars include (Yu et al. 2007; Berbner et al. 2006; Menascé 

et al. 2010).  

Some researchers have proposed a Genetic Algorithm approach to solve the scalability 

problem (Canfora et al. 2005; Jaeger and Muehl 2007; Ma and Zhang 2008). An 

alternative proposal to reduce the computational time of the service selection search 

algorithm is to shrink the search space. For instance, Alrifai et al. (2010) has proposed 

pruning the service candidates that are not likely to be part of the optimal solution, by 

computing the service skyline for each service class.10  

From Business Process to Execution Path:  

In the current approaches to composite service selection, the assumption is that the 

required composite service is described as a high-level business process (Ardagna and 

Pernici 2007). Different languages and models have been used for describing the business 

process, such as UML activity diagram (Ardagna and Pernici 2007), statechart (Zeng et 

al. 2004), extended BPEL (Agarwal and Jalote 2010), or YAWL (El Haddad et al. 2010). 

Regardless of the modelling notation, different control-flow constructs are allowed in the 

existing process modelling languages such as sequence, loop, parallel execution and 

conditional branching. For some of these structures, such as loop and conditional 

branching, the runtime structure is different from the abstract structure. For instance, only 

one of the tasks in the conditional branching would be selected for execution. This means 

that a BP might be executed along different paths, based on the control-flow at runtime.  

Each possible path of BP execution is called an execution path or execution flow. During 

service selection, an execution plan is created by assigning web services to the tasks of 

                                                 

10 For a set of d-dimensional data points, the skyline is a subset of the points where no point in it is 

dominated by any other member. If 𝑝(𝑝1, … , 𝑝𝑑) and �⃗�(𝑞1, … , 𝑞𝑑) are two points in the d-dimensional data 

set, p dominates q iff  ∀ 𝑖 ∈ [1, 𝑑], 𝑝𝑖 ≽ 𝑞𝑖  and ∃𝑗 ∈ [1, 𝑑], 𝑝𝑗 ≻ 𝑞𝑗  (Yu and Bouguettaya 2012). The 

notation ≽ is defined as being better than or equal, and  ≻ as better than. In the service domain, a service 

skyline is the set of providers where no provider is dominated by any other, in terms of the offered values 

for QoS attributes. 
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an execution path. There is a need for special consideration to these constructs and how 

they affect the execution path of a BP at run time.  

In composite service selection, it is essential to distinguish the abstract BP and its possible 

set of execution paths. Researchers have used different techniques to translate a BP to its 

corresponding execution paths, such as loop peeling (Ardagna and Pernici 2007), or loop 

unfolding (Yu et al. 2007; Zeng et al. 2004) to treat loop structures. In the former 

approach, every loop is annotated with the expected maximum number of its iterations, 

considering a probability distribution for the number of loop iterations. In the latter case, 

the loop is unfolded by cloning the functions in the loop for a number of times such as 

the maximal loop count, which can be obtained from process execution history or the 

process designer.  

Aggregation Functions:  

A critical challenge in service selection is how to measure the end-to-end quality of the 

composite service. The aggregated value of a QoS attribute is calculated based on:  

1. The QoS attribute value of the individual services participating in the 

composition,  

2. The business process structure.  

For example, the overall price of a composite service is defined as the sum of the prices 

of the participating services. However, the execution time of the composite service needs 

a more complex aggregation function, for example one that returns the maximum 

execution time among the parallel services, adds up the execution times of sequential 

services, and combines these two values if there are both parallel and sequential structures 

in the BP.  

In Jaeger et al. (2004) and its extension Jaeger et al. (2005), the authors have proposed 

aggregation functions for some QoS attributes such as execution time, price and 

throughput, supporting a comprehensive set of structural patterns that can be found in 

workflows. Zeng et al. (2004) has proposed aggregation functions for attributes such as 

execution price, execution duration, and reputation. To define the aggregation function 

for non-sequential structures of some of the attributes, they rely on the Critical Path 

Algorithm from scheduling algorithms and project planning (Pinedo 1995, p.115). In a 

project network, a critical path is the set of connected tasks that together will take the 
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longest to complete. Based on this definition, in a business process which has multiple 

execution paths, the path with longest execution time is the critical path. Aggregation of 

some quality attributes such as execution time, availability and successful execution rate 

are calculated with respect to the critical path of the BP. Similar aggregation functions 

have been developed by (Canfora et al. 2005; Ardagna and Pernici 2007; Richter et al. 

2012; He et al. 2014). 

The approach based on defining a critical path for the composite service execution helps 

to define linear aggregation functions or functions that can be easily linearized, which is 

required for some optimization techniques such as linear programing. We’ll discuss this 

requirement in more detail in subsection 3.5.2.1.  

Defining the Weights of QoS Attributes:  

In the composite service selection literature, it is generally assumed that the service 

requester has a clear idea of the importance of a QoS attribute with respect to other 

attributes and the potential trade-off in achieving them. Such understanding lets the 

requester to assign a scalar weight to each QoS criterion. However, such an assumption 

may not be realistic, especially as the number of QoS attributes involved in the selection 

criteria increases.  

Some researchers have tried to address this problem. Wang (2009) has proposed a 

resolution process for determining the linguistic weights of QoS criteria based on a group 

of participants’ preferences. Yu and Bouguettaya (2012) has proposed two algorithms for 

calculating the service skyline. In general, determining the skyline of a set of data requires 

pair-wise comparison of all the members of the data set which can be very expensive in 

terms of computational time and memory usage. However, the algorithms proposed by 

Yu and Bouguettaya (2012) exploit the indices of the service operations to compute the 

skyline more efficiently. The computed skylines guarantee to include the best user desired 

service providers without any user intervention, that is, no need to define weights for 

quality attributes.  

Dependencies between Constituent Web Services of a Composition: 

In the web services domain, services combined to form a composition are dependent on 

a variety of different factors. These dependencies include: 
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1. Execution time dependency: Participant services in a composition need to be 

executed in a specific sequence to achieve the high level goal of the composite 

service. The time dependencies are specified in the abstract business process, 

through the control flow specification.  

There is a lower level execution time dependency that might exist between the 

operations of the same service where an operation might need to be executed 

before another one. This is referred to as the behavior of a service and is a type of 

intra-service dependency (Yu and Bouguettaya 2008). However our focus here is 

on the different types of dependencies between different web services or what is 

known as the inter-service dependency. 

2. Data dependency: This dependency exists when (part of) the output of one service 

is consumed as (part of) the input of another service (Milanovic and Malek 

2004).This dependency is also known as input/output dependency (Omer and 

Schill 2009) or message dependency (Yang and Papazoglou 2002). 

3. Dependencies driven by different types of constraints: such as technical 

constraints (Ai and Tang 2008), technological constraints (Aggarwal et al. 2004), 

business constraints (Aggarwal et al. 2004), domain related dependencies (Verma 

et al. 2004), and user constraints (Omer and Schill 2009).  

As an example of the technical constraint dependency, consider a composite 

service where a document is encrypted using a specific encryption algorithm at 

one step. Then, it might become necessary to ensure that the document can be 

decrypted by a compatible service in subsequent steps (Verma et al. 2004). Here, 

the two encrypting and decrypting web services are dependent based on a 

technical constraint.  

The identification, automatic discovery and modelling of the inter-service dependencies 

have been important research problems for the composite web service community due to 

their applications in areas such as: 

 Dynamic selection of a web service for a process, mostly considering the 

message dependency among partner services as discussed in works such as 

(Korhonen et al. 2003; Aggarwal et al. 2004; Verma et al. 2005; Yang and 

Papazoglou 2002) 
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 Monitoring the composite service with the objective of failure diagnosis and 

recovery as discussed in the papers by Wassermann and Emmerich (2011) and 

Bodenstaff et al. (2008) 

 SLA management tasks including the creation, negotiation and handling of 

the SLA violations, as in the work by Winkler et al. (2010)   

While these applications mostly incorporate the point of view of composite service 

requesters (or end-users which may be different to the requester) and their satisfaction 

from the composite service execution, the inter-service dependencies can also affect the 

providers’ preferences about offering web services.  

A provider who can offer services for a set of consecutive tasks in the business process 

might be able to offer a discount if the service requester buys these services as one bundle. 

Bundling can help the service provider internalize some of the costs related to interface 

compatibility required for data exchange between offered web services, which leads to 

the possibility of decreasing the cost of service provisioning. Bundling may also allow 

service providers to improve the quality of bundled services with a competitive price (He 

et al. 2014). For example, when bundled services are executed on the same machine, the 

provider can guarantee a lower execution time for the set of offered services. The 

competitive price offers for bundles, in turn, can improve the provider competitive power 

in the web services market. Increasing the consumer loyalty is another advantage of 

bundling for providers (Herrmann et al. 1997). 

As discussed earlier in subsection 1.2.1, the dominant assumption in composite service 

selection approaches is that web services are offered as independent entities with no 

dependencies. Ignoring these dependencies has led to somewhat unrealistic formulation 

of the composite service selection problem in current approaches. Moreover, such a 

formulation cannot achieve a solution that is in the best interest of the service requester 

or the providers without allowing them to express their preferences and constraints over 

combinations of dependent web services forming a composite service. 

Price Determination for Web Services: 

As we discussed in subsection 1.2.2, the price determination models followed in the 

current service selection approaches can cause serious limitations for web service 

providers and requesters.  
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The dominant pricing model is called the fixed pricing model which leaves the complexity 

of price determination of web services entirely to service providers. Moreover, this model 

forces the service requesters to have an approach of take-it or leave-it toward a service 

offer. The second pricing model which is based on automated negotiation between 

providers and requester is often too complex to be practical. Furthermore, the complexity 

involved in this model makes it very hard for the service selection approaches to find 

globally optimum solution. 

In our study, the pricing model, or more generally, the model that a service selection 

approach follows to determine the QoS profile of web services forms the basis for 

categorization of the current composite service selection approaches. This basis and the 

limitation of the fixed pricing and negotiation-based pricing models are discussed in more 

details in section 3.4. 

 Web Services’ Market: Presence of Multiple Requests for Composite Services 

In the extant literature on the web services’ marketplaces, composite services are 

considered an essential part of these markets traded along the single web services 

(Papazoglou 2003; Yarom et al. 2004; Weinhardt et al. 2011b). In these markets, 

aggregation of web services supply is recognized as one of the potential value-added 

services to be offered to the market participants (Papazoglou 2003). As an essential part 

of the aggregation, composite service selection can enhance the exchange of composite 

services by: (1) matching composite service requests and web service offers based on the 

preferences and constraints of the service requesters and providers, and  

(2) facilitating the price determination of composite services.   

However, very limited research has been performed to study how these markets affect 

composite service selection approaches. Most of the current composite service selection 

approaches have considered the setting with a single request for a composite service. One 

may reason that these approaches can also be applied to multiple requests by solving the 

service selection problem for the set of requests, one by one. We argue that the presence 

of multiple requests needs special consideration that simply solving the problem for the 

requests one at a time will not address it.  

The consideration is in regard to the service providers’ resource limitations. If providers’ 

resources were unlimited, there would be no competition among service requesters to 
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procure web services. Therefore, a solution that optimizes the composite service selection 

for a single request could be extended to many requests without losing its effectiveness. 

In reality, web service providers are bounded by their resource limitations, such as limited 

computational power of their servers, and the requesters compete for these resources. 

Thus, new approaches are required to solve the composite service selection problem for 

the collective set of the requests, rather than solving the problem for each request 

separately.  

3.4 Basis of the Categorization  

To present the extant literature on composite web service selection, we have classified 

the existing approaches into three main categories: optimization-based approaches, 

negotiation-based approaches and auction-based approaches. The composite service 

selection approaches are categorized based on two aspects of web services’ quality of 

service (QoS) profile, Fig 3.1:  

1. Dynamicity: the underlying assumption of these approaches regarding how fixed 

or flexible is the offered QoS profile of a web service,  

2. Determination complexity: how complex is the process to determine values for 

the quality profile attributes.  

The QoS profile of a web service consists of a set of values offered for the different quality 

attributes of the web service by the service provider. QoS attributes or non-functional 

properties of a web service are the constraints defined over its functionality (O’Sullivan 

et al. 2002). They can be categorized as:  

 Technical domain-independent attributes, such as: response time, availability, 

reliability, robustness (the ability of the service to continue its work in the 

presence of invalid, incomplete or conflicting inputs), capacity (the limit of 

concurrent requests a service can support for the guaranteed performance),  

 Non-technical domain-independent attributes, such as: execution price11, 

penalties, discounts, reputation,  

                                                 

11 Based on this categorization, the price of a web service is considered as an element in the QoS profile of 

the service. However, throughout this research we may refer to this set as “the quality of service and price”, 

with price as a separate element. 
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 Domain-dependent attributes which are only meaningful in a specific application 

domain, such as: refresh time for a traffic monitoring service (Comuzzi and 

Pernici 2009).  

The web service QoS profile plays a central role in web service selection research. 

Different providers may offer the same service at different levels of quality to maintain 

their competitive advantage over each other (Medjahed and Atif 2007). As well, a single 

provider might offer the same functionality with ranging quality levels to cover a wider 

range of customers, i.e. service requesters with different preferences and constraints. 

Moreover, at the composite service level, the QoS of the final composite service is the 

key factor to ensure service requester’s satisfaction (Zeng et al. 2004).  

 

Fig 3.1. Classification of composite service selection approaches based on QoS Profile 

In the current literature, there are two extremes regarding the assumption about the 

dynamicity of the QoS profile: (1) being pre-determined and not-customizable, or (2) 

being flexible and negotiable. Corresponding to the two extremes are the two important 

trends in the service selection literature: Optimization-based approaches which typically 

assume a predetermined QoS profiles and, Negotiation-based approaches which permit 

QoS profiles to be flexible and negotiable. However, regardless of the offered QoS being 

pre-determined or negotiable, the process to decide the best set of values for a service 

QoS profile is far from trivial for both optimization-based and negotiation-based 

approaches. 
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In general, a provider needs to consider different factors when choosing the appropriate 

values for different set of quality attributes. For example, the technical domain-

independent attributes are likely to be bounded by the provider’s limitations over their 

provisioning capacity; for example the specification of the servers executing web 

services. However, they still need to choose the set of values that are likely to generate 

the highest profit. As we already discussed it in subsections 1.2.2 (Price Determination 

for Web Services) and 2.3.1 (Dynamic Pricing), the decision regarding price 

determination of web services is considered even more complex, being a function of a 

complex set of variables such as the offered technical quality for the service, the 

production cost, existing supply and demand for that service and the competitor pricing.  

In both optimization-based and negotiation-based approaches, the complexity of QoS 

profile determination is completely left to the providers. In optimization-based 

approaches, they have to constantly collect information from other providers and 

requesters to set the price at the most profitable level. We have already discussed the 

problems related to such an approach in subsections 1.2.2, 2.3.1 and 3.3, which in 

summary, make the assumed price determination model very unlikely to be profitable due 

to the specific characteristics of web services and their execution environment, Internet. 

Such an issue can make serious business implications if these approaches are to be applied 

in real applications. 

In negotiation-based approaches, the price and quality are set through automated 

negotiation: providers and requester exchange their offers and counter-offers to reach to 

a mutual agreement over the values of quality attributes. In this approach, the relaxation 

of the assumption regarding static QoS profiles is an improvement over the less flexible 

optimization-based approaches. However, negotiation is known to be a very complex 

process, incorporating many different theories such as artificial intelligence, social 

psychology and game theory (Jennings et al. 2001). Negotiators need to decide on the 

best strategy for preparing their offers, taking into accounts many factors such as the 

opponent’s strategy space, time and available resources.  

Automated negotiation approaches for service selection have drawn extensively on the 

more general agent-based negotiation literature for concepts, functions, and frameworks. 

In order to achieve an automated negotiation process, they have incorporated many 

simplifying assumptions regarding the strategy space of both requester and providers. 
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This has led to a formulation of composite service selection which is not very realistic. 

Moreover, to reduce the negotiation complexity, the negotiation is performed for each 

service in composition, separately and independently. This, at best, achieves a locally 

optimum solution. 

There is a third category of approaches emerging to solve composite service selection 

problem, based on economic theories. We have called this category “the auction-based 

approaches” as the composite service selection problem is mostly formulated based on 

auction models. Generally in this model, the service requester is the auctioneer and the 

providers are bidders to sell their web services.  

With regard to the dynamicity of the QoS profile, in auction-based approaches, the price 

is dynamically determined by the market. Dynamic pricing in markets was discussed in 

subsection 2.3.1. This is an improvement over the completely pre-determined QoS 

profiles in optimization-based approaches. If required, it is also possible to achieve the 

customizable QoS profile, similar to negotiation-based approaches, through designing the 

appropriate auction model.  

Price determination in particular and QoS determination in general are less complex in 

auction-based approaches, compared to the other two approaches. Instead of fully leaving 

the complexity of this process to the service providers, the market facilitates price 

determination and QoS determination by constantly sending the appropriate signals about 

the status of supply and demand to the service providers.  

A service provider attending enough number of auctions receives feedback from the 

market: losing in too many auctions indicates that the service provider needs to reduce 

the price or improve the quality to be more competitive in the market, while winning in 

many auctions shows that the provider can demand a higher price for their services. 

Beside the providers, the market signals the service requester about their budget or quality 

constraints too: if the requester cannot procure the required composite service by 

attending in sufficient number of auctions, there is a need to increase the budget or ask 

for less severe quality for the composite service.  
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3.5 Optimization-based Approaches 

The most natural approach to solve the composite service selection problem is to map it 

to an optimization problem. Optimization can be performed at two levels: local 

optimization for an individual task, approaches such as (Agarwal and Jalote 2010; 

Mukhija et al. 2007; El Haddad et al. 2010) and global optimization for the whole 

composite service, followed by for example (Zeng et al. 2004; Yu et al. 2007; Ardagna 

and Pernici 2007).  

3.5.1 Local Optimization  

Local optimization approaches choose the best service for the tasks in the BP, one at a 

time. For each task, services are ranked based on some criteria, such as the QoS attributes. 

The dominant technique to rank services is to assign a score to each web service, using 

utility theory.  

In utility theory (from microeconomics), the service requester or provider preferences can 

be mapped to values of utility, where higher utility means greater preferences (Wilkes 

2009). To avoid the complexities of multi-dimensional utility function elicitation, each 

QoS attribute and the price have an independent utility function, based on assuming the 

independence of the outcomes of utility functions originating from Multi-attribute Utility 

Theory (MAUT) (Keeney and Raïffa 1993).  

Using a single attribute linear utility function, denoted as 𝑈𝑗  in equation (3-1), the offered 

value for the 𝑗-th QoS attribute, 𝑞𝑗 (𝑗 ∈ 𝐽: set of QoS attributes), by web service s, is 

mapped to a value between 0 and 1. In this equation, 𝑞𝑗
𝑚𝑎𝑥 and 𝑞𝑗

𝑚𝑖𝑛 are the maximum 

and minimum values offered for 𝑞𝑗 by all the candidate web services of the same 

functionality class. 

𝑈𝑗 (𝑞𝑗 ) =

{
 
 

 
 
𝑞𝑗 − 𝑞𝑗

𝑚𝑖𝑛

𝑞𝑗
𝑚𝑎𝑥 − 𝑞𝑗

𝑚𝑖𝑛

𝑞𝑗
𝑚𝑎𝑥 − 𝑞𝑗

𝑞𝑗
𝑚𝑎𝑥 − 𝑞𝑗

𝑚𝑖𝑛

        

 if larger 𝑞𝑗 more desirable 

(3-1) 

 if smaller 𝑞𝑗 more desirable 
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The aggregated utility of all the QoS attributes offered by service s, denoted as 𝑈(𝑠) in 

equation (3-2) below, is calculated as the weighted sum of the individual utility functions. 

Service requester assigns a normalized weight (wj) to each QoS attribute to specify its 

importance. The sum of the normalized weights of all attributes involved should add up 

to 1, equation (3-3). 

𝑈(𝑠)  =∑𝑤𝑗 . 𝑈𝑗 (𝑞𝑗)

𝑗∈𝐽

 (3-2) ∑𝑤𝑗 = 1

𝑗∈𝐽

 (3-3) 

The limitation of local optimization approaches is that the service for each task is selected 

regardless of the dependencies that exist between the services participating in the 

composition. Therefore, it may not lead to a global optimality for the end-to-end QoS of 

the composite service. Moreover, it is not possible to consider the end-to-end quality 

requirements of the composite service while selecting services locally.  

3.5.2 Global Optimization 

To overcome the limitations of the local optimization service selection, global 

optimization approaches have been proposed. In one such approach, optimization is 

carried out for the overall BP, and the end-to-end requirements and constraints can be 

defined for the overall BP too. Nevertheless, service requester can still set local QoS 

selection criteria for each task. This can be achieved by applying the local QoS constraints 

as filters to the list of the candidate services returned by service registry.  

Generally speaking, any optimization problem has three key elements: the objective 

function, the set of decision variables and the set of constraints. The solution of the 

optimization problem is the set of values for decision variables which maximizes (or 

minimizes) the objective function, while no constraint is violated. Existing global 

optimization approaches have addressed each of these elements as follows: 

Objective Function:  

In the current literature, the objective function is generally defined as: maximizing service 

requester’s satisfaction from the execution of the composite service. To measure such 

satisfaction, researchers have referred to the utility theory: the objective function is 

formulated as the weighted sum of the end-to-end QoS attributes’ utility functions. As 

usually there are multiple, probably conflicting, objectives to be optimized 
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simultaneously, this formulation of the service selection is a multi-objective (also known 

as multi-attribute or multi-criteria) optimization problem.  

An example objective function is presented in equation (3-4) below, taken from (Zeng et 

al. 2004). In this formulation, service requester wants to minimize the cost (𝑗1 QoS 

attributes) and execution time (𝑗2) of the composite service, at the same time, maximizing 

the availability, success rate and reputation (𝑗3 to 𝑗5).  

𝑀𝑎𝑥 (∑(
𝑄𝑗
𝑚𝑎𝑥 − 𝑄𝑖,𝑗

𝑄𝑗
𝑚𝑎𝑥 − 𝑄𝑗

𝑚𝑖𝑛
∗ 𝑤𝑗)

2

𝑗=1

+∑(
𝑄𝑖,𝑗 −𝑄𝑗

𝑚𝑖𝑛

𝑄𝑗
𝑚𝑎𝑥 − 𝑄𝑗

𝑚𝑖𝑛
∗ 𝑤𝑗)

5

𝑗=3

)        (3-4) 

𝑄𝑖,𝑗 is the aggregated value for j-th QoS attribute, offered by 𝑖-th execution plan and 𝑤𝑗 

is the normalized weight for j-th QoS attribute. 𝑄𝑗
𝑚𝑎𝑥 and 𝑄𝑗

𝑚𝑖𝑛 are the maximum and 

minimum aggregated values, offered for j-th QoS attribute by all the possible execution 

plans of the BP.  

Constraints:  

While optimizing the objective function, it is possible to specify constraints on different 

aspects of the selected solution. In composite service selection, one important set of such 

constraints have been defined over the end-to-end quality of the composite service. 

Ideally, service requester should be able to specify an upper bound or a lower bound for 

any quality attribute. For example, it should be possible to define a maximum budget to 

procure the composite service, or the minimum acceptable availability of the composite 

service.  

Decision Variables:  

The choice of what will represent the decision variables determines the type of 

optimization problem. The dominant approaches are modelling the problem as Integer 

Linear Programming (ILP), Genetic Algorithm (GA), Constraint Satisfaction and 

Stochastic Programming.  

3.5.2.1 Integer Linear Programming (ILP)  

Modelling the composite service selection as an integer linear programming problem 

(ILP) is one of the dominant approaches among the optimization-based researchers. 

Examples include (Zeng et al. 2004; Ardagna and Pernici 2007). In this approach, an 
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integer binary decision variable is assigned to each service which value specifies if that 

service is selected to be part of the composition or not.  

More formally, given a BP with J number of tasks, there will be J classes of candidate 

services where all the 𝑚𝑗 candidate services in the j-th class, can execute j-th task  

(𝑗 ∈ 𝐽). Then, the decision variable 𝑥𝑖𝑗  is defined to indicate whether the candidate web 

service 𝑠𝑖, in service class j, is assigned to execute task j (equal to 1) or not (equal to 0). 

Generally, an extra constraint is defined to make sure that only one service is selected 

from each class; equation (3-5) below: 

∑𝑥𝑖𝑗

𝑚𝑗

𝑖=1

= 1 ,     𝑥𝑖𝑗 ∈ {0,1}    

 

(3-5) 

The advantage of this approach is the availability of many open source and commercial 

ILP solvers. Many of these solvers are very accurate and considerably fast in finding the 

optimal solution for not very large problem instances. However, an increase in the number 

of candidate web services leads to the increase of the number of decision variables, which 

in turn results in the explosion of the search space, and the number of the conditions to 

be checked. Therefore, the ILP approach is limited by how large the BP (number of the 

tasks) and the candidate services’ space are.  

Another limitation of this approach is that the objective function and the set of constraints 

should be linear. As the aggregation functions for quality attributes depend on the 

structure of the business process, it may not be always possible to define linear 

aggregation functions for all structures and all quality attributes.  

3.5.2.2 Genetic Algorithm (GA)  

Another optimization approach to solve service selection has been the application of 

genetic algorithm, followed by researchers such as (Canfora et al. 2005; Jaeger and Muehl 

2007; Ma and Zhang 2008). The GA objective is to evolve a population of candidate 

solutions of an objective function toward better solutions.  

Modelling a problem based on GA generally starts with encoding the candidate solution 

of an optimization problem in a computer processable manner, called genome. Then, the 

first generation is created, including a population of usually random solutions (or 

individuals). Each individual of this generation needs to be evaluated according to a 
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fitness function which shows how “good” it is. After the evaluation, the best individuals 

are selected for reproduction. The new generation is created using the best individuals of 

the previous generation by applying genetic operators such as mutation and crossover.  

These steps are iterated till some conditions are met; such as a specific number of 

generations, or a time deadline is reached. The motive to the reproduction is that the new 

generation will contain better individuals than the old one and the average fitness function 

for the newly produced population will be higher. Thus, near optimal solutions can be 

found by repeating these steps.  

In the service selection domain, Canfora et al. (2005) and Jaeger and Muehl (2007) 

applied a simple one-dimensional coding schema for the problem representation, while 

others, including Ma and Zhang (2008), have used more complex representations such as 

a relation matrix coding schema. In the former case, each individual represents the 

assignment of the candidates to the tasks. In the latter one, the matrix can represent all the 

execution paths of the BP at the same time.  

Similar to integer linear programming approaches, GA approaches define the objective 

function as to maximize some QoS attributes and minimize some others. The objective 

function is defined through the GA’s fitness function. However unlike ILP approaches, 

GA does not need to define a linear objective function. Being a heuristic search algorithm 

to find near-optimal solutions, the GA based service selection approaches can more 

efficiently handle larger problem instances compared to ILP approaches. 

Being an unconstrained search technique (Fonseca and Fleming 1998), one limitation of 

GA is that it is not possible to define additional constraints while searching for the best 

solution. Therefore, service requester cannot directly specify quality or budget constraints 

for the composite service. Some researchers have tried to integrate the constraints 

indirectly into the search process. One such technique is called the additive penalty 

method where a penalty cost that is proportional to the total violation of each of the 

constraints is added to the fitness function (Hilton and Culver 2000). There are other 

techniques to incorporate constraints into the GA search, such as the ones proposed by 

Carlson (1995) and Michalewicz (1995). However, these techniques have not found any 

application in the service selection literature. 
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3.5.2.3 Constraint Satisfaction  

A group of researchers argue that the objective of the composite service selection 

approach needs to be defined based on the time required to create a composite service, 

rather than achieving an optimal composition. The argument is based on a vision of the 

future semantic web being populated with millions of services which will be available 

globally. Therefore, the composite service selection approach needs to be scalable in 

terms of efficiently searching in the pool of available services, with respect to time. 

Following such an approach, Lecue and Mehandjiev (2009) have proposed a fast selection 

approach which might not lead to an optimal composition. In their work, the service 

selection is modelled as a constraint satisfaction problem, where a stochastic search 

method (more precisely, a hill-climbing algorithm) finds the first set of services that 

satisfy the set of defined constrains (both in terms of functional and non-functional 

requirements). 

A generalization of constraint satisfaction approach is presented by Rosenberg et al. 

(2009), modelling the service selection problem as a Constraint Optimization Problem 

(COP). In this approach, constraints are weighted and the goal is to find a solution 

maximizing a function of weighted constraints. They argue that, in contrast to the 

assumption of the constraint satisfaction approaches, not all constraints are hard; meaning 

that the solution strictly needs to satisfy them. Rather, it is possible to categorize some of 

the constraints as soft which are optional and it would be “nice” to have them. 

The proposed CO algorithm does not find the best solution that exists in the search space 

(in terms of the utility gained by the service requester). Rather it searches for the best 

solution within the boundaries of the service requester’s constraints. They add up all soft 

constraints to form an objective function, trying to maximize it. However, as they have 

mentioned, this approach has problems regarding scalability which makes it not 

applicable for large problem instances.  

3.5.2.4 Stochastic Programming  

Focusing on the uncertainty that exist about the values offered for QoS attributes, some 

researchers have applied Stochastic Programming to solve the composite service selection 

problem. For example, Wiesemann et al. (2008) argues that the nature of some QoS 
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attributes such as response time and price is non-deterministic, and hence the WSC should 

be treated as a decision problem under uncertainty.  

In their approach, the service requester needs to quantify the risks associated with time 

and cost uncertainties through a particular quantile-based risk measure called the average 

value-at-risk (AVaR). The associated AVaR measures for execution time and cost are then 

used to build the worst-case risk functions for the two attributes. These risk functions 

form the objective function that aims to minimize the AVaR of the random variables 

defined for the service response time and invocation cost. 

In their experiment, they have compared their risk-aware formulation of WSC in terms 

of the execution time and the cost of the resulted composite services with those of the 

deterministic formulation of the problem. According to their findings, for every 

deterministic composite service, there exists a risk-aware composition with smaller cost 

and execution time.  

3.6 Negotiation-based Approaches 

Negotiation is a process to reach an agreement that is beneficial to the involved parties 

through information exchange and compromises (Kim et al. 2003). Generally having 

different preferences over the negotiation issues, negotiating parties seek to reconcile 

these differences through negotiation.  

In computer science terminology, negotiation is defined as a distributed search through 

the space of potential agreements (Jennings et al. 2001). It has been used for many years 

to solve a variety of problems such as resource allocation in grid computing and getting 

agents to cooperate or compete over a common goal in multi-agent systems. In the context 

of computer science research, we should make it clear that what we mean by negotiation 

is an automated process where negotiation is performed automatically by a piece of 

software such as an agent, a web service, or a third-party broker system. The automated 

negotiator replaces the human negotiator and performs negotiation on the negotiator’s 

behalf. 

In the web service domain, negotiation is mainly employed for (semi-)automatic creation 

of Service Level Agreement (SLA), also known as contract, policy or license. In general 

terms, SLA is the agreement between service consumer and provider. In service oriented 
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infrastructure, SLA is an automatically processable contract between a service and its 

client, where the client can be an organization, a person, or another service (Ul Haq et al. 

2010). During SLA negotiation, service providers and requesters negotiate over SLA 

terms such as QoS attributes, rewards, penalties and deliverables to create a formal SLA 

at the end of the process (Zulkernine et al. 2009). The formal SLA is meant to satisfy both 

sides’ requirements.  

SLA negotiation solutions are divided by the assumption that the service provider is 

predetermined before the negotiation or not. The two corresponding approaches are called 

pre-contractual SLA negotiation and dynamic provider selection. Although the former 

type of negotiation does not aim at service selection, we briefly explain it here to make 

the distinction between the two cases of negotiation:  

 Pre-contractual SLA Negotiation (Grimm 2007)  

In this approach, the negotiation is performed after service selection, with a pre-

determined provider. The objective of this negotiation is to set the values for the 

service parameters in order to define the concrete service which will be carried out. 

This is a “one-to-one” negotiation process between service requester and the selected 

service provider. Proposals in this area include, but not limited to (Zulkernine and 

Martin 2011; Comuzzi and Pernici 2005; Gimpel et al. 2003).  

 Dynamic Provider Selection  

Here, negotiation is performed after service discovery and as a service selection 

mechanism, aiming at dynamically selecting the service provider that best matches 

the service requester’s non-functional requirements. This is a “one-to-many” 

negotiation process between the service requester and the candidate service providers. 

A successful negotiation output can be used for contract specification. 

Basically in the dynamic provider selection approach, a high-level negotiation process is 

conceptualized that negotiates for the business process. This high level process consists 

of multiple negotiation sub-processes, each associated with one task in the BP. Each 

negotiation sub-process in turn, may include multiple negotiation threads, one thread for 

each candidate provider, to choose the best service for the specific task.  
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In general, when building an automated negotiation solution, several key components 

comprising the general negotiation framework (Mueller 1996; Faratin et al. 1998) should 

be addressed. These critical components are: 

1. Negotiation Object: the set of issues that the parties negotiate to reach an 

agreement over their values,  

2. Negotiation Protocol: the communication and message exchange rules among 

negotiation parties,   

3. Decision-making Model: the rules that the interacting parties follow to decide 

when to start negotiation, how to prepare an offer, acceptable agreement 

range, and the time to abandon negotiation.  

However, the general negotiation framework does not provide all the required elements 

to design a negotiation solution for dynamic selection of service providers. Particularly, 

a further management layer is required to deal with the end-to-end QoS requirements and 

ensure an overall successful negotiation process. This management layer is referred to in 

the literature as coordination (Chhetri et al. 2006). 

In Fig 3.2, we present the WSC negotiation framework. This extends the general 

negotiation framework with an additional component, the coordination model, which 

includes the required aspects of coordination strategy and architecture as explained 

below: 

 Coordination Strategy involves decisions on: (1) Time to initiate negotiation 

processes for each task: All parallel? Sequential? With what priority? (2) The 

type of information to collect from ongoing negotiation processes and/or 

finished ones to improve the negotiation result, and (3) Actions to take for 

improving the negotiation result or prevent its failure, based on the collected 

information. 

 Coordination Architecture involves how many and what type of negotiators 

are involved in negotiation (agents, web services, broker systems), and the 

required number of coordination layers and their configuration. 
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Fig 3.2. WSC negotiation framework adapted from the general negotiation framework  

(Mueller 1996; Faratin et al. 1998)  

We discuss below the realizations of the key elements of the framework in the current 

literature. A summary of this discussion is included in Fig 3.3. 

3.6.1 Negotiation Object  

In service selection, the negotiation object is the set of QoS attributes that service 

requester and providers choose to negotiate over their values. In general, QoS attributes 

can be negotiable or non-negotiable. Negotiable attributes are those whose values can be 

determined at run-time, during service invocation (Comuzzi and Pernici 2009). The non-

negotiable attributes have pre-determined values that cannot be changed. For example, a 

domain-dependent attribute specifying the service encryption method may be considered 

non-negotiable by service requester and/or provider. 

For each negotiable attribute, service requester and provider each has a minimum and a 

maximum admissible value. Negotiation is performed over the range of admissible values 

for each attribute. Price, availability, and response time are the more commonly included 

terms in recent service selection experimental investigations (Zulkernine and Martin 

2011; Richter et al. 2012; Yan et al. 2006). 
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When the negotiation object includes more than one issue (or attribute), the negotiator 

needs to know the relative importance of each issue. This is usually realized through a 

normalized weight for each negotiation issue.  

3.6.2 Negotiation Protocol  

To discuss the negotiation protocol for composite service selection, we need to notice that 

the high level negotiation process for the composite service is only a conceptual 

illustration of the negotiation process. The actual negotiation that ultimately occurs is a 

bilateral negotiation between service requester’s representative for each task and the 

representative of the candidate provider.  

Some researchers have used a general bilateral protocol (Richter, Chhetri, et al. 2010; 

Ardagna and Pernici 2007; Comuzzi and Pernici 2005; Gimpel et al. 2003), also called 

the bilateral message exchange or bargaining. This general protocol consists of a series 

of message exchanges between the two parties in terms of offers and counter-offers, until 

one of them accepts an offer or withdraws from the negotiation due to reaching to a stop 

criterion such as the maximum negotiation time. 

Some researchers, including Zulkernine and Martin (2011); Yan et al. (2007); Chhetri et 

al. (2006), have followed a standard protocol such as FIPA Iterated Contract Net 

Interaction Protocol(ICN IP) (Foundation for Intelligent Physical Agents 2000). This 

protocol allows multi-round bidding, supporting one-to-many negotiation. Under this 

protocol, the negotiation initiator issues the initial call for proposals (CFP) (Foundation 

for Intelligent Physical Agents 2000). The other side of the negotiation (contractors) 

answers by sending an offer or by refusing to participate in the negotiation. The initiator 

may accept or reject an offer or reply with a revised CFP. The negotiation terminates 

when the initiator accepts one or more offers, or refuses all the bids without issuing a new 

bid, or if all the contractors refuse to bid.  

Some researchers have proposed generic negotiation protocols. The idea is not to bind 

the negotiation solution to a particular protocol at design time. Rather, delaying the 

determination of the suitable negotiation protocol until the actual execution of the 

negotiation process to make a flexible solution. For example, Hudert et al. (2009) have 

extended the WS-Agreement specification, originally being developed by Andrieux et al. 

(2007), to define a separate stage for protocol determination. During this stage, the 
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negotiation parties agree on a common negotiation protocol before the actual negotiation 

process starts. 

 

Fig 3.3. The realization of the WSC negotiation framework based on the current literature 

3.6.3 Decision Making Model  

The decision making model in a negotiation-based solution has to make decisions 

regarding two important aspects of negotiation: 

 How to evaluate a received proposal as to whether accept it or not (utility 

function), 

 How to prepare a counter-proposal (tactic/strategy). 

The first aspect is studied through the concept and theories related to the utility function 

of the negotiator, and the second aspect is covered by discussions related to a negotiator’s 

high level strategy and more specific, low level tactics. 

3.6.3.1 Utility Function 

To evaluate the received proposals, negotiators need to have clear understanding of their 

preferences about the negotiation object. These preferences guide their decisions during 

negotiation. In service selection, the dominant approach to express the preferences is 
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based on utility theory; the same approach that we already explained for optimization-

based service selection in section 3.5. 

Several researchers addressing SLA negotiation have used single attribute linear utility 

function to evaluate the value of an individual issue (Zulkernine and Martin 2011; Yan et 

al. 2007; Ardagna and Pernici 2007). This utility function is similar to the equation (3-1) 

mentioned before (subsection 3.5.1). In the negotiation context, 𝑞𝑗
𝑚𝑎𝑥 and 𝑞𝑗

𝑚𝑖𝑛 are 

defined as the maximum and minimum admissible values for j-th QoS attribute according 

to the negotiator’s preferences and constraints. The parametric single attribute utility 

function (Comuzzi and Pernici 2005), and multi-attribute utility function representing the 

relative preference with respect to each pair of attributes (Gimpel et al. 2003) have also 

been discussed in the literature.  

As a QoS profile typically involves more than one attribute, the negotiator needs to 

aggregate the preferences over all the attributes involved to make the decision regarding 

the acceptance or rejection of a received offer. The more commonly used technique to 

measure the utility of a profile with multiple attributes is to assign a normalized weight 

to the utility of each attribute and then calculate the overall utility using a weighted linear 

additive function; similar to the aforementioned equations (3-2) and (3-3). 

3.6.3.2 Negotiation Tactics 

To generate an offer during the negotiation process, two main approaches are discussed 

in the literature: concession and trade-off. The main difference between the two 

approaches is in the utility of the offer for the negotiator. 

A negotiator with the concession approach concedes to the other side of negotiation 

(opponent) while preparing every new offer. The concession is made by preparing an 

offer that has a lower utility value for the negotiator itself, and apparently, a higher utility 

value for the opponent. In order to make the concession, the negotiator needs to make 

decisions regarding: firstly, the pace of offering concessions throughout the negotiation 

process, and secondly, the amount of concession in each offer. The offer is then prepared 

with respect to the decided concession. 

Faratin et al. (1998; 2002) and Comuzzi et al. (Comuzzi et al. 2005; Comuzzi and Pernici 

2005) have proposed heuristic approaches to define the offer in bilateral negotiations. In 
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Faratin’s proposal, three families of tactics are presented to prepare a concessionary offer: 

time-dependent, resource-dependent, and behavior-dependent (or imitative). The 

concession made in each tactic depends on the tactic’s influential factor which is: the 

negotiation time, negotiator’s available recourses and the opponent’s behavior. Faratin’s 

heuristic functions (1998) are widely adopted by researchers, such as Zulkernine and 

Martin (2011); Richter et al. (2010); Ardagna and Pernici (2007), due to the clear 

distinction of tactic families (based on time, resource, and opponent behavior), the clear 

mathematical representation and the analysis of negotiation convergence for different 

parameters of the model.  

The tactics in Faratin’s proposal are based on the generalized influential factors for any 

bilateral negotiation context. However, negotiation for composite service selection has 

specific characteristics that can be used to introduce additional influential factors, and 

consequently, new tactics. For example, negotiating for a task in the composite service 

consists of multiple negotiation threads with different service providers for that task. 

Hence, the requester’s negotiator receives multiple offers at the same time. Considering 

this characteristic, (Jiuxin et al. 2010) has proposed a new influential factor called the 

Global Negotiation States factor. This factor can reduce the need for unnecessary 

negotiations in one-to-many negotiations. In this proposal, the received offers are 

compared to each other, and then, if all the offers are far from the negotiator’s offer, the 

negotiator should be ready to make some (big) concessions. Otherwise, if any offer is 

more desirable than the negotiator’s own offer, negotiator will raise its expectations and 

prepares the next offer based on the value of the best received offer. 

In contrast to the concession approach, a negotiator with the trade-off approach tries to 

keep its utility value stable at a desirable level (the aspiration level) throughout the 

negotiation, while generating an offer that has more utility value for the opponent. This 

can be achieved by trading-off between the values of different issues (Faratin et al. 2002), 

that is lowering the values of some QoS attributes while demanding more on some others. 

Such a strategy maximizes the chance of the offer being accepted.  

In the trade-off approach, as the negotiator usually has no information about the opponent 

preferences and utility function, the main challenge is how to determine which offer 

increases the opponent’s utility value. The trade-off strategy proposed by Faratin et al. 

(2002) uses the concept of “fuzzy similarity” (Zadeh 1971) to approximate the 
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preferences of the opponent. Assuming that the opponent’s last offer reflects its 

preferences, the negotiator uses it as a reference point and prepares a counter-offer that is 

most similar to it. In the Yan et al. (2007) proposal, the authors take advantage of the one-

to-many negotiations occurring for a composite service. The utility value of all the 

received offers is calculated, and the one with best utility is used as a reference point for 

preparing the counter-offer.  

3.6.3.3 Negotiation Strategy 

Negotiation strategy is another part of the decision model. Conceptualized at a higher 

level of abstraction than the negotiation tactics, it aims to maximize the utility function 

of the negotiator for a contract (Faratin et al. 1998), by determining when to use which 

tactic to prepare the offer, or what combination of tactics to use. More precisely, strategy 

can be thought of as the pattern of change in the weight of different tactics over time 

(Zulkernine et al. 2009). Taking it one step further, Di Nitto et al. (2007) states that 

strategy is not just about how to weight different tactics over time, but it can also address 

the following factors:  

 Changing the importance of negotiation issues over time, such as preferring 

availability over the response time if the latter cannot be improved so far, 

 Changing the severity of the constraint, such as relaxing some constraints on the 

values of some negotiation issues to reflect more concession when the negotiation 

time is about to expire. 

Deciding on the best strategy for a negotiator involves the challenges addressed mostly 

in game-theory, microeconomics, and multi-agent systems and has not been the focus of 

composite service selection community. 

3.6.4 Coordination Model  

To avoid the complexity of dependent negotiation processes, researchers including 

Richter et al. (2011); Jiuxin et al. (2010); Yan et al. (2007), have assumed that the multiple 

negotiations are independent and concurrent. For the same reason (avoiding complexity), 

no information is collected during an ongoing negotiation process to improve the result 

of another negotiation process.  
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As proposed by Yan et al. (2007), the coordinator takes part only at the end of the process 

to either confirm or reject the negotiation result. Extending (Yan et al. 2007), Richter et 

al. (2012; 2010) attempted to make the coordinator more actively involved in negotiation. 

Thus, the coordinator does not wait for all the negotiation processes to finish. Rather, 

when a negotiation process finishes successfully, the surplus of the negotiation issue is 

calculated. Surplus is the difference between the actual agreed value and the least desired 

value (that is maximum payable price from the service requester point of view) of the 

negotiation attribute. Subsequently, it is distributed over failed or unfinished negotiation 

processes of those tasks which are dependent to the task producing the surplus. The 

dependency is determined based on the QoS attribute under negotiation, and the task’s 

position in the process, and is maintained in a tree-format. However, redistributing 

surplus may prevent the failure of the negotiation process when service requester has 

severe QoS requirements. It is not helpful in situations where negotiation fails due to the 

limited negotiation time of either side of negotiation. 

3.7 Hybrid Approaches 

There are service selection approaches which are not based on pure optimization or 

negotiation. In this section, we summarize two of the more important contributions. 

3.7.1 Optimization + Configuration Approach   

One attempt to proceed from a totally predetermined QoS profile to a more flexible one 

is the work by Comuzzi and Pernici (2009). In their approach, rather than providing a 

single value for each QoS attribute, the service provider publishes the set of values that 

they can offer for each QoS attribute. For example, a provider offering a Traffic 

Monitoring Service can publish the offered quality for the two QoS attributes of 

𝑄𝑟𝑒𝑓𝑟𝑒𝑠ℎ 𝑡𝑖𝑚𝑒 and 𝑄𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 this way: 

𝑄𝑟𝑒𝑓𝑟𝑒𝑠ℎ 𝑡𝑖𝑚𝑒 = {2ℎ, 1.5ℎ, 1ℎ, 0.5ℎ}  , 𝑄𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 = {[2𝑠, 3𝑠), [1𝑠, 2𝑠)} 

 

This means that 𝑄𝑟𝑒𝑓𝑟𝑒𝑠ℎ 𝑡𝑖𝑚𝑒 (the time interval between the updates of the traffic 

information) can be offered with any of the intervals of 0.5, 1, 1.5 or 2 hours, and the 

service execution time, 𝑄𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒, can be preserved within any of the two specified 

intervals.  
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Additionally, instead of assuming a single value for the service price, they have proposed 

a pricing model. In this model, the provider publishes a set of pricing functions for the 

service’s QoS attributes. Each attribute’s pricing function determines how much it will 

cost for the service requester to select a specific level of quality. The web service total 

price is calculated as the sum of its constituting pricing functions.  

The proposed service selection technique is based on local optimization, minimizing the 

price for requester. For each task, the web service with the lowest price for the minimum 

quality profile is selected. Minimum quality profile consists of the lowest level of quality 

for each QoS attribute which still satisfies service requester’s quality demand. When 

service selection is completed, a subsequent agreement configuration step is performed. 

During this step, the difference between the price of the low quality profile of the selected 

service and the service requester’s budget is used to improve upon the offered service 

quality for requester. 

In this research, the assumption about the QoS profile of a service is different from the 

optimization-based approaches in that they do not assume predetermined QoS profile for 

neither the service offer nor the service request. Instead, the service provider is able to 

publish the quality profile in the form of different quality levels that they support. Besides, 

a higher level of flexibility is supported for the service price offering with the proposed 

pricing model. Thus, service requester can receive a personally-configured service, based 

on their preferences and constraints.  

However, the flexibility of the QoS profile in negotiation-based approach does not exist 

here, as no negotiation (exchanging of offers and counter-offers) is actually taking place 

between the two sides. Rather, a configuration process tailors the service quality based 

on the requester’s preferences and budget.  

3.7.2 Optimization + Negotiation Approach  

The research by Ardagna and Pernici (2007) is another attempt to relax the assumption 

about a fully pre-determined QoS profile to a more flexible one, by combining 

optimization with negotiation. In their proposal, service selection starts as a mixed integer 

linear programming (MILP) optimization problem. If the optimization process fails to 

find a feasible solution, due to sever QoS constraints for example, a negotiation process 

will initiate.  
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At the beginning of the negotiation process, the execution plan that satisfies the maximum 

number of constraints is identified. Then, negotiation starts with any service provider that 

contributes to violating the global constraints of this execution plan. After the negotiation 

is completed, the providers who have agreed to improve their offered quality of service, 

in return for a higher price, will be added to the optimization space. In other words, 

negotiation is used to find new QoS attribute values for web service invocations by 

expanding the optimization solution domain. As the last step of service selection, 

optimization is repeated with the new solution pool.  

As they have mentioned in their work, identifying the maximum number of constraints 

that can be satisfied is an NP-hard problem. Thus, they have assumed the global 

constraints are limited which allows to find the maximum number of violated constraints 

through an exhaustive search. Comparing their approach with pure negotiation-based 

approaches, coordination is not required here (Fig 3.4). In fact, provider selection is 

performed through optimization, and not negotiation. However, in contrast to 

optimization-based approaches, the providers have a chance to improve their offered 

quality if their existing offers do not satisfy the service requester’s requirements. 

 

Fig 3.4. Different perspectives on applying negotiation for service selection during WSC 

3.8 Auction-based Approaches 

More recently, a third approach based on dynamic market mechanisms such as auction 

models has emerged for the composite service selection problem. Unlike the previous two 

approaches, there is a limited research on auction-based approaches for composite service 

selection, especially in terms of concrete experiments for evaluating the proposals. 

In this section, we first introduce the auction models applied in the current literature for 

composite service selection. Then, the research in this area is studied based on the design 
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elements of an auction: the bidding language, the allocation rule and the pricing scheme. 

A summary of the analysis is provided at the end of this section, in Table 3.1. 

3.8.1 Auction Models 

The proposed auction models can be studied based on the following attributes: 

1. Being direct auction or a reverse auction, 

2. Being combinatorial or non-combinatorial, 

3. Being a single-shot or an iterative auction,  

4. Auction for a single composite service request or multiple ones. 

3.8.1.1 Direct / Reverse Auction Model 

Many of the researchers have modelled service selection as a reverse auction 

(Esmaeilsabzali and Larson 2005; Mohabey et al. 2007a; Mohabey et al. 2007b; 

Prashanth and Narahari 2008; Blau et al. 2010; Watanabe et al. 2012; He et al. 2014). In 

this approach, service requester or an independent third-party take the role of the 

auctioneer and service providers bid to sell their services.  

Contrary to this trend is the direct auction model proposed in Lamparter (2007). In this 

auction model, service providers offer their services in bundles. Service requesters can 

bid to buy these bundles. For each bundle, the requester with the highest bid wins the 

bundle.  

The general problem with modelling composite service selection as a direct auction is 

that a requester who needs multiple services to create a composite service may have to 

attend multiple auctions to win all the required services. To have a fully operational 

composite service, the requester needs to win all the related bundles. With no guarantee 

for winning all the bundles, the requester might end up winning some services and losing 

some others. Such situation may incur undesirable cost for the requester. 

However, the direct auction model proposed by Lamparter does not have this problem. 

As the auction is modelled as a combinatorial auction, a composite service requester can 

prepare a bid for a bundle of services to make sure that they will win the auction only if 

they get all the required services.  
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As this study is the first to consider service selection for multiple composite service 

requests, we will discuss it in more details in subsection 3.8.1.4 (A Single Request / 

Multiple Requests).  

3.8.1.2 Combinatorial / Non-combinatorial Auction Model 

A number of researchers have chosen to model the composite service selection problem 

based on non-combinatorial auctions, such as (Esmaeilsabzali and Larson 2005; Blau et 

al. 2010; Watanabe et al. 2012). In this model, a provider can only bid to offer a single 

service. We have already discussed the implications of such an assumption in 

subsection 3.3 (Dependencies between Constituent Web Services of a Composition). 

Combinatorial auction model has been a popular approach among many researchers from 

different disciplines. As already discussed in subsection 2.3.3, combinatorial auctions 

offer many advantages such as increased economic efficiency, increased revenue or in 

case of a reverse auction, cost savings (Cramton et al. 2006), time efficiency and 

impacting the market structure (Bichler et al. 2006). At the same time, the 

complementarity effects that exist between the tasks of a composite service and the 

dependencies between web services forming a composition have been a major motivation 

for researchers to consider combinatorial auction models for service selection. Examples 

include: (Mohabey et al. 2007a; Mohabey et al. 2007b; Lamparter 2007; Prashanth and 

Narahari 2008; He et al. 2014).   

As mentioned in Blau et al. (2010), the main problem with combinatorial auction is the 

complexity of the winner determination problem. Combinatorial auctions are proved to 

be NP-complete (Sandholm 2002) and therefore a solution based on these auction models 

is not scalable to settings with large numbers of bidders and services involved. Therefore, 

one of the concerns in this area is to evaluate the proposed model in terms of scalability. 

3.8.1.3 One-shot / Iterative Auction 

Some researchers have modelled the auction for composite service selection as a one-shot 

auction: the bidders submit the offers and the auctioneer determines the winners based on 

submitted bids. However, some researchers such as Watanabe et al. (2012) and He et al. 

(2014) have chosen more complex auction models. 
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The proposed non-combinatorial auction model in Watanabe et al. (2012) has two steps. 

In the first step, for each task in the composite service, the first few providers (number is 

varied in the experiment) with the best quality maximizing offers are selected (quality 

includes the price). So far, this approach is similar to the local optimization discussed in 

subsection 3.5.1. However, in order to address the limitation of local optimization 

approaches in not being able to support the end-to-end quality constraints for composite 

services, a second step is proposed. In this step, the global quality constraints are 

investigated and if violated by the current offers, the providers will be asked to improve 

their quality while allowing them to have a trade-off tactic. As discussed in 

subsection 3.6.3.2, a trade-off tactic allows the participants to improve on some quality 

attributes while decreasing the desirability of some others. The proposed solution does 

not guarantee to find the optimal (quality maximizing) utility for the composite service. 

However, the end-to-end quality constraints are satisfied in the second step if negotiation 

with providers is successful. 

An iterative combinatorial auction model is proposed in He et al. (2014) to solve the 

service selection problem. A number of stop criteria has been defined and if none of the 

criterion is met at the end of a round of bid submission, the auction proceeds to the next 

round. One such stop criteria is the quality requirements of the service requester being 

satisfied by the available service offers. If there is no set of bids to fulfil the quality 

requirements, the auctioneer sends an Ask-QoS to more competitive providers and asks 

them to improve their quality and price offers. Application of iterative auctions for 

composite web service selection implies that service providers are willing to spend 

enough time attending multiple rounds of auction for the same composite service. This 

approach may not lead to profitable trades for service providers, for all types of composite 

service requests, for example composite services which prices are not expected to be high. 

We will discuss the limitation of the application of iterative auctions for web service 

selection in more detail in subsection 4.3.1.2. 

3.8.1.4 A Single Request / Multiple Requests  

Most of the research in this area aims to solve the service selection for one composite 

service, including (Esmaeilsabzali and Larson 2005; Mohabey et al. 2007a; Mohabey et 

al. 2007b; Prashanth and Narahari 2008; Blau et al. 2010; Watanabe et al. 2012; He et al. 

2014).  
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Papazoglou (2003) is one of the first to discuss the presence of multiple composite 

services in the web services marketplaces. He states that the purpose of these markets is 

to create the opportunity for service requesters and providers to meet and conduct 

business as well as fostering the possibility of offering value-added services such as 

aggregation of the web service supply/demand.  

Other researchers have studied the web services markets from a variety of aspects. For 

example, if they need to be open (Papazoglou 2003) or established privately (Petrie and 

Bussler 2008); be centralized or decentralized (Yarom et al. 2004); their fundamental 

structure and players (Geng et al. 2003; Legner 2009; Weinhardt et al. 2011b) and the 

best strategies of the players (Tang 2004; Gunther et al. 2007); trust establishment (Brehm 

and Golinska 2009); and the semantic aspect of web services in such marketplaces 

(Lamparter 2007; Schulte 2010). In these literatures, all researchers agree on composite 

services being an essential offering in the web services’ markets. However, composite 

services are considered as already-existing entities that can be traded in the market along 

single web services. Very limited research exists on how these markets can facilitate the 

different aspect of creating value-added composite services, including composite service 

selection or the price determination of a composite service.  

Tang (2004) is one of the first to consider the impact of multiple requests for composite 

service selection. Taking the service provider’s perspective, this study investigates the 

optimal strategies for offering web services, taking into account the integration cost. Tang 

has analyzed a setting where two service vendors sell two distinct but functionally 

complementary services to different groups of potential buyers. Based on the performed 

analysis, service providers benefit from offering composite services, either through 

forming strategic alliance with other providers or selling composite services in a 

marketplace. With the main focus being on providers’ best strategies in offering 

functionally complementary services, there is no discussion of specific auction models 

for allocating services to requesters.  

In a more recent study, Lamparter (2007) studied the use of semantic technologies to 

automate contracting in a market for web services. This study includes a conceptual 

market model to match web service offers to multiple composite service requests. In this 

direct auction, the service providers offer their services in bundles and service requesters 
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bid to buy these bundles. However, the proposed model has limitations in addressing the 

composite service selection problem.  

Firstly, it is assumed that the composite service requester is limited to have only one 

winning bundle. This means that the service requester should only bid for the bundles that 

include all the services required to create the composite service. In other words, the 

bundle is not dividable. With such an assumption, the requests for complex composite 

services are not very likely to find service bundles which include all the required services.  

The second problem is that even if this constraint, requester having one winning bid, is 

relaxed to allow requesters have multiple winning bids, the service requester faces a 

challenging problem in bid preparation: they need to decide how to divide the required 

composition with respect to existing offered bundles so that they can optimally achieve 

their quality and price requirements. 

To reduce the bid preparation complexity for service requesters, it is possible to design a 

different auction model that instead of the requester checking how to prepare the bids, the 

auction-based model finds the optimal bundles based on the requester’s requirements. 

However, extra constraints are required to be added to the matching algorithm to make 

sure that: (1) the combination of the bundles includes all the required services for the 

composition, and (2) the requester will not be assigned more services than they require. 

Thirdly, the model aims at solving the composite service selection problem for all the 

requests simultaneously. This means even with one request being unsuccessful in finding 

all its constituent services, the whole auction will fail; that is, no other requests would be 

assigned any services. The success rate of such a model in allocating services to requests 

is likely to be low, especially if the requests are for complex composite services.  

Finally, no evaluation has been done on the performance of the proposed model. 

Therefore, it is not possible to have estimates about the success rate of the auction-based 

model, the final cost of the composite services or the time required by the model to find 

service allocation for composite requests.  

To the best of our knowledge, our study is the first to consider the impact of presence of 

multiple requests on the composite service selection approach, while addressing the 

limitations discussed before, and perform a thorough evaluation of the performance of 

the different possible service selection approaches in such a setting.  
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3.8.2 Bidding Language 

The existing literature has mainly chosen a multi-dimensional bidding language where 

bidders can include other aspects of the item in addition to the price. Considering the fact 

that web services are specified not just by the performed functionality, but also by their 

non-functional or quality attributes, one important dimension to include is the set of 

values for the quality of the service attributes.  

Lamparter (2007) has proposed a bidding language that includes the quality of service 

and price. However instead of including an explicit price, the bid includes a pricing 

function that maps the quality of service to a monetary value for that service. Each bid 

contains a configuration set and a pricing policy: {𝐶, 𝑈(𝑐𝑖)} where each configuration, 

𝑐𝑖 ∈ 𝐶, includes a set of values for the quality attributes. The pricing policy maps the 

configuration to a real number which is the price to be paid (to be requested) for that 

configuration.12 For bundled services, the price of the bundle is calculated as the sum of 

the prices of the bundled services. This is very similar to the hybrid approach proposed 

by (Comuzzi and Pernici 2009). 

There are some studies which have focused on other aspects of web services rather than 

the quality of service. For example, Prashanth & Narahari (2008) have proposed a 

combinatorial auction model for the setting that requesters are interested in procuring 

multiple instances of the composition. The proposed bidding language is multi-unit where 

service providers submit bids in the form of a discount curve (Fig 3.5). The discount curve 

specifies the provider’s volume discount based on the number of procured executions of 

the bundle. To achieve a polynomial time allocation rule, there are restrictions over the 

structure of the composite service (either sequential or tree-like structure) and the possible 

combinations for bundling services (sequential or a path in the tree structure). 

                                                 

12 In their study, both web service offers and requests are called bids in general. However, the formulation 

of the service selection problem only takes into account the service requests. Therefore, the model is 

equivalent to a direct auction model where service providers sell their services and service requesters bid 

to buy the services. 
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Fig 3.5. An example bid in the form of volume discount curve 

In this regard, another example is the work by Mohabey et al. (2007b). They have 

considered the interface of the web services (input and output) to be included in the bids 

in addition to the quality of service. They have added an additional allocation constraint 

to check the interface matching of sequential services.  

As discussed in subsection 2.4.2.1, when specifying the bidding language, it should be 

also clear what combination of bids bidders can have, that is, the choice of OR, XOR or 

OR*. Most researchers did not include any specific discussion regarding this aspect. This 

implies that a bidder can have as many bids as they want, and have as many winning bids 

as possible.  

This setting, at first, seems to be according to the OR language. However, most 

formulations of the problem have included a constraint to limit the number of winning 

services for each task in the business process to be exactly one. This constraint helps the 

bidders to have the expressivity of the XOR language by adding dummy items to the bids 

they want to XOR. This makes the bidding language according OR*, which is as simple 

as the OR combination, yet more expressive. 

An exception to the unlimited winning bids for providers is the bidding language applied 

in He et al. (2014). They have used XOR to combine the bids of the same provider to 

restrict them to have one winning bid only. As their proposed mechanism is based on 

iterative auctions, the choice of XOR for combining bids simplifies the information 

feedback problem for the auctioneer at the end of each auction round. 
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3.8.3 Allocation Rules 

As discussed in subsection 2.4.2.2, the allocation rule has two main components: the 

objective function and the set of allocation constraints. In the current literature on auction-

based approaches for composite service selection, there are two dominant formulations 

of the objective function:  

1) Utility maximization:  

This formulation includes all quality attributes and the price in the objective 

function. The aim is to maximize the utility (of the composite service execution) 

for the requester as in proposals by (Esmaeilsabzali and Larson 2005; Mohabey 

et al. 2007a; Watanabe et al. 2012) or maximize the utility across all participants 

including the requester and providers, as in the proposal by Blau et al. (2010).  

2) Cost minimization (profit maximization):  

This approach formulates the objective function only based on the price. Some 

proposals aim to minimize the cost for requester, such as works by Mohabey et 

al. (2007b), while some others maximize the profit for providers (more 

specifically, the willingness-to-pay of the service requesters) such as the proposal 

by Lamparter (2007).  

The proposals following the first formulation mostly specify an objective function similar 

to the ILP-based global optimization approaches: maximizing the sum of the utilities of 

the end-to-end quality attributes (including the price) while taking into account the 

importance of each quality attribute for the requester through assigning a weight to the 

attributes, as discussed in subsection 3.5.2.  

There are exceptions to this approach, such as the works by Watanabe et al. (2012) and 

Blau et al. (2010). Watanabe et al. (2012) has proposed a two-step approach. At the first 

step, a set of quality maximizing providers are selected for each task. As this selection is 

performed locally for each task, the second step aims to check and resolve the potential 

end-to-end quality constraint violations, through a round of negotiation with the set of 

selected service providers.  
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Blau et al. (2010) has proposed an objective function that maximizes the utility across all 

participants, bidders and the bid-taker. The objective function is defined as: 

𝑎𝑟𝑔𝑚𝑎𝑥𝑓∈𝐹 (𝛼. 𝜑(𝒜𝑓) − 𝒫𝑓) 

where 𝑓 ∈ 𝐹 is the set of services to be selected for a composite service request; 𝒜𝑓 is 

the aggregated quality profile of the set of services 𝑓 that includes all quality attributes 

except for price; 𝜑 is a function that maps quality profile of 𝑓 to a score; 𝛼 is the 

requester’s maximum willingness to pay for the composite service; and 𝒫𝑓 is the total 

price asked for the set of services in 𝑓.   

To be selected, the set 𝑓 needs to maximize the difference between the price the requester 

is willing to pay for a composite service based on its quality profile and the price asked 

by providers to provision the composite service. The proposed objective function is 

different from other proposals in two aspects: 

1. The objective function considers both sides; maximizes the willingness to pay 

of the requester for providers and minimizes the procurement cost for the 

requester;  

2. The utility function is Simple Additive with respect to all quality attributes, 

except for price. This gives a score for the quality profile of the set of services 

which is multiplied by the requester’s maximum willing to pay.  

As discussed in subsection 3.3, the main challenge for the utility maximizing formulation 

is elicitation of the weights for different quality attributes from the service requester. To 

address this problem, some researchers have formulated the objective function only based 

on price.  

The price-based formulation excludes the need to specify the weights for quality 

attributes, and at the same time, provides enough support for service requester to specify 

their end-to-end quality requirements through adding extra constraints to the allocation 

rule. The price-based formulation assumes that service requesters generally have a clear 

understanding of what level of quality is acceptable for them, for example what should 

be the maximum response time of the composite service or its minimum availability. This 

assumption is less restrictive than the assumption about the weights for quality attributes, 

especially when more than two or three quality attributes are involved.  
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Nevertheless, each formulation is suitable for a different group of service requesters. If a 

requester is interested in maximizing the quality of the requested service and they have 

clear understanding of the trade-off between quality attributes, the utility maximization 

formulation can be adopted. Whereas if the requester’s main concern is the cost of the 

procurement or they do not have specific preferences toward the priority of different 

quality attributes, the cost minimization formulation is suggested. Adopting such a 

perspective, He et al. (2014) has discussed both formulations, although the experiments 

only cover the utility maximization formulation. 

As the set of allocation constraints to be included in the auction’s set of allocation rules, 

researchers have generally considered the requester’s constraints regarding the end-to-

end quality of the composite service; for example constraints over the response time, 

availability or budget of the composition.  

In addition to this set, Mohabey et al. (2007b) has proposed a constraint over the interface 

of the sequential services in a composition to ensure interface matching. However, their 

model assumes that providers have specified the interface of each service (with all its 

complexity regarding the data structures) by a global identifier which allows the model 

to match the interfaces against one another. There is no discussion on if such an 

assumption can be supported by the existing web service specification standards such as 

WSDL. 

3.8.4 Payment Rule 

The question of specific payment rule has not been considered in most of the auction-

based proposals for service selection. This is mainly due to the fact that mechanism 

designers in general and auction designers in particular design the payment rule to achieve 

specific properties in the auction model, such as incentive compatibility or allocative 

efficiency, as discussed in section 2.4 (Mechanism Design).  

Mainly focusing on the application of auctions to solve the composite service selection 

problem as a resource allocation problem, researchers have mostly not addressed the 

mechanism design perspectives; neither to design an auction with specific properties, nor 

a post-design analysis of the properties of the proposed auction models. 
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Moreover, composite web service selection is known to be a very complex problem. This 

complexity makes the analysis of the incentives of service requesters and providers far 

from being trivial, especially if the problem is modelled as a combinatorial auction. The 

existing well-known incentive-compatible mechanisms are not directly applicable to this 

problem. We will discuss this issue in more details in subsection 7.2.2 (Economic 

Efficiency and Incentive Compatibility).       

Two of the researchers who have adopted the mechanism design perspective in designing 

their auction models are Blau et al. (2010) and Watanabe et al. (2012). Both proposals are 

based on non-combinatorial auction models.  

The payment rule proposed in Blau et al. (2010) is an extension of the VCG payment and 

it is said to be incentive-compatible for providers across all aspect of their bids (price and 

quality). However, the proposed formulation of the objective function includes elements 

from the providers’ bids as well as the composite service request. This means that a 

requester can increase their utility by strategically changing their request, either in terms 

of their declared willingness to pay (monetary) or the scoring function for the composite 

service quality profile. In other words, the mechanism is not incentive-compatible for 

requesters.  

The Vickrey auction proposed by Watanabe et al. (2012) uses an extension of the Vickrey 

payment: the provider with the best quality wins the auction, but only offers the quality 

level of the second best offer. As the authors have already discussed in the paper, 

extending the original Vickrey auction where the bidders only bid for the price, to a multi-

attribute auction does not necessarily holds the truthful property of the original 

mechanism. The abstract discussion included in the paper on the incentive-compatibility 

of the proposed mechanism is based on unclear assumptions and lacks theoretical 

foundations.   

In general, when no specific payment rule is discussed, we can assume that the payment 

rule is the same as the first-price auction model where the bidder with the highest bid 

wins the auction and pays the price they have mentioned in their bids (Parsons et al. 2011). 
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Table 3.1. Auction-based service selection approaches 

Research Auction Model Bidding Language Allocation Rule 
Payment 

Rule 

(Tang 2004) 

No specific auction 

model; analyzing 

service providers’ 

best strategies 

- - - 

(Esmaeilsabzali 

and Larson 

2005) 

Reverse; 

Non-combinatorial 
Multi-dimensional 

maximize quality 

subject to budget 

constraints 

- 

(Lamparter 

and Bjorn 

Schnizler 2006) 

Conceptual 

architecture 
- - - 

(Mohabey et al. 

2007a) 

Reverse; 

Combinatorial 
Multi-dimensional 

maximize quality 

(no price),  

subject to budget 

constraints 

- 

(Mohabey et al. 

2007b) 

Reverse; 

Combinatorial 

Multi-dimensional 

(quality and 

interface) 

minimize cost, 

subject to quality 

and interface 

matching 

constraints 

- 

(Lamparter 

2007) 

Direct; 

Combinatorial 

Multi-dimensional 

(quality and pricing 

function) 

maximize profit 

for providers 
- 

(Vilenica et al. 

2011) 

Conceptual 

framework 
- - - 

(Prashanth and 

Narahari 2008) 

Reverse; 

Combinatorial 

Multi-unit, 

QoS not considered 

minimize cost for 

k execution of the 

composite service 

- 

(Blau et al. 

2010) 

Double;  

Non-combinatorial 

Multi-dimensional 

 

maximize utility 

across all 

participants 

An extension 

of VCG 

payment 

(Vilenica et al. 

2011) 

Conceptual 

framework 
- - - 

(Watanabe et 

al. 2012) 

Reverse;  

Non-combinatorial; 

followed by a 

round of QoS 

adjustment 

Multi-dimensional 

 

maximize utility 

locally, followed 

by a global 

constraint 

resolution phase 

Extension of 

Vickrey 

payment 

(He et al. 2014) 

Multi-round; 

Reverse; 

Combinatorial 

Multi-dimensional, 

XOR combination 

maximize quality 

subject to budget 

constraints; or 

minimize cost 

subject to quality 

constraints 

- 
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3.9 Conclusion and Discussion 

In this chapter, we presented an extensive review on the current approaches for composite 

service selection: optimization-based, negotiation-based and auction-based. The service 

selection approaches are categorized based on their assumptions about two aspects of the 

quality profile of the web services: dynamicity of the profile and the complexity involved 

in quality determination.  

Optimization-based approaches are limited by the assumption of the web service offers 

quality and price to be pre-determined. One implication of this assumption is that the 

complexity of the price determination is completely left to service providers. Such a 

pricing strategy may not be profitable for service providers considering the specific 

characteristics of web services and their execution environment. Negotiation-based 

approaches are an improvement over the completely pre-determined profile assumption 

in optimization-based approaches. However, to avoid the complexity of an automated 

negotiation process, these approaches are based on simplifying assumptions about the 

strategy space of the automated negotiators of service providers and requesters. This 

makes the application of these approaches somewhat unrealistic, at least for the near 

future. 

Auction-based approaches are based on theories and models adopted from economics and 

auction theory. Application of auction models facilitates the price determination for 

service providers and composite service requesters through providing feedback to the 

auction participants. Moreover, combinatorial auctions allow the service providers and 

requesters to express their preferences for bundle of services more fully by allowing them 

bid for a combination of services. This is specifically important for composite service 

selection as the web services constituent a composite service are dependent on each other 

based on a number of factors. These dependencies create complementarity effects among 

these services, which in turn, affects the service providers and requesters preferences for 

bundles of services. 

Some important issues have not been adequately addressed in the current literature of 

composite service selection. Firstly, the impact of bundling (more specifically the bundle 

size) on the cost of composite services is not studied in the current literature. Secondly, 

while many of the current approaches have considered the requester’s need to specify 
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end-to-end quality constraints for quality attributes such as response time, availability and 

budget, important requirements regarding the dependability of the composite service to 

the service providers has not been addressed. Finally, the impact of the presence of 

multiple requests on the composite service selection approach has not been studied in the 

literature. This is an important issue to consider in composite service selection, especially 

in the context of the design and maintenance of web services marketplaces where service 

providers and requesters attend the market to trade single and composite services.  
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Chapter 4 

4 Theory and Methodology  

4.1 Introduction 

In this chapter, we discuss the theoretical foundations of our research and the research 

methodology that we developed to conduct our study. First in section 4.2, we discuss the 

four pillars of our research: the web service technology, auction theory, mechanism 

design and mathematical optimization.  

Then in section 4.3, we introduce the research methodology that we followed to conduct 

our research. This methodology consists of three steps: (1) designing an auction-based 

approach to composite service selection problem, (2) develop a model of the proposed 

auction-based approach, and (3) perform evaluation on the proposed approach.  

4.2 Theoretical Foundations 

Resource allocation in modern distributed computing paradigms such as grid computing, 

pervasive computing and, more recently, cloud computing is characterized by its 

complexity and the inadequacy of classical approaches in handling these paradigms. The 

complexity arises from two factors: the large number of users, applications and machines 

involved, and the heterogeneity of these entities (Ferguson et al. 1996). 

The complications of resource allocation in these environments have led researchers to 

look for new methods based on economic models. This direction comes from the fact that 

these models have already proven to be successful allocation mechanisms in human 

economies, the complexity of which exceeds that of any computing environment.  
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In this regard, auction theory is the leading approach into which researchers have delved 

to solve a variety of problems in computing. It has been employed in areas such as packet 

routing, load balancing, data replication and migration, and coordination of robot 

navigation. More recently, leading companies have used auction models to improve their 

services. For instance, Amazon has used auctions to allocate resources in the cloud 

(Amazon 2014), and Google and Yahoo assign advertising spaces based on auctions over 

search keywords (Varian 2007).  

The use of auction-based mechanisms to solve complex computing problems has been 

elevated by the recent advancements in the field of mechanism design. Being a sub-field 

of microeconomics and game theory, the mechanism design focus is on solving problems 

which involve multiple, rational, self-interested participants with private information 

about their preferences. The objective of mechanism design is to “design” a mechanism 

to achieve a “given” outcome. The basic question in mechanism design is how to design 

an economic system so that the selfish behavior of the participants leads to desirable 

properties such as efficiency, optimality and individual rationality. These properties were 

discussed in subsection 2.4.1 (Auction Properties). 

With the help of the theoretical accomplishments in this area about what is possible and 

what is not possible to achieve in an auction, auction designers can more systematically 

analyze and predict the behavior of participants. Subsequent to the analysis, it is possible 

to design auctions with appropriate incentives for participants to behave in a certain way, 

so that the auction achieves its designated desirable properties.   

Viewing composite service selection as a resource allocation problem, in this thesis we 

investigate the use of auction theory to solve this problem. Our work addresses the 

complex issues in composite service selection by combining and extending theories and 

technologies from various fields of research in a novel way. The present study is at the 

intersection of web service technology, auction theory, mechanism design and 

mathematical optimization: 

4.2.1 Web Service Technology  

Web services have emerged as the potential silver bullet to realize the service-oriented 

computing architecture (Oh et al. 2008). The specific characteristics of web services, in 

terms of their interface and communication technology, have led researchers to the 
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interesting idea of composing them together to build more complex composite services, 

a process known as web service composition (WSC). An essential stage in WSC is the 

service selection. The objective is to choose the set of web services that can collectively 

deliver the required composite service, and satisfy the service requester’s preferences and 

constraints the most.  

This thesis studies composite web service selection, focusing on important issues which 

are yet to receive the attention of the research community, namely, the dependencies that 

exist between web services that form a composition, the need to more dynamic price 

determination strategies for web services and the presence of multiple, simultaneous, 

requests for composite services.  

4.2.2 Auction Theory 

Auction theory is an applied branch of economics that studies the behavior of an auction’s 

participants who are aiming to buy or sell some products or services. Auctions have been 

proven to be efficient mechanisms for allocating products and services in complex 

everyday settings. The complexity involved in the modern distributed systems has led 

researchers to employ auction theory to solve a variety of resource allocation problems in 

these environments. 

We have explored the application of auctions to solve the composite service selection 

problem. The dynamic pricing strategy in auctions is a response to the challenge of price 

determination for web services. We have modelled composite service selection as a 

combinatorial procurement auction where the service requester is the auctioneer (or, more 

precisely, bid-taker) and service providers are the bidders. They place their bids to offer 

their services for composite services. The combinatorial aspect of the auction allows 

service providers and requesters to explore and exploit the dependencies between 

constituent web services to meet their preferences and interests.  

4.2.3 Mechanism Design 

As a sub-field of economics and game theory, mechanism design studies the problems 

with multiple self-interested participants. The objective is to design a mechanism that can 

achieve the desirable properties decided by the mechanism designer, despite the selfish 

behavior of the participants. 
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Mechanism design provides researchers with the theoretical analysis of bidders’ 

behaviors and their incentives. Firstly, such analysis helps in understanding what is 

possible to achieve in an auction and what is not possible. Secondly, it gives insight into 

the required incentives for mechanism participants to behave in a certain way. Altogether, 

the mechanism designer will be able to design a mechanism that can achieve its desirable 

properties through installing the right incentives. The theoretical analysis offered by 

mechanism design is specifically valuable for researchers whose expertise resides outside 

microeconomics, who are interested in applying economic models in their problem 

domain. 

In this thesis, we have studied the composite service selection problem through the lens 

of mechanism design. Initially, we identified the specific requirements of this problem to 

an auction-based solution. These requirements differentiate the auction for composite 

service selection from existing auction models in other domains. Based on these 

requirements, we have designed auction models that solve the composite service selection 

problem and its extension, that is, the multiple composite service selection problem. We 

have applied mechanism design to analyze our proposed auctions in terms of their 

achievable set of desirable properties as well as what is not possible to achieve.  

In this regard, we will discuss achievable and desirable properties of the proposed auction 

models in subsection 4.3.1.3 (Payment Rules). The limitations of the proposed models in 

terms of the desirable properties are discussed in section 7.2.2 (Economic Efficiency and 

Incentive Compatibility). 

4.2.4 Mathematical Optimization  

We have mapped our proposed auction-based mechanism for composite service selection 

to an integer linear programing (ILP) optimization problem. In the ILP problem, the 

objective is defined based on the problem domain requirements to minimize the cost of 

composite service provisioning. The ILP formulation allows us to incorporate allocation 

constraints and the requester’s preferences into the optimization problem as search 

constraints. Moreover, many commercial and open source ILP optimization software 

packages are available that can solve very complex ILP problems efficiently. 
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We used a commercial solver application, known as CPLEX13. CPLEX, the same as any 

other solver, requires two inputs to perform the search for an optimal solution of an 

optimization problem: (1) a specification of the optimization problem, (2) the data to be 

searched for the optimal solution.  

We have implemented the optimization problem, that is the ILP formulation of the 

proposed auction-based model to composite service selection, in a modelling language 

called AMPL14 (Fourer et al. 1990). AMPL is an algebraic modelling language for 

describing and solving complex optimization problems. The simulation data of the web 

service offers and composite service requests are also specified based on AMPL standard 

for data representation. CPLEX takes the ILP formulation of the auction-based composite 

service selection and, based on this model, searches for the optimal set of web services to 

be allocated to the composite service requests.  

4.3 Research Methodology 

To address the proposed research objective discussed in section 1.3, we employed a 

research methodology with three steps: (1) designing the auction-based mechanisms that 

solve the (multiple) composite service selection problem, (2) modelling the proposed 

auction-based mechanisms, and (3) evaluating the proposed models through simulations.  

4.3.1 Designing the Auction-based Mechanism 

The design of an auction-based mechanism for the composite service selection problem 

requires answering the following two questions (Fig 4.1): 

1. What does an auction-based approach mean? What are the elements that 

build up an auction model?  

2. There are already a variety of auction models, standard and arbitrary, that 

have been applied in other domains such as transportation, communication 

networks, resource scheduling. How an auction-based mechanism in 

                                                 

13 < http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud/ >  
14 A Modelling Language for Mathematical Programming <http://www.ampl.com/> 

http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud/
http://www.ampl.com/
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composite service selection is different to other existing auction-based 

mechanisms?  

To answer the first question, we studied a variety of auction models designed for different 

domains, in addition to the auction theory literature. The study helped us to identify the 

auction design elements which were discussed in subsection 2.4.2 (Auction Design 

Elements). The elements are: the bidding language (the auction protocol), allocation rules 

(the winner determination problem) and the payment rule (pricing scheme).  

 

Fig 4.1. Designing an auction-based mechanism for composite service selection 

The second question needs to be answered based on the specific characteristics and 

technologies associated with web services and the current approaches for the web service 

composition and the composite service selection problems. These specific characteristics 

differentiate an auction model for composite service selection from other existing models. 

They help us establish the specific requirements of our problem domain to an auction-

based solution. In other words, they are the “requirements of the composite service 

selection problem” to an auction-based solution. The requirements are presented here, 

categorized based on the design elements of an auction model. 
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4.3.1.1 Bidding Language 

Req 1. The bidding language must support multi-attribute bidding.  

An important aspect of web services is the non-functional properties or quality of service 

attributes (QoS). These attributes are the constraints exhibit over the service functionality 

(O’Sullivan et al. 2002). Two providers that offer the same service functionality may have 

different values for the QoS attributes of their services. These attributes model the 

competitive advantage that providers may have over each other (Medjahed and Atif, 

2007). Therefore, the design of the bidding language needs to support more than the 

traditional price-only bids. In addition to the price, bids specify the values offered for 

other quality attributes such as response time, availability and reputation.  

Req 2. The bidding language must support combinatorial bidding. 

As we discussed before in subsections 1.2.1 and 3.3, an important issue in composite 

service selection is the need to consider the dependency between services constituent a 

composition. The providers need to be able to bid for a combination of services to fully 

express their preferences. Thus, the bidding language needs to support multi-item 

bidding. Moreover, each provider should be able to submit multiple bids and there is no 

restriction on the number of winning bids of a provider.  

4.3.1.2 Allocation Rules 

Req 3. The auction model is a procurement auction (one buyer, multiple 

sellers). 

Our design is based on the reverse or procurement auction models rather than a direct 

auction. The reason is that in composite service selection, it is the service requester who 

requires a set of different services to achieve a specific goal and it is very likely that these 

services need to be procured from different providers. Therefore, if the auction is designed 

as a direct auction, with service providers as bid-takers and service requesters as bidders, 

the service requesters may need to attend different auctions to procure all their required 

web services and, more importantly, win in all these auctions to be able to create the 

composition. Even if they win in all the auctions except for one, the composite service 

cannot be realized and the service requester has to withdraw from all other auctions. In 
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most auction settings, withdrawing from an auction after winning it is not allowed or 

incurs a withdrawing cost.  

Therefore, the design to suit our problem domain is the procurement model where the 

service requester is the bid-taker (auctioneer) and the service providers bid to offer their 

services. The auction is considered successful only if there are web services available for 

all the tasks of the composite service satisfying the requesters’ preferences and 

constraints. Consequently, the requester can commit to the result of a successful auction 

without concern for unwanted costs.  

Req 4. Free-disposal does not exist.  

To create the composite service, the service requester needs all the tasks to be successfully 

auctioned and find service providers to provision them. In auction theory, this is referred 

to as an auction without free disposal: the auctioneer has to sell (procure) all the items 

and the bidders cannot accept more than what they had bid for (Sandholm et al. 2002). 

Lack of free disposal makes it difficult to apply approximation methods for reducing the 

complexity of the problem which will be discussed in subsection 7.2.1, the time 

limitations of the proposed approaches.  

Req 5. The auction model is a combinatorial auction. 

The proposed design is based on combinatorial auction models. As discussed in 

subsection 2.3.3 (Combinatorial Auctions), in this model multiple items can be auctioned 

simultaneously and bidders can bid for combination or bundle of items. This auction 

model is important when there are dependencies between the items under auction: either 

they complement each other or can be substitute for each other.  

As discussed in subsections 1.2.1 and 3.3, web services constituting a composite service 

are dependent on each other based on factors such as the sequence of execution time, 

resources consumed, input/output message or data, and user-specified constraints. These 

dependencies can create complementarity effect among the services which makes it 

attractive for service providers to offer them in bundles. As an example of the 

complementarity effect, consider a service provider who is interested in providing 

services for a set of consecutive services exchanging data. By provisioning for these 

dependent services and bidding for them as in one bundle, the provider can internalize 

some of the costs of interface compatibility required for data exchange. This can decrease 
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the cost of service provisioning. Consequently, the discount in the bundle’s price can 

result in the provider’s increased competitiveness in the market for web services. 

Moreover, they can offer better qualities for the bundled services by having more control 

over the execution environment of the adjacent services in the composition. 

Req 6. The auction’s objective is a single attribute optimization problem, 

based on the price.  

Req 7. Quality of service constraints need to be supported in the allocation 

rules. 

The objective function of the auction is designed to include only the price, rather than all 

the quality of service attributes. The price-based design leads to a cost-minimization 

objective function rather than a utility-maximization one, as discussed in subsection 3.8.3. 

The service requester’s requirements on other quality of service attributes are considered 

as allocation constraints to be taken into account while searching for the optimal solution. 

 It seems natural to assume that service requesters are mainly concerned about quality 

attributes meeting some criteria. In other words, service requesters can easily state their 

desired level of quality in terms of their minimum expectation from the quality of the 

service, rather than having a clear and perfect utility function that specifies the weight of 

different quality attributes toward each other. As discussed in subsections 3.3 and 3.8.3, 

eliciting these weights has been one of the challenges for the utility-maximizing 

approaches to composite service selection. An objective function aiming at maximizing 

the utility of user regarding the different quality attributes usually forces the researchers 

to include unrealistic assumptions on the model; such as the weights being known for the 

requesters and the quality attributes not being correlated. 

Therefore, it is easier and more realistic to assume that instead of specifying weights for 

quality attributes, the service requester is interested in specifying the concerns they have 

regarding the quality level; such as what is the maximum response time acceptable or 

minimum availability required. In such a setting, the multi-attribute characteristics of web 

services have been taken into account, without having to deal with complexities of a 

utility-maximization objective function. 

At the same time, if a requester cares about quality and aims to maximize the quality at 

the cost of more expensive services, they can achieve this objective even with the cost-
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minimizing formulation by specifying very high expectations on the quality of service 

levels. 

Req 8. The auction model is single-shot and not iterative. 

Having an iterative auction for a composite service means that the providers have to 

submit their bids, wait for the result of the first round of the auction, based on the provided 

information about the results of the first round revise their bids and re-submit the bids. 

They need to continue to do so until the final round of the auction. However, in the auction 

for service selection, the items under auction are web services which mostly offer small, 

limited, functionality at a relatively low price. Therefore, the service providers would 

likely prefer to attend more auctions for different composite services rather than spending 

more time (for evaluating their bids and improving their strategic behavior based on the 

result of the previous round) in a multi-round auction for the same composite service.  

4.3.1.3 Payment Rules 

Req 9. The pricing scheme of the proposed model is similar to a first price 

auction; the winners receive the amount they have bid. 

Auction designers use the pricing scheme to install properties such as incentive 

compatibility in the mechanism. As discussed in subsection 2.4.2.3, the well-known 

incentive compatible mechanism for multiple items is called the Vickrey Clark Grove 

(VCG) mechanism. The payment rule in a VCG mechanism is so that any winner’s 

payment is independent from their own valuations for the items (their bids).  

However, the VCG mechanism has serious drawbacks that make its application rather 

impractical, including: making bidding very complex for bidders, needs the bidders to 

reveal many information about their valuations, possibility of very low revenue outcome, 

highly susceptible to collusion, and most importantly not being budget-balanced which 

means that the mechanism need to be subsidized from outside.  

Therefore, although in theory it is possible to adopt the VCG payment to achieve an 

incentive-compatible mechanism, it will not suit practical applications. As a result, we 

decided to follow the first price auction model for the payment which, in our case, means 

that the service providers will be paid the amount they have bid for if they win the auction, 

and zero otherwise. 
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As discussed in subsection 2.4.1.7, the impossibility theorem in mechanism design 

(Myerson & Satterthwaite 1983) states that it is impossible to design an exchange 

mechanism which is incentive compatible, (interim) individually rational and budget- 

balanced that achieves efficiency in equilibrium. In this regard, the first price payment 

rule leads to an auction model which has the individual rationality and budget- balanced 

properties, but not the economic efficiency and incentive compatibility.  

Individual rationality and budget-balanced are both very important in designing a 

mechanism with practical application. An auction with individual rationality does not 

leave any of the participants worse off, than had they not participated in the mechanism. 

An auction which is budget-balanced does not need subsidy or fund from outside. We 

will discuss the limitation of the proposed approach on incentive compatibility and 

economic efficiency later in subsection 7.2.2. 

4.3.2 Modelling the Proposed Auction-based Mechanism 

We have mapped the proposed auction-based mechanism to an integer linear 

programming (ILP) optimization problem. Such an approach allows us to look for the 

optimal solution based on the objective function (minimize the cost of procuring the 

composite service for the composite service requester) and the allocation constraints (the 

quality of service requirements of the composite service). Beside the quality of service 

requirements, the service requester can incorporate any other preferences about the 

provisioning of the composite service into the ILP model by defining appropriate 

allocation constraints. Moreover, there are many, commercial and open source, 

optimization solvers available that can solve the ILP problems efficiently up to a 

reasonable size of the problem.  

Nevertheless, scalability remains as an issue of such an approach which looks for the 

optimal solution especially with our problem domain being an NP-complete problem. 

This limitation is later discussed in subsection 7.2.1 (Solve Time). 

4.3.3 The Simulation-based Evaluation Process 

With the absence of publicly available data sets about web services’ prices, bundling of 

web services and requests for composite web services, we based our evaluation on 
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conducting simulations. The proposed simulation-based evaluation process is presented 

in Fig 4.2.  

 

Fig 4.2. The evaluation process 

The objective of the simulation is to analyze the performance of the proposed auction-

based composite service selection mechanisms (single and simultaneous) in allocating 

web service offers to one or more composite service requests. The performance metrics 

have been defined based on the important criteria in this problem domain which are: (1) 

the success rate of the mechanism in allocating service offers to requests, (2) the final 

cost of composite service provisioning, and (3) the time to find the optimal allocations 

for the requests. 

However, due to the limited empirical research on composite service selection with 

bundling or composite service selection in the presence of multiple requests, the design 

of the simulation, in terms of the data generation model and seeding of the parameters, 

was a challenging for our study.  

We initially designed the experiments to evaluate the proposed “single auction” 

mechanism (to be discussed in Chapter 5). Based on the experience from these 

experiments, we revised the design of the experiments and improved it with more realistic 

scenarios and seeding data for the evaluation of the proposed “simultaneous auction” 

mechanism (to be discussed in Chapter 6).  
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In our experiments, the two essential elements of the simulations are the data generation 

model and the seeding of the simulation’s parameters. For the data generation model, we 

initially used an existing package, CATS suite (Leyton-Brown et al. 2000), that generates 

combinatorial bids for combinatorial auctions. However due to the limitations of this 

package, later we decided to design our own data generation model to have full control 

over the data set to be able to accommodate the specific requirements of our problem 

domain, that is, the (multiple) composite service selection problem. Nevertheless, our 

designed data generation model is based on the data distributions applied in combinatorial 

auctions literature. The final data generation model is discussed in subsection 6.4.4. 

For the seeding of the data generation model, we initially referred to the existing 

experiments in the service selection literature. However, the limited studies and 

experiments on service selection with bundling of web services and multiple requests for 

composite services led us to look for more realistic data on the Internet.  

In this regard, we studied a number of web services’ communities on the Internet where 

service requesters need composite services. Based on the information we collected from 

these directories, we decided to perform the experiments of the simultaneous auction 

mechanism in specific market sections of web services rather than a general market. 

Without focusing on specific market sections, it is rather difficult to estimate the number 

of service providers, requesters and the type of the web service offers and requests in a 

generic market for web services.  

The market sections are designed based on two factors dividing the web services 

marketplaces into the following categories:  

(1) The market economy size, that is the magnitude of the number of participants in 

a market and categorizes the markets into small economy and large economy 

(Tang 2004),  

(2) The composite service complexity, which divides the markets to market for simple 

composite services and market for complex composite services (Weinhardt et al. 

2011a). 

The resulting four market sections are presented in Table 4.1 below. The simplest section 

is the market section with small economy (limited number of service providers and 

requesters) and mainly trading simple composite services. An example of such a market 
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can be a newly-formed market for mobile applications. The most complex section is the 

market where many service providers and requesters participate to trade complex 

composite services. The example for this section can be the rather mature web service 

community around Life Science with the web service registry called BioCatalogue15. This 

directory currently has more than 790 active members who are mainly interested in 

complex scientific workflows. More details about these market sections and motivational 

scenarios are presented in subsection 6.4.3 (Scenarios to Investigate: Market Sections).  

Table 4.1. The four market sections  

Composite Service  

Complexity 

Economy Size 

SIIMPLE COMPLEX 

SMALL small-simple small-complex 

LGRGE large-simple large-complex 

These market sections and the number of web service providers and requesters in the 

existing web service communities helped us establish the seeding data for the simulation 

parameters in the data generation model. 

In Table 4.2, we have presented a summary of the implementation detail of the evaluation 

process design element; which are the performance metrics, the baseline for comparison, 

the scenarios to be investigated (market sections), the simulation’s data generation model, 

and the seeding of the simulation parameters. More details are presented for the single 

auction approach in section 5.2 and for the simultaneous auction approach in section 6.4. 

The proposed evaluation process in general, and the data generation model and the four 

market sections in particular provide a useful framework for the service selection 

community. The designed evaluation process improves the transparency of the 

experiments in the composite web service selection domain by identifying a number of 

elements that need to be supported and their implementation need to be clarified when 

conducting empirical evaluations. 

                                                 

15 < https://www.biocatalogue.org/> 

https://www.biocatalogue.org/
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Table 4.2. The implementation of the evaluation process 

for the proposed auction-based mechanisms 

Evaluation 

Element 

Single Auction 

(Chapter 5) 

Simultaneous Auction 

(Chapter 6) 

Performance 

Metrics 

 Success rate of the 

mechanism 

 Cost of procuring a 

composite service 

 Solve time 

 Success rate of the mechanism 

 Cost of procuring a composite service 

 Cost of procuring a task 

 Cost homogeneity across different 

requests 

 Solve time 

Baseline 
A non-combinatorial auction 

(single-item bids) 

 The single auction mechanism when 

applied to a set of requests one at a 

time 

 A fixed-price mechanism where the 

requesters determine the price to be 

paid for the composite service 

 

Scenarios to 

Investigate 

(Market 

sections) 

Generic 

Four market section based on two 

factors: 

 The complexity of the requests (the 

number of tasks in a request) 

 The economy size (the number of 

requesters and providers attending the 

market section) 

Data 

Generation 

Model 

 CATS arbitrary 

distribution: number of and 

choice of services in a 

bundle 

 IPV and CM discounted 

pricing function: pricing of 

services and the bundles 

 Decay distribution: number 

of and choice of services in 

a bundle 

 IPV discounted pricing function: 

pricing of services and the bundles 

 Decay distribution: number of and 

choice of services in a bundle 

 Uniform: number of tasks in a request 

Seeding  
Similar experiments in the 

literature 

 Similar experiments in the literature 

 Data available from the web services’ 

communities on the Internet 

  

The data generation model and the experimental scenarios establish the basis for more 

realistic data sets by considering the service selection requirements in the creation of the 

data set and relying on the data obtained from existing web service communities for 

seeding the simulation. 
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4.4 Conclusion  

In this chapter, we first discussed the theoretical foundations of our research which are: 

web service technology, auction theory, mechanism design and mathematical 

optimization. Then, we introduced our research methodology which comprises three 

steps: design, modelling and evaluation. The design includes two parts: (1) identifying 

the design elements of an auction model, and (2) differentiating an auction model for 

composite service selection from other auction models by studying the web services 

characteristics in general and the requirements of the composite service selection problem 

to an auction-based solution in particular. Then, we discussed our modelling approach 

which is based on mathematical optimization, or more specifically integer linear 

programming (ILP). Finally, we presented the evaluation process which we designed to 

evaluate our proposed auction-based mechanisms for composite service selection. Due to 

lack of publicly available data sets of web services’ prices, bundling or composite service 

requests, we based our experiments on simulations. 
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Chapter 5 

5 An Auction-based Mechanism 

for Composite Service Selection 

5.1 Introduction 

In this chapter, we present an auction-based mechanism to solve the composite service 

selection problem for a single composite service. We refer to this mechanism as the 

“single auction” mechanism. The proposed mechanism is based on multi-attribute 

combinatorial procurement auctions and is formulated as an integer linear programming 

(ILP) problem. 

In section 5.2, we discuss the requirement of considering the dependencies between the 

constituent services in a composition and the impact of these dependencies on the service 

providers and requesters’ preferences and constraints. We also introduce and develop two 

important constraints regarding: (1) the cohesion of the composite service, and (2) the 

configuration of the providers participating in the service composition. 

The design of the proposed auction-based model is presented in section 5.3. The design 

includes the three elements of an auction model: the multi-attribute bid specification, 

winner determination problem which is mapped to an integer linear programing problem 

and a discussion of the payment rule. 

The proposed model is evaluated through simulation-based experiments and the results 

are presented in section 5.4. The objective of the experiments is to study the performance 

of the proposed mechanism in terms of its success rate, the provisioning cost of the 
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composite service and the running time of the proposed mechanism to find the optimal 

solution. 

Parts of this chapter have been previously published in (Moghaddam et al. 2013). The 

theory and design discussions have been revised and updated, and a new experiment has 

been added which will be discussed in subsection 5.3.2.3 (Stage 3). 

5.2 A Mechanism based on Combinatorial Auctions 

Auctions, as market-based mechanisms, allow for dynamic pricing which is critical for 

products such as web services that are characterized by dynamic execution environments 

(in terms of the provider’s available resources), and users with different and changing 

demands.  

In combinatorial auctions, multiple distinct items are auctioned simultaneously and the 

bidders can bid for a combination of items, or bundles. Bundling enables the bidders to 

express their preferences for the items more fully, which leads to economic efficiency 

and greater auction revenue (Cramton et al. 2006). The possibility of bundling is 

particularly important when bidders have preferences not just for specific items but for 

bundles due to the complementarities or substitutability effects that exist among the items 

(de Vries and Vohra 2003). The dependencies can make the utility of a bundle greater 

(when items are complements) or smaller (when they can be substitutes) than the sum of 

the utilities of the individual items.  

As discussed in subsection 1.2.1 and also 3.3, an issue with current QoS-based composite 

service selection approaches is that they mostly assume that each provider offers a single 

service. Even if they offer more than one service, the offers are considered to be 

independent, that is, there is no possibility of offering bundles of services. Such an 

assumption ignores the dependencies between web services forming a composition.   

Furthermore, most service selection approaches allow the service requester to specify 

their constraints over a specific set of quality attributes of the composite service, including 

response time, availability, reputation or budget. While an important point to consider 

about a composite service is that it is very likely to have several service providers being 

involved in the provisioning of the composition, and therefore, the service requester may 



103 

 

have complex preferences over the number and the configuration of the providers 

involved in the provisioning of the composite service.   

To overcome these problems, we developed an auction mechanism for composite service 

selection based on combinatorial auctions. The auction mechanism views the composite 

service requester as the auctioneer and the service providers as the bidders who bid to 

offer their services for the composite service. The proposed mechanism allows the 

providers to offer their services as single services or as bundles of related services. We 

have also enabled the service requester to specify preferences about the cohesion of the 

composite service and configuration of the providers involved in the provisioning of the 

composite service through two allocation constraints.  

5.2.1 Cohesion in a Composite Service  

In general, cohesion can be defined as “a measure of the bindings of the elements within 

a single module” (Eder et al. 1994). Cohesion has been defined more specifically for: 

procedural systems (Stevens et al. 1974), the object-oriented paradigm (Yourdon and 

Constantine 1979; Briand et al. 1998) and service-oriented systems (Papazoglou and Van 

Den Heuvel 2006; Perepletchikov et al. 2007). To the best of our knowledge, no study 

has considered the composite service requester’s need to manage the cohesion of the 

composition. 

In defining cohesion for service-oriented systems, a service is the main design construct 

to apply encapsulation and abstraction principles. In a composite service where services 

are provided by different providers, another abstraction level is the offered bundle of 

services. We characterized the cohesion for a composite service based on the bundles as 

the abstraction level. We defined the bindings between services based on their direct data 

dependency as it is considered to be one of the most important types of inter-service 

dependencies. Its importance is due to the fact that ultimately, at the lowest level, the 

connection between services is through mapping the input and output messages between 

the partner services’ ports (Milanovic and Malek 2004).  

Following this, we define the cohesion of the composite service based on direct data 

dependencies between the services offered in a bundle. Based on this definition, the scope 

of a module is a bundle of services offered by a provider. The elements of the module are 
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the offered web services and the binding of services is measured based on their direct data 

communication. 

Being able to adjust the cohesion level of the composite service is of significant 

importance for the service requester. Cohesion, as defined here, can directly influence the 

composite service maintainability, reliability and (provider-) dependability. However, 

managing the cohesion of a composite service is two-fold: the service requester may be 

interested in having more data-cohesive modules or less cohesive ones based on the 

composite service structure, knowledge about the web service’s market or user-specific 

constraints.  

Based on “design rule theory” (Baldwin and Clark 2000, p.46), when designing complex 

systems, it is preferred that the tasks strongly dependent on each other be performed by 

the same doer who understands the dependency very well. This is known as modular 

design and its aim is to achieve desirable features such as change manageability and 

maintainability. For the same reason, the service requester may prefer the strongly 

dependent services to be offered by the same provider. Based on our definition of 

cohesion for composite services, this means that such a service requester is interested in 

increasing the cohesion in the composite service. In this context, maximum cohesion is 

achieved if all services are provided by the same provider. 

However, web services’ execution environment is the Internet where communication 

channels and service providers are not always reliable. Therefore, the service requester 

may not want to be too heavily dependent on any particular provider to increase the 

reliability of the composite service. This can be achieved by assigning the dependent tasks 

to different providers. In other words, the requester may need to reduce the cohesion of 

the composite service. In this context, the minimum cohesion of the composite service is 

achieved if no two dependent services are executed by the same provider. 

It worth mentioning that choosing the appropriate number of suppliers is an important 

consideration for any buyer in a procurement process. As discussed in Bichler & 

Kalagnanam (2006), the buyer needs to determine the minimum number of winning 

suppliers to avoid depending too heavily on just a few of them. As well, the maximum 

number of suppliers may need to be kept low to avoid the administrative overhead of 

managing too many suppliers. In the context of our problem, the number of providers is 

not a direct measure for provider-dependability due to:  
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 The inter-service dependencies between constituent services of a composition,  

 The involvement of a provider in service composition through providing 

multiple services.  

Therefore, we enabled the service requester to control the dependability of the composite 

service to the providers by developing an intermediate concept, that is, the cohesion. The 

management of the level of cohesion is performed by adding a resource allocation 

constraint to the winner determination problem of the auction mechanism. Our developed 

cohesion constraint enables the service requester to define a lower and an upper bound 

for the cohesion of the composite service, relative to the maximum cohesion attainable 

for the composition (all services are procured from the same provider).  

We measure the cohesion of a composite service as the sum of the cohesion of the bundles 

winning the auction to execute the composition. To measure the cohesion of a bundle, we 

need to refer to the abstract structure of the composite service, or more precisely, the 

business process (BP) representing it. Considering the BP structure, two web services 

have direct data dependency if their corresponding tasks in the business process exchange 

data. 

Therefore, we initially need to identify the data dependencies among the tasks of the BP. 

In order to do so, we define the business process’s dependency matrix. For a business 

process with 𝑀 number of tasks, the dependency matrix is a 𝑀 ×𝑀 matrix where each 

of its elements represents the data dependency between two tasks in the BP: if the two 

tasks need to exchange data, the corresponding element is 1 and 0 otherwise. Clearly, the 

dependency matrix is a symmetric matrix. This matrix is then used to identify and 

measure the inter-dependencies between the services executing these tasks. 

We define the data cohesion factor (DCF) to calibrate the cohesion of a bundle. Since in 

our model, the providers can have more than one winning (non-overlapping) bundles, this 

means that a provider may have a winning bundle which includes smaller bundles. 

Therefore, we also need to consider the data dependency between the services of different 

bundles of the same provider. 

We have called the cohesion factor related to the dependencies of the services of the same 

bundle as the local cohesion factor (LCF), and the cohesion between services of different 

bundles (of the same provider) as the interactive cohesion factor (ICF). Both types of 
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cohesions are calibrated based on the direct data connections between the services 

according to the dependency matrix. That is, if no two services in the bundle exchange 

data (based on the dependency matrix), the bundle’s data cohesion factor is zero. 

Otherwise, for any direct data communication, the bundles’ cohesion factor is increased 

by one unit. 

 

Fig 5.1. An example business process with five tasks 

 
 

Task in 

the BP 

A B C D E 

A 0 1 1 0 0 

B 1 0 0 1 0 

C 1 0 0 1 0 

D 0 1 1 0 1 

E 0 0 0 1 0 

Fig 5.2 The dependency matrix of the example business process 

An example business process is presented in Fig 5.1 which has five tasks, named A, B, 

C, D and E. The BP’s dependency matrix is illustrated in Fig 5.2. There are two providers 

who are bidding to offer their services.  

Table 5.1. Calibrating the local and interactive cohesion factors (LCF and ICF) of the offered 

bundles based on the BP structure 

Provider ID Bid ID Offered Bundle  LCF 𝑰𝑪𝑭𝒊𝒋 

1 1 {A,B,C} 2 𝐼𝐶𝐹12 = 𝐼𝐶𝐹21 = 2 

𝐼𝐶𝐹13 = 𝐼𝐶𝐹31 = 0 

𝐼𝐶𝐹23 = 𝐼𝐶𝐹32 = 2 

1 2 {D,E} 1 

1 3 {E} 0 

2 4 {A,D,E} 1 𝐼𝐶𝐹45 = 𝐼𝐶𝐹54 = 2 

2 5 {B} 0 
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The offered bundles are depicted in Table 5.1. The local and interactive cohesion factors 

of these bundles (LCF and 𝐼𝐶𝐹𝑖𝑗) are measured and also specified in this table. 𝐼𝐶𝐹𝑖𝑗 

represents the cohesion between bundle 𝑖 and bundle 𝑗 which are offered by the same 

provider. 

5.2.2 Configuration of the Composite Service Provisioning 

With the possibility of the involvement of many providers in provisioning of a composite 

service, a requester may have specific constraints regarding the configuration of the 

involved providers. We have identified two of such considerations as: 

 Some specific services need to be provided by the “same” provider,  

 Some specific services need to be provided by “different” providers.  

The ability to manage these configurations can be critical for satisfying service 

requester’s concerns regarding security and privacy of the composite service. The two 

motivating scenarios discussed below explain more clearly the need to consider such 

constraints:  

 Security concern: In a composite service, some of the constituent services 

need to support an encryption algorithm. In order to minimize the number of 

providers who have access to the encryption key, the requester may decide to 

procure all the services with this requirement from the same provider. 

 Privacy concern: In a composite service, the collective data provided to two 

constituent services can reveal a person’s true identity despite data 

anonymization. To preserve privacy, the requester may decide that these 

services are required to be procured from different providers. 

The proposed ILP formulation enables the service requester to place two constraints on 

the configuration of composite service provisioning in regards to selecting the same or 

different providers for a set of tasks in the business process.  

5.3 The Design of the Combinatorial Auction Mechanism 

We have mapped the auction-based mechanism for composite service selection to an 

integer linear programming problem. In the auction mechanism (more precisely “the 
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single auction mechanism”), the objective function is to minimize the cost for the service 

requester, subject to quality and data-cohesion constraints and service provisioning 

preferences. In our proposed model, we allow the service providers to offer services in 

bundles. We also enable the service requesters to specify the type of bundles they prefer 

based on the degree of cohesion required for the composite service and their preferences 

for the configuration of the composite service provisioning.  

The composite service is defined as an abstract business process, comprising a set of 

tasks. The service providers bid to procure services for these tasks. For simplicity, we 

have assumed that the BP only includes sequential structures. The existence of other 

structures (parallel, loop and conditional) in the BP only affects our model in terms of the 

aggregation functions for quality attributes such as response time and availability. As we 

have already discussed in subsection 3.3, the problem of mapping the BP’s complex 

structure to an execution path has already been extensively discussed in the literature. 

Ultimately, all the proposed techniques (which need linear aggregation functions for 

quality attributes) try to have a sequential execution path. Nevertheless, it is possible to 

extend the model to these structures following techniques such as the one suggested by 

Zeng et al. (2004).  

5.3.1 Multi-attribute Bid Specification  

Let 𝐵 be the set of all received bids from all providers, with an arbitrary member denoted 

as bi where the total number of all received bids is 𝑁. Let 𝑇 be denoted as the set of all 

tasks in the business process, with an arbitrary member defined as 𝑡𝑗 where the total 

number of tasks in the BP is 𝑀. Let also 𝐾 be the total number of bidding providers for 

the tasks in the business process. 

Each bid 𝑏𝑖  is defined as 𝑏𝑖 = (𝑇𝑖 , 𝑄𝑖 , 𝑐𝑖), where 𝑐𝑖 is the cost of providing service(s) for 

the task(s) in the set 𝑇𝑖 (𝑇𝑖 ⊆ 𝑇) and 𝑄𝑖 is the set of the offered quality values for those 

service(s). Each member of 𝑄𝑖 is a tuple, including the quality attributes’ values of the 

tasks in 𝑇𝑖. For the current model, we considered two quality attributes in the quality 

tuple: availability and response time denoted as 𝑣𝑖 and 𝑟𝑖 respectively. 𝑣𝑖 and 𝑟𝑖 are 

defined as functions from the set of tasks to a positive number. Thus, we have: 

𝑄𝑖 = { (𝑣𝑖(𝑡), 𝑟𝑖(𝑡)) |𝑡 ∈ 𝑇𝑖}.  
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5.3.2 The Winner Determination Problem (WDP)  

In WDP (or allocation rule) of the proposed single auction mechanism, the objective 

function is defined as minimizing the cost for the service requester as specified in function 

(5-1). The decision variable is denoted as 𝑧𝑖  to be 1 if 𝑏𝑖 is a winning bid and 0 otherwise. 

Constraint (5-2) ensures that each task is assigned to no more than one provider. It also 

implies that any number of non-overlapping bids from the same provider can 

simultaneously win the auction. This implies that the bidding language is OR. However, 

providers can have XOR language by adding dummy items to the bids they need to 

combine them in a mutually exclusive way. This means that that the specified bidding 

language is in fact OR* types (Nisan 2000). To get the unique assignment, we defined 

matrix 𝐴𝑁×𝑀 with an arbitrary element of 𝑎𝑖𝑗 which is 1 if 𝑇𝑖 (in 𝑏𝑖) includes 𝑡𝑗  and 0 

otherwise. 

The quality constraints over availability and response time are defined in (5-3)16 and 

(5-4), where V and R are the service requester’s acceptable minimum availability and 

maximum response time for the composite service. The requester’s budget constraint is 

specified in (5-5) where B is the requester’s available budget for the composite service. 

Minimize 

 

∑𝑐𝑖 ∗ 𝑧𝑖 

𝑁

𝑖=1

  (5-1) 

Subject to:    

Allocation 

constraint 
∀𝑗 ∈ {1. .𝑀} ∑𝑎𝑖𝑗 ∗

𝑁

𝑖=1

𝑧𝑖 = 1         (5-2) 

Availability 

constraint 

 

∑∑ln (

𝑡∈𝑇𝑖

𝑣𝑖(t)) ∗ 𝑧𝑖 ≥  𝑙𝑛(𝑉)

𝑁

𝑖=1

  (5-3) 

Response 

time 

constraint 

 

∑∑𝑟𝑖(t) ∗ 𝑧𝑖 
𝑡∈𝑇𝑖

𝑁

𝑖=1

≤ 𝑅   (5-4) 

                                                 

16 The aggregation function of availability is linearized using a logarithm function (Zeng et al. 2004). 
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Budget 

constraint 
  ∑𝑐𝑖 ∗ 𝑧𝑖

𝑁

𝑖=1

≤ 𝐵 (5-5) 

Cohesion 

constraint 

 

𝑀𝐴𝑋𝐶 ∗ 𝐿𝐶 ≤∑∑ℎ𝑖𝑗 ∗ 𝑧𝑖 ∗ 𝑧𝑗

𝑁

𝑗=𝑖

𝑁

𝑖=1

≤ 𝑀𝐴𝑋𝐶 ∗ 𝑈𝐶 (5-6) 

Provisioning 

constraint  

(the same 

provider) 

 

∃ 𝑘 ∈ {1. . 𝐾}  ∑∑𝑎𝑖𝑗 ∗ 𝑑𝑖𝑘 ∗ 𝑧𝑖
𝑗∈𝑋

𝑁

𝑖=1

= |𝑋|   (5-7) 

Provisioning 

constraint  

(different 

providers) 

∀𝑘 ∈ {1. . 𝐾}  ∑∑𝑎𝑖𝑗 ∗ 𝑑𝑖𝑘 ∗ 𝑧𝑖
𝑗∈𝑌

𝑁

𝑖=1

≤ 1 (5-8) 

 

The service requester’s preference for data cohesion is defined in (5-6). The interactive 

cohesion factor is defined by ℎ𝑖𝑗 when 𝑖 ≠ 𝑗 and both bids 𝑖 and 𝑗 belong to the same 

provider. When 𝑖 = 𝑗, ℎ𝑖𝑗 defines the local cohesion for bid 𝑖. It will be 0 otherwise. The 

lower and upper bounds of the required cohesion are denoted as LC and UC which can 

be defined in terms of the percentage of the maximum possible cohesion in a BP, MAXC. 

For example, LC=100% means the service requester wants the maximum cohesion for 

the BP, which indicates that they prefer all tasks to be provided by the same provider.  

Equation (5-7) ensures that all the tasks in X will be provided by the same provider 

where 𝑋 ⊆ 𝑇. Constraint (5-8) ensures the opposite for the tasks in the set 𝑌 ⊆ 𝑇, that is, 

the tasks in set Y will be provisioned by different providers. 

In the above formulation, constraint (5-6) is not linear, due to the expression 𝑧𝑖 ∗ 𝑧𝑗. To 

linearize the constraint, we replaced this expression with a new decision variable, 𝑥𝑖𝑗. 

This replacement requires the following set of constraints, (5-9), to be added to the model: 

Set of constraints  

to ensure: 𝑥𝑖𝑗 = 𝑧𝑖 ∗ 𝑧𝑗  

∀𝑖 ∈ {1. . 𝑁} 

∀𝑗 ∈ {1. .𝑀} 

𝑥𝑖𝑗 ≤ 𝑧𝑖 

𝑥𝑖𝑗 ≤ 𝑧𝑗  

𝑥𝑖𝑗 ≥ 𝑧𝑖 + 𝑧𝑗 − 1 

(5-9) 
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Another constraint requiring linearization is the constraint (5-7), the provisioning of a set 

of tasks by the same provider, which is not linear due to the use of the existential 

quantifier. To make it linear, we have introduced a new decision variable, 𝑦𝑘, which is 1 

if provider 𝑘 ∈ {1. . 𝐾} is selected to provide services for the tasks in set X, and 0 

otherwise.  

The linearized form of (5-7) is defined in constraints (5-10), (5-11) and (5-12). In this set, 

M is defined as a number sufficiently large to guarantee that (5-10) and (5-11) are satisfied 

when the introduced decision variable 𝑦𝑘 is 0. Using such a number is referred to as the 

Big-M method in linear programming (Padberg 1999, p.54). In these constraints, 𝑑𝑖𝑘 is 

an arbitrary member of the matrix 𝐷𝑁×𝐾, which defines the mapping of the bids to the 

providers. 𝑑𝑖𝑘 is 1 if bid 𝑏𝑖  comes from provider k and 0 otherwise. Constraint (5-12) 

specifies that there should be at least one winning provider that provides services for the 

set of tasks in X. 17  

The Linearized form of constraint (5-7), the same provider for the set X  

∀ 𝑘 ∈ {1. . 𝐾} |𝑋| − 𝑀 ∗ (1 − 𝑦𝑘) ≤∑∑𝑎𝑖𝑗 ∗ 𝑑𝑖𝑘 ∗ 𝑧𝑖
𝑗∈𝑋

𝑁

𝑖=1

 (5-10) 

∀ 𝑘 ∈ {1. . 𝐾} ∑∑𝑎𝑖𝑗 ∗ 𝑑𝑖𝑘 ∗ 𝑧𝑖
𝑗∈𝑋

𝑁

𝑖=1

≤ |𝑋| + 𝑀 ∗ (1 − 𝑦𝑘) (5-11) 

 ∑𝑦𝑘 ≥

𝐾

𝑘=1

1 (5-12) 

5.1.1 The Payment Rule 

As already discussed in subsection 2.4.2.3, the auction designers employ the payment rule 

as a measure to install their desired properties in the mechanism. An important property 

is to achieve economic efficiency which can be achieved if the auction designer knows 

                                                 

17 As we already specified in the allocation constraint (5-2), there will be exactly one winning provider for 

each task in the set of solutions. 
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the true valuation of the bidders for the items under auction, that is, if the mechanism is 

incentive-compatible. 

The Vickrey-Clarke-Groves (VCG) mechanism (Vickrey 1961; Clarke 1971; Groves 

1973) is the most notable way to achieve incentive-compatibility and economic efficiency 

where many items are auctioned simultaneously, such as in combinatorial auctions. 

Therefore, for the pricing scheme, we draw on the VCG model.  

The VCG payment for the single auction mechanism can be defined as in equation (5-13) 

below: 

∀ 𝑘 ∈ {1. . 𝐾} 𝑝𝑘 = ∑ 𝑐𝑖 𝑧𝑖
∗⅂𝑘

𝑗∈𝐵\𝐵𝑘

− ∑ 𝑐𝑖 𝑧𝑖
∗

𝑗∈𝐵\𝐵𝑘

 (5-13) 

In the above equation, 𝑧𝑖
∗  are the decision variable values for the optimal solution (𝑧𝑖

∗ is 

1 for the winning bid, and 0 for others) and 𝑧𝑖
∗⅂𝑘 are the variable values of the optimal 

assignment if we remove the bids of provider 𝑘 from the set of bids. Let  

𝐵𝑘 = {𝑏𝑖|𝑑𝑖𝑘 = 1}, that is the set of bids from provider 𝑘. We define 𝐵\𝐵𝑘 as the set of 

all bids without the bids of provider k. The price 𝑝𝑘 to be paid to the winning bidder k is 

the result of subtracting the cost of all other winning bids in the optimal allocation, 𝑧𝑖
∗ , 

from the sum of the cost of bids in 𝑧𝑖
∗⅂𝑘 , the optimal allocation in absence of bidder 𝑘.  

With this formulation, the VCG payment to each bidder is independent of the bidder’s 

offered price. In a direct auction, the VCG payment grants a discount to a bidder on their 

payment to the mechanism (Schnizler et al. 2005). In the reverse auction, this will be a 

bonus on top of the requested price for the items or services. With such a payment, the 

bidders have no incentive to strategically manipulate their bids as it cannot improve their 

gained utility. 

With the VCG payment and incentive compatible bidders, the objective function of 

minimizing the cost of the composite service (based on the bids information) becomes 

equivalent to maximizing the economic efficiency. The proposed mechanism is also 

individually rational for participants with quasi-linear utility functions. In the context of 

composite service selection, a quasi-linear utility function means that the valuation of 

service providers and requester for the web services do not change if the participants were 
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poorer or richer, that is, their valuations do not depend on their wealth (Rasmusen 2001, 

p.202). 

Moreover, if the bidders valuation for the items is based on independent private 

information, and the auction objective is economic efficiency, then the VCG scheme 

maximizes the revenue to the seller in a direct auction, or minimizes the cost for the buyer 

in a reverse auction (de Vries and Vohra 2003).  

However, we should note that the assumption about having a quasi-linear utility function 

requires that bidders should not have any budget constraint. In the context of a reverse 

auction, it means that the buyer should not have any overall limit on the cost of 

procurement (Ausubel and Milgrom 2006). The existence of such constraint affects the 

truthfulness of the participants, whether the constraints are known to others or not 

(Rothkopf 2007). Therefore, the design of a truthful auction for composite service 

selection by applying the VCG payment needs the service requester not to have any 

budget constraint, constraint (5-5). Otherwise, the mechanism will not be necessarily 

truthful. 

Despite its interesting properties in theory, the VCG payment has serious limitations that 

have made its application in real world auctions to be somewhat rare (Ausubel and 

Milgrom 2006; Rothkopf 2007). We have discussed the problems related to designing an 

incentive compatible mechanism for our problem domain and the limitations of the VCG 

payment in this domain more specifically in the concluding chapter in subsection 7.2.2. 

Two important limitations relate to: (1) the reluctance of web service providers to truth 

revelation, and (2) losing the budget-balanced property in the auction model. 

In the absence of the VCG payment, the common practice is to ask the winners to pay 

their bids, which is also the common practice in the auction-based approaches to the 

composite service selection as discussed in subsection 3.8.4. However, one needs to note 

that without the VCG payment, the mechanism’s objective becomes equivalent to 

minimizing the cost of composite service procurement based on the received bids, which 

may or may not be truthful.  
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5.2 Experiment Design 

In order to evaluate the proposed single auction mechanism, we performed a number of 

simulation-based experiments. The objective of the experiment was to study the impact 

of two important aspects of the single auction mechanism, cohesion constraint and bundle 

crowdedness, on appropriate performance metrics. Three performance metrics were 

defined which are: 

 The cost of procuring the composite service: calculated as the sum of the 

prices of the winning bids. 

 The success rate: defined as the number of times the auction is successful in 

finding an optimal allocation of services for the business process over the total 

number of running the experiment for each combination of simulation 

parameters. 

 The solve time to find the optimal allocation. 

The ILP formulation of the single auction mechanism was implemented using AMPL. 

Then, the ILP model was given to the solver CPLEX 10.0 along with the simulation data 

(problem instances). The experiments were performed on a computer with 16 processors, 

each 1600 MHz, and total memory of 24 GB RAM. 

The simulation data (problem instances) has two main parts: (1) the data of the business 

process (the request for the composite service), and (2) the data of the bids, offering 

services for that process. The business process was generated based on a specific number 

of tasks (a parameter of the experiment). The combinatorial bids for the experiments were 

generated by the CATS suite (Leyton-Brown et al. 2000). CATS is a suite of distribution 

families used for generating combinatorial bids for five real-world domains of 

combinatorial auctions.  

To generate the combinatorial bids, CATS distribution needs two inputs: (1) the number 

of items under auction, and (2) the dependency distribution. In our domain, the number 

of items under auction is equal to the number of tasks in the composite service and the 

dependency distribution is arbitrary. The arbitrary distribution is used to generate bids for 

domains in which there are arbitrary dependencies between the items being auctioned, as 

explained in subsection 2.3.3 (Combinatorial Auctions).  
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Apart from these two input parameters, CATS arbitrary distribution uses a number of 

parameters to generate the data which have a default value but can be changed based on 

the problem domain. One such parameter is called “additional_good” which affects the 

number of items in the bids. The default value for this parameter is 0.9 which mostly 

generates very large bundles, close to the total number of items in the auction. To make 

more realistic bids for our problem domain, we experimented with different values for 

this parameter and we fixed it on 0.75. In the following, we have referred to this parameter 

as “the bundle crowdedness” which is denoted as α. 

The pricing function in CATS arbitrary distribution is by default super-additive, that is, 

the price of a bid is greater than or equal to the sum of the prices of the individual items 

in the bid. Therefore, in some of the experiments, we implemented a new pricing to 

accommodate the providers need to offer discount over the bundles’ price.  

To prepare the experiment data, we developed a java program that takes the combinatorial 

bid data set generated by CATS, then changes the data if required (for example the price 

of the bundles), adds other required data (such as the information about the requested 

composite service), and lastly writes the data (problem instances) to a file based on the 

AMPL specification for data presentation. Overall, 6,300 problem instances were solved 

in these experiments. 

5.3 Results  

The results of the experiments to evaluate the proposed single auction mechanism are 

presented below in three parts: (1) the impact of the cohesion constraint on the 

performance metrics, (2) the impact of bundling on the cost of the composite service, and 

(3) the study of the solve time of the single auction mechanism. 

5.3.1 The Impact of the Cohesion Constraint on Cost and Success Rate 

The need to manage the cohesion of the composite service has been addressed for the first 

time in the current study. Adding this constraint to the WDP imposes extra limitation on 

the auction mechanism. Therefore, it is important to study its impact on the performance 

of the single auction mechanism. In order to do so, we considered three cases for 

comparison:  
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 The service requester is interested in high cohesion for the composite service. 

In this case, LC, the cohesion’s lower bound, is at least 50% or 75% of the 

MAXC (maximum possible cohesion of the composite service), and no 

constraint exists for the cohesion’s upper bound (UC=1),  

 The requester is interested in low cohesion. In this case, UC is at most 25% or 

50% of MAXC while no constraint exists for the lower bound (LC=0).  

 A baseline with no constraint for the cohesion (UC=1, LC=0).  

The configuration of the simulation parameters is summarized in Table 5.2. For each 

combination of parameters, 30 problem instances were generated and solved. The 

collected results were averaged across the 30 instances.   

Table 5.2. Configuration of the simulation parameters for the experiment 

on the cohesion constraint  

Parameter Values 

Number of Bids 100,150, …, 300 

High Cohesion Constraint  LC={0.5,0.75}, UC=1 

Low Cohesion Constraint  LC=0 , UC={0.25, 0.5} 

Number of Tasks in BP 20 

Number of Providers 50 

Bundle Crowdedness (α) 0.75 

Bid Generation Distribution CATS arbitrary 

Pricing Function of the Bids super-additive 

The impact of cohesion constraint on success rate is illustrated in Fig 5.3. The results 

indicated that the success rate of the auction is less than 10% when requester specifies a 

cohesion constraint as high as LC=0.75. This is due to the allocation constraint that 

requires the selection of exactly one service for each task. This constraint prevents any 

two bundles with overlap to win the auction, even if they are offered by the same provider. 

This leads to the low success rate of the mechanism when high cohesion is required. 
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Fig 5.3. Success Rate of the auction mechanism for different cohesion constraints  

The impact of the cohesion constraint on the cost of composite service is analyzed next. 

To get an accurate average cost, the unsuccessful instances with zero cost were removed 

from the results. The results are depicted in in Fig 5.4.  

 

Fig 5.4. Impact of different levels of cohesion constraint on cost 

The first observation is that, as expected, the lowest cost is achieved by the baseline where 

no cohesion constraint exists. It also indicates that the cost of the composite service does 

not significantly increase when the objective is to achieve low cohesion. In other words, 

if the service requester needs to reduce provider-dependability, this is achievable at 

almost no extra cost. In contrast, reaching a high cohesion (LC at least 50% or 75% of 

MAXC) increases the cost of the composite service on average by 20%. This implies that 
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having maintainability as a non-functional requirement increases the cost of procuring 

the composite service. 

To delve deeper into the influence of cohesion on cost, we repeated the experiment 

changing the levels of cohesion for the upper bound and lower bound according to the 

range [0.2, 0.4, 0.6, 0.8]. We have two groups of data corresponding to: (1) the upper 

bound (UC) is changing and the lower bound is fixed at a neutral value (LC=0), (2) the 

lower bound (LC) is changing and the upper bound is kept neutral (UC=1). These two 

groups correspond to the two lines in Fig 5.5. We have also included a baseline with no 

cohesion constraint (UC=1 and LC=0) which corresponds to the two points in Fig 5.5.   

In this experiment, the number of bids and tasks are fixed at 300 and 10 respectively. For 

each level of cohesion, 50 independent problem instances were generated and the 

collected results were averaged.  

The result as illustrated by Fig 5.5 confirmed our previous findings: a tight constraint on 

the cohesion’s upper bound (UC=0.2) and lower bound (LC=0.8) increases the cost of the 

composite service. Compared to the baseline, the increase in the cost is six times for 

LC=0.8, versus an increase of 1.5 times for UC=0.2. The cost to increase the cohesion 

dramatically increases at LC=0.6. These findings can help the service requester to set the 

appropriate level of cohesion considering the trade-off between the cohesion, the cost of 

the composite service and the success rate. 

 

Fig 5.5. Cost as a function of cohesion  
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5.3.2 The Impact of Bundling on Cost 

An important aspect of the proposed model is that service providers are able to offer their 

services in bundles. Therefore, we needed to investigate the impact of bundling on the 

performance of the proposed auction mechanism. The performance metric was defined 

as the cost of the composite service. The experiments were performed during three stages 

and the results obtained from each stage directed the design of the next stage. 

5.3.2.1 Stage 1 

To perform this analysis, we designed an experiment by varying the bundle crowdedness 

parameter. The configuration of the simulation’s parameters is summarized in Table 5.3. 

For each combination of parameters, 30 problem instances were generated and solved. 

The collected results were averaged across the 30 instances.  

Table 5.3. Configuration of the simulation parameters for the experiment 

on bundle crowdedness, Stage 1 

Parameter Values 

Number of Bids 100,150, …, 300 

Number of Tasks in BP 20 

Number of Providers 50 

Bundle Crowdedness (α) 0.25, 0.5, 0.75 

Bid Generation Distribution CATS arbitrary 

Pricing Function of the Bids CATS super-additive 

 

The average cost of the composite service and the cost ratio are plotted Fig 5.6 (a) and 

Fig 5.6 (b) respectively. The cost ratio is calculated as the ratio of the cost of the 

composite service to the cost of the first data point which is the cost with 100 bids. The 

results show that firstly, the cost of the composite service decreases with having more 

bids, regardless of α. This is due to the fact that with more bids there will be more variety 

in the service offers which can lead to the procurement cost reduction. Secondly, the cost 

of the composite service increases as bundles becomes more crowded. Thirdly, the pace 

of the reduction in cost with having more bids is slower when the bundles are more 

crowded: with the least crowded bundles (α=0.25), increasing the number of bids from 

100 to 300 decreases the cost by over 30%, while this decrease for most crowded bundles 

(α=0.75) is around 15%. To investigate the reason of the second and third observations, 

we designed the second stage of the experiment.  
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(a) Cost of composite Service 

 

 

(b) Cost Ratio 

Fig 5.6. Impact of bundle crowdedness on (a) cost and (b) cost ratio (CATS arbitrary distribution) 

5.3.2.2 Stage 2 

As we speculated that these observations may have been the result of the specific pricing 

function implemented by CATS, rather than the impact of the bundle crowdedness, we 

performed experiments with different pricing functions. 

The pricing function provided by CATS is by default super-additive, that is, no discount 

is considered for the bundle price. Therefore, we developed new pricing functions to 

consider the impact of having more crowded bundles when providers consider a discount 

for the bundle.  
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Following the auction theory literature, the pricing functions are developed based on two 

types of valuation models that providers may have when pricing the individual services:  

 The independent private values (IPV) model: in this model, each provider has 

a private value for their offered services which is not known to the other 

providers and is also independent from the valuations of other providers for 

these services. 

 The common values (CV) model: in this model, the value of offering a specific 

service is more or less the same for all the providers, but the estimate of each 

provider for how much they can charge to sell the service in the market is 

different between providers (Parsons et al. 2011). 

In our developed pricing function, first a (random) value is assigned to each service in the 

bundle for each provider. Then, the price of the bundle is calculated as the sum of the 

prices of the services in the bundle minus a random discount specific to that provider. We 

initially considered the discount to be up to a maximum of 3% of the price of the bundle. 

The configuration of the simulation parameters for this round of experiment is 

summarized in Table 5.4. For each combination of parameters, 30 problem instances were 

generated and solved. The collected results were averaged across the 30 instances. 

Table 5.4. Configuration of the simulation parameters for the experiment 

on bundle crowdedness, Stage 2 

Parameter Values 

Number of Bids 100,150, …, 300 

Number of Tasks in BP 20 

Number of Providers 50 

Bundle Crowdedness (α) 0.25, 0.5, 0.75 

Bid Generation Distribution CATS Arbitrary 

Pricing Function of the Bids Sub-additive (discount) 

Max Discount 3% 

To develop a baseline for comparing prices, we generated a set of problem instances with 

single-item bids (non-combinatorial) where each bid offers a single web service. The 

baseline is established after the current optimization-based and negotiation-based service 

selection approaches where bundling is not considered.   

The results of the experiments with the sub-additive (discounted) pricing functions (the 

ones that we developed based on the two valuation models) did not lead to a different 

result from that of the CATS distribution with the super-additive pricing function. 
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Surprisingly, even when considering a discount for the price of bundles, the cost of the 

composite service appeared to be higher when providers offered more crowded bundles. 

The results of the IPV model are depicted in Fig 5.7.18 

 

Fig 5.7. Impact of bundle crowdedness on cost (discounted pricing function, IPV providers) 

However, an important result regarding the comparison of the cost of the combinatorial 

auction with the non-combinatorial baseline indicated that the price of the composite 

service is much higher when providers offer single-service bids, compared to when we 

have bundling with discounted pricing function for the bundles. 

Moreover, as illustrated in Fig 5.8, the decrease in the cost of the composite service due 

to increase in supply (available bids) can reach up to 50% for the combinatorial auctions 

(α=0.25). While this decrease in cost for the non-combinatorial baseline is around 20%.  

We proceeded to the third stage of the experiment to investigate the reason behind the 

increase in the cost with increasing the size of the bundles.  

                                                 

18 The CV model demonstrated similar patterns which were presented in (Moghaddam et al. 2013). 
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Fig 5.8. Impact of bundle crowdedness on cost ratio (discounted pricing function, IPV providers) 

5.3.2.3 Stage 3 

We initially expected that with increasing the size of the bundles and having a discount 

over the price of the bundles, the cost of the composite service decreases with increasing 

the size of the bundles, that is, the cost decreases as α increases. However, our initial 

experiments did not support this proposition.  

To further investigate this matter, we designed another experiment with full control over 

the generated data set by generating the complete data set rather than using CATS 

distribution. To prepare a combinatorial bid, there are three elements to consider:  

(1) the number of items in each bid 

(2) the items to be included in the bid  

(3) the price of the bid 

We applied a well-known distribution to choose the number and the items in a bid which 

is called the decay distribution (Sandholm 2002). In this distribution, a bid starts with one 

random item. Then, repeatedly a new random item is added to the bid with probability α 

(the bundle crowdedness) until an item is not added to the bid or the bid size reaches the 

maximum number of auctioned items.  

Changing the distribution of the combinatorial bids should not affect the behavior of the 

auction model in finding the optimal allocation. However, different distributions, as listed 

in (Leyton-Brown et al. 2000), generate different combinatorial instances in terms of the 

difficulty to be solved, that is, the computational time to find the optimal solution. The 
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decay distribution is known to be generating some of the hardest instances of 

combinatorial bids, while CATS distributions are considered to be easy (Sandholm et al. 

2005).  

The price of the bundle is calculated using the price function developed in the previous 

stage, assuming IPV providers. We increased the maximum discount to 25% on the 

bundle price, to eliminate the possibility that the observation under investigation is 

resulted from the discount being very small.19 The configuration of the simulation 

parameters for this round of simulation is summarized in Table 5.5. For each combination 

of parameters, 30 problem instances were generated and solved. The collected results 

were averaged. 

Table 5.5. Configuration of the simulation parameters for the experiment 

on bundle crowdedness, Stage 3 

Parameter Values 

Number of Bids 100,150, …, 500 

Number of Tasks in BP 20 

Number of Providers 5 

Bundle Crowdedness (α) 0,0.1,0.2,…,0.9 

Bid Generation Distribution Decay distribution 

Pricing Function of the Bids Sub-additive (discount) 

Max Discount 25% 

After running the simulation, the number of winning bids with 1 service, the number of 

winning bids with 2 services and so on was counted. The result is illustrated in Fig 5.9 

where the sum of winning bids with a specific number of services in them (one service, 

up to 20 services) is plotted against bundle crowdedness. The results indicate that most 

of the winning bids have one service only (almost 92% of all the winners).  

To get a better visibility in the diagram, we divided the data sets to three groups (Fig 5.10): 

first group is the winning bids with one service, second group is the winning bids with 

two services and the third group collectively represents all other winning bids which have 

more than two services. 

                                                 

19 We had repeated the second stage of the experiment with 25% discount which did not change the results. 
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Fig 5.9. Number of winning bids with 1 service, 2 services, up to 20 services versus alpha 

In Fig 5.10, we can see that initially the number of single-service bids winning the auction 

decreases with increasing α. However, when α increases beyond 60%, the number of 

single-service winners increases again. This can be explained based on the allocation rule 

of the single auction mechanism where only one service can be selected for each task in 

the business process. With this constraint, when bundle crowdedness increases, the bids 

are more likely to have overlaps in services they offer. Therefore, the chance of single-

service bids in winning the auction increases.  

 

Fig 5.10. Number of winning bids with 1 service, 2 services, and more than 2 services versus alpha 
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We have plotted the cost of the composite service against α in Fig 5.11. The interesting 

observation is that the cost of the composite service reduces with having more crowded 

bundles in the auction, up to α =60%. After this point, the trend is reversed and the cost 

increases. 

 

Fig 5.11. The cost of the composite service versus alpha  

The results obtained from these two diagrams, Fig 5.10 and Fig 5.11, collectively suggest 

that the increase in the cost of the composite service that incurs along with increasing the 

bundle size is the result of more single-service bids winning the auction. These bids do 

not include any discount for their services which leads to a higher cost of provisioning 

the composite service.  

5.3.3 Analysis of the Solve Time  

We evaluated the solve time of the single auction mechanism using the configuration 

setting in Table 5.6. The solve time included the CPU time of both AMPL (model 

generation) and CPLEX (solving time).20 This was averaged across the 30 independent 

problem instances for each combination of simulation parameters. Fig 5.12 clearly 

demonstrates the exponential time complexity of the composite service selection 

problem. With 300 bids and a business process with 30 tasks, the maximum time is around 

                                                 

20 The “CPU clock” time (second) has been measured by adding the values of the parameters _ampl_time 

and _solve_time. 
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20 minutes which can be acceptable for requesters who need a large composite service 

and have no time criticality. 

Table 5.6. Configuration of the simulation parameters to evaluate the solve time 

Parameter Values 

Number of Bids 100,150, …, 300 

Number of Tasks in BP 10,20,30 

Number of Providers 50 

Bundle Crowdedness (α) 0.75 

Bid Generation Distribution CATS arbitrary 

Pricing Function of the Bids CATS super-additive 

 

 

Fig 5.12. Solve time of the auction mechanism 

5.4 Conclusion 

In this chapter, we proposed an auction mechanism to solve the composite service 

selection problem. The single auction mechanism considers some of the important issues 

in composite service selection which were not fully addressed by the research community. 

The first issue concerns the assumption of web services being offered independently. 

Such an approach ignores the dependencies that exist between the constituent services of 

a composition. Our proposed mechanism is designed based on combinatorial auctions 

which allow more than one item to be auctioned simultaneously and the bidders to submit 

their preferences for the items as in bundles. With allowing bundling in the composite 

service selection, service providers are able to more fully express their preferences by 
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offering bundles of dependent services. This enables the service providers to improve the 

quality of service and to reduce the cost for the bundled services. These, in turn, can 

enhance the providers’ competitive power in the market as well as the consumer’s loyalty.  

Moreover, we addressed the need of the service requester to control the dependability of 

the composite service to the providers and the maintainability of the composition. This 

requirement was realized through defining a mediate concept, that is, the cohesion of the 

composite service. Additionally, we addressed the service requester’s requirement to 

manage the configuration of providers’ involvement in the composition through 

recognizing two patterns: the need for a set of tasks to be provided by the same provider 

or to be provided by different providers. 

The proposed single auction mechanism was formulated as an ILP problem. The 

identified requirements of the service requester, regarding the cohesion and 

configurations of providers in provisioning the composite service, were added to the ILP 

formulation as constraints to be checked while searching for the optimal solution. 

We performed extensive experiments through simulation to evaluate the single auction 

mechanism. The objective of the experiment was to study the impact of two important 

aspects of the proposed mechanism, the cohesion constraint and bundling, on the 

performance metrics.  

Regarding the cohesion constraint, the results show that with combinatorial bids, it is 

more expensive to achieve a composite service with high cohesion than one with low 

cohesion. This is resulted from the allocation constraint which requires exactly one 

service to be chosen for each task. Therefore, the requester needs to choose the right level 

of cohesion considering the trade-off between the cost and the cohesion level. 

Regarding the impact of bundling on cost of the composite service, our experiments 

indicated that: firstly, the cost of the composite service is lower when bundling is allowed 

with discounted bundle prices compared to having non-combinatorial bids (no bundling). 

Secondly, increasing the number of services in bundles can reduce the cost of composite 

service up to a threshold. When the bundle crowdedness goes beyond this threshold, the 

cost begins to increase. We identified the reason to be in relation to the number of single-

service bids winning the auction. After the bundle crowdedness passes the threshold, it 



129 

 

becomes too costly to find non-overlapping bundles. This leads to more single-service 

bids win the auction, and consequently, the cost of the composite service to increase. 
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Chapter 6 

6 A Market for Composite Services 

6.1 Introduction 

In this chapter, we propose a “simultaneous auction mechanism” for the multiple 

composite service selection problem. The objective of our simultaneous mechanism is to 

solve the service selection problem for multiple composite services, rather than a single 

composite service. The “multiple composite service selection” problem is an extension 

of the composite service selection problem toward the vision of a marketplace for web 

services. In the web service selection literature, this study is the first to consider, 

investigate and propose a solution to the problem of multiple composite web service 

selection. 

In section 6.2, we discuss the main functions of a market and the significance of a 

marketplace for web services. Next, the elements of designing such a marketplace are 

described: the specification of the bidding language which includes the web service offers 

and the requests for composite services, and the allocation rule. 

The details of each element’s design are presented in section 6.3. First, the mathematical 

specification of the offers and requests is presented. Next, we have proposed two 

allocation mechanisms to match web service offers to composite service requests in a 

market, named as Full-Matching and Partial-Matching mechanisms. The objective of the 

Full-Matching mechanism is to find service providers for “all the requests” in the market 

at the lowest price, while maintaining the end-to-end quality of the composite services at 

the requested level. On the other hand, the Partial-Matching mechanism aims to find 
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providers for “as many requests” as possible, and then to minimize the procurement cost 

for the set of feasible requests subject to the end-to-end quality constraints. The allocation 

mechanisms are mapped to Integer Linear Programming (ILP) problems.  

In section 6.4, the design of the evaluation process is discussed. The design steps 

comprise: firstly, establishing a baseline for comparing the results; secondly, defining the 

performance metrics; thirdly, discussing the motivating scenarios for a composite 

services’ marketplace which leads to the introduction of four major market sections; and, 

lastly, presenting the stochastic model to generate the simulation data. 

The execution details of the experiment are presented in section 6.5. The formulation of 

the problem chosen for the experiment, the hardware and configuration of the experiment, 

and the objectives of the experiment are discussed here. The objective of the evaluation 

is defined as: comparing the performance of the proposed simultaneous auction 

mechanism to two other mechanisms. The two mechanisms are (1) the single auction 

mechanism proposed in Chapter 5 when applied to a set of requests for composite 

services, one at a time, and (2) a fixed-price mechanism where service requesters fix the 

price to be paid for a composite service. 

The results are presented in section 6.6 in three main parts, along the performance metrics: 

success rate, cost of composite service procurement and the solve time. For each 

performance metric, the comparison is performed along two directions: first, the 

mechanism type (between three mechanisms), and next, between the four market sections. 

Sensitivity analysis is also performed to examine the impact of simulation parameters on 

each performance metric. Finally, we performed statistical analysis to determine whether 

the results are statistically significant or not. 

6.2 A Market for Web Services  

A market is generally defined as the physical or virtual meeting point where buyers and 

sellers set the prices and exchange products or services. One of the main functions of a 

market is to create opportunities for matching of buyers and sellers that provides the 

following benefits (Bakos 1998):  

1. The reduction in the cost of search to find potential buyers or sellers 

2. The reduction in the cost of collecting information on demand and supply 
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3. The reduction in the complexity of price determination of the products or 

services with the help of the market feedback after participating in a sufficient 

number of trades 

4. Depending on the type of items or services to be exchanged, the reduction in 

the cost of physically transferring the product from sellers to buyers.  

While the reduction in the cost of transferring the product is only relevant to physical 

markets, electronic markets are more significant in terms of reducing the consumer’s 

search cost in obtaining information about prices and product offerings, and the supplier’s 

cost in communicating information about their offerings (Bakos 1991). The reduction in 

these costs has led to emergence of new opportunities in electronic markets such as 

aggregation of services and products that traditionally are provided by separate industries 

(Bakos 1998). 

Since the emergence of web services’ technologies, the service-oriented computing 

community have been interested in establishing markets for web services. A web services’ 

market is an electronic online market that offers all the above-mentioned benefits except 

for the last one. In this market, web services’ buyers and sellers can meet and conduct 

business electronically (Papazoglou 2003). It also fosters opportunities for aggregation of 

web services’ supply and demand by offering added-value composite services and 

grouping buying power (Papazoglou 2003). 

Exiting web service directories, where information about web services is published on 

the Internet, provide the meeting point for web service sellers and buyers to some extent. 

However, they provide no further support for the actual exchange to happen. To provide 

service requesters and providers with the possibility of exchanging composite services in 

a market, two aspects need to be considered by the designers of such a market:  

1. Offer and request specification for composite services: the market needs to 

support service providers in offering bundles of services, and support service 

requesters in asking for composite services and their constraints and 

preferences for the composite service, 

2. Allocation mechanism: the market needs to support the offering of allocation 

mechanisms that can perform composite service selection for multiple 

requests. 
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In the previous chapter, we introduced a composite service selection mechanism based 

on combinatorial auctions with the focus being on finding providers for a single 

composite service. Moving toward the vision of a marketplace for web services, in this 

chapter we investigate the problem of composite service selection for multiple requests 

or “multiple composite service selection”.  

6.3 The Design of a Marketplace 

The market of web services includes three main parties: the market maker, service 

requesters and service providers. The market maker is an independent party who creates 

and maintains the market and ensures that the market is open for business (Papazoglou 

2003). The market maker keeps a directory of the tasks which describe the functionality 

of the web services exchanged in the marketplace: service providers offer their services 

to execute these tasks and service requesters require web services to execute these tasks 

to achieve their goal. The market may be a dedicated market, focusing on a specific 

domain such as geographic information system (GIS)-related services, or can be designed 

to be more generic. 

We have assumed that a composite service is defined at a high level as an abstract business 

process (BP) which comprises a set of tasks. For simplicity, we have assumed that the BP 

only includes sequential structures. The existence of other structures (parallel, loop and 

conditional) in the BP only affects our model in terms of the aggregation functions for 

quality attributes such as response time and availability. As we have already discussed in 

subsection 3.3, the problem of mapping the BP’s complex structure to an execution path 

has already been extensively discussed in the literature. Ultimately, the proposed 

techniques which require linear aggregation functions for quality attributes create a 

sequential execution path. With such an approach, our assumption of having a sequential 

BP does not limit the proposed model in terms of covering different structures. 

Service requesters enter the market and register the required composite (or single) 

services, that is, the requests. The specification of each request includes all the tasks in 

its business process, the sequence of the tasks in the business process, the local (for 

individual services) and the end-to-end (for the composite service) QoS constraints and 

the budget constraint. 
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Service providers also register their offered services in the market, that is, the bids or 

offers. They can register single services as well as bundles of services. Similar to the 

requests, the offers are multi-dimensional, including information about the quality and 

the price of the offered services. If the offer includes a bundle of services, the QoS profile 

of each service is presented separately, while the price is specified as an aggregated value 

requested for the bundle as a whole. 

When a new provider or requester enters the market, they initially need to check the 

directory to decide whether or not to attend that market. For example, if a service 

requester finds no commonality between the tasks in the market directory and the tasks 

needed in their request, they might not find it useful to attend that market. Nevertheless, 

providers and requesters can register new tasks in the directory and then submit their 

offers or requests to the market maker. Many requests for a specific new task signals the 

web service providers the market’s need for new services.  

The market maker receives offers and requests and matches the offers to requests at 

specific intervals. The intervals can be based on time limits or the number of active 

participants in the market. In other words, the matching can be performed if the number 

of offers and requests get to a specific number, even if the time limit has not yet been 

reached. After each matching round, the market maker notifies the successful providers 

and requesters and charges them a fee based on the market’s business model. For 

example, the successful participants’ payments to the market maker can be based on the 

number of transactions, or the final price of the composite service. The results are also 

announced to all participants to improve their future decision making. For example, the 

unsuccessful participants might decide to modify their offers and requests based on the 

market feedback or decide to continue with their current setting for more rounds.  

The market maker uses the procurement combinatorial auction model as the basis for the 

allocation mechanism. As the allocation mechanism considers multiple composite service 

requests at the same time, we refer to it as the “simultaneous auction” mechanism to 

distinguish it from “the single auction” mechanism introduced in Chapter 5 that solves 

the service selection problem for a single request. 

The simultaneous auction mechanism matches the offers and requests that exist in the 

market, based on the defined objective function. As discussed in subsection 3.8.3, 

currently two alternative objectives of procurement auctions for web services have been 
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considered in the literature: (1) maximizing the overall utility for the service requester in 

terms of quality and price of the composite service, and (2) minimizing the cost of service 

procurement subject to quality constraints.  

The market maker decides what objective to implement based on the requirements of that 

market’s participants. If requesters have a clear understanding of the trade-off between 

different quality attributes and it is important for them to maximize the achieved quality, 

maximizing the utility is a more appealing objective function and attracts more requesters 

to the market. In other cases, the objective to minimize the cost can engage more 

requesters as it requires less complex specification of the service request (there is no need 

to define weights for quality attributes). Moreover, in a market with this objective, even 

requesters with a focus on quality can define tighter constraints to achieve their desired 

level of quality. In the following formulation, we have focused only on the cost-

minimizing objective function. 

6.3.1 Specification of Offers and Requests 

Let 𝑇 denote the set of all the tasks registered in the market’s directory where 𝑡 is a 

member of the set 𝑇 and 𝑀 is the total number of tasks in the market. 

Let 𝐵 denote the set of all received offers (bids) from all web service providers, with a 

member of the set defined as 𝑏 and 𝑁 is the total number of all received bids. Each bid 𝑏 

is defined as 𝑏 = (𝑇𝑏 , 𝑄𝑏 , 𝑐𝑏), where (Ti ⊆ Task) is the set of tasks that this bid is offering 

web services that can execute them, 𝑄𝑏 is the set of QoS profiles of these web services 

and 𝑐𝑏 is the provider’s requested price to execute these services. 

While 𝑐𝑏 is the price requested for the whole bundle, 𝑄𝑏 is a set including all the QoS 

profiles of the services offered in 𝑏, that is, 𝑄𝑏 = {𝑃𝑏𝑡 | 𝑡 ∈ 𝑇𝑏} where 𝑃𝑏𝑡 is the QoS 

profile of one service. 

Let 𝐿 denote the number of quality of service attributes in a QoS profile of a typical 

service in this market, with 𝑙 being the 𝑙-th quality attribute in the profile. Then, 𝑃𝑏𝑡 is 

defined as 𝑃𝑏𝑡 = {𝑞𝑙𝑏𝑡 | 𝑙 ∈ 𝐿} where 𝑞𝑙𝑏𝑡 is the offered value for the 𝑙-th quality attribute 

of the service in 𝑏, executing 𝑡. 
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As an example, consider the bid b illustrated in Fig 6.1. This bid includes services for 

three tasks: (1) checking the syntax of an email address, (2) sending an email to a specified 

email address, and (3) preparing an invoice for sending the email. The QoS profile 

includes two quality attributes, 𝐿 = {𝑣, 𝑥}, where v represents the availability and 𝑥 

represents the response time. The price requested for this bundle is $5. 

 

Fig 6.1. Example of a bid for a bundle of services 

The three tasks are indexed based on the market directory as 𝑡1, 𝑡2 and 𝑡10. Then we have: 

𝑏 = (𝑇𝑏: {𝑡1, 𝑡2, 𝑡10}, 𝑄𝑏: {𝑃𝑏𝑡1 , 𝑃𝑏𝑡2 , 𝑃𝑏𝑡10}, 𝑐𝑏: $5 ),   

𝑃𝑏𝑡1 = {𝑞𝑥𝑏𝑡1: 2 𝑠𝑒𝑐 , 𝑞𝑣𝑏𝑡1: 99%},  

𝑃𝑏𝑡2 = {𝑞𝑥𝑏𝑡2: 10 𝑠𝑒𝑐 , 𝑞𝑣𝑏𝑡2: 95%},  

𝑃𝑏𝑡10 = {𝑞𝑥𝑏𝑡10: 10 𝑚𝑠𝑒𝑐 , 𝑞𝑣𝑏𝑡10: 99%}. 

Let 𝑅 be the set of all received requests for composite services from all service requesters, 

with a member of the set denoted as 𝑟 and 𝑊 is the total number of all received requests. 

Each request 𝑟 is defined as 𝑟 = (𝑇𝑟 , 𝑃𝑟 , 𝐵𝑟), where 𝑇𝑟 ⊆ 𝑇 is the set of tasks requested in 

𝑟, 𝑃𝑟 is the QoS profile required for the end-to-end quality of the requested composite 

service, and 𝐵𝑟 is the budget constraint to procure services for 𝑟. 

The QoS profile 𝑃𝑟  is a tuple including the quality attributes’ values requested for 𝑟, that 

is, 𝑃𝑟 = { 𝑞𝑙𝑟 | 𝑙 ∈ 𝐿}, where 𝑞𝑙𝑟 is the minimum or maximum (depending on the type of 

quality attribute) acceptable value for the 𝑙-th end-to-end quality attribute of the 

composite service, r.  
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As an example, consider the composite service request r as illustrated in Fig 6.2. This 

request needs services to execute five tasks. The end-to-end QoS requirements of this 

request specify that the service availability should be over 90% and the response time 

should not exceed 25 msec. The budget available to procure all the required web services 

is $15.   

 

Fig 6.2. Example of a request for a composite service 

The required tasks are indexed based on the market directory to be 𝑡1, 𝑡2, 𝑡8, 𝑡9 and 𝑡10. 

Then we have: 

𝑟 = (𝑇𝑟: {𝑡1, 𝑡2, 𝑡8, 𝑡9, 𝑡10}, 𝑃𝑟: {𝑞𝑥𝑟: 25 𝑚𝑠𝑒𝑐, 𝑞𝑣𝑟: 90%}, 𝐵𝑟: $15)  

6.3.2 Full-Matching of Requests and Offers 

In this section, we explain the first simultaneous auction mechanism proposed for the 

multiple composite service selection problem; called the Full-Matching mechanism. This 

allocation mechanism targets all the requests for composite services and tries to find their 

best matching offers. With multiple requests in the market, the objective needs to 

minimize the cost for all requests collectively. This means that each service requester 

might not get the lowest price compared to what they could get if they could have an 

auction with all the bids just for themselves. However, the prices are Pareto optimal for 

the service requesters jointly: no individual requester can achieve a lower price without 

making another requester worse off.  

The objective function is defined in function (6-1) as to minimize the cost for all the 

requests. The decision variable is denoted by 𝑧𝑏𝑟 (𝑏 ∈ 𝐵, 𝑟 ∈ 𝑅) to be 1 if offer b is 

selected for request r and 0 otherwise.  
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Constraint (6-2) ensures that for each task in each request, there is exactly one winning 

bid. In this constraint, 𝑎𝑏𝑡 is an arbitrary member of the matrix 𝐴𝑁×𝑀. This matrix 

provides the mapping of the bids to the tasks in the market, where 𝑎𝑏𝑡 is 1 if Tb includes 

task t and 0 otherwise. The budget constraint for each service request is specified in 

constraint (6-3). It states that the total cost of procuring a composite service should not 

exceed the requester’s specified budget.  

The constraints over other quality attributes are presented in a general form in (6-4) and 

(6-5), depending on the type of quality attribute. We define a quality attribute to be a 

“positive” attribute if higher values are more desirable for it, including attributes such as 

availability and reputation. Similarly, a “negative” quality attribute is one for which lower 

values are more desirable, such as response time and recovery from failure time. 

Constraint (6-4) is used for positive quality attributes by ensuring that the minimum 

desirable value of that quality attribute is met. Constraint (6-5) is applied for negative 

quality attributes by setting a maximum acceptable value.  

In these constraints, each quality attribute 𝑙 has a specific aggregation function, 𝐺𝑆
𝑙 , that 

calculates the aggregation of the quality attributes’ values of the services executing the set 

of tasks 𝑇𝑟. The aggregated value of the 𝑙-th quality attribute value needs to be larger or 

smaller than the requested end-to-end quality attribute’s value for the request r. The 

aggregation function for quality attributes can be similar to the ones presented in the 

literature, as discussed in subsection 3.3. Examples of aggregation functions for 

availability and response time were defined in subsection 5.3.2.  

An interesting difference between the formulation of budget constraint and of other 

quality attributes is that the former needs to be aggregated only over the set of winning 

bids while the latter needs two nested aggregations: over the set of winning bids as well 

as over the set of tasks of a request. The reason is that in the specification of an offer for 

a bundle of services, the price of the bundle is defined as a single value for the whole 

bundle, whereas the other quality attributes are defined separately for each service in the 

bundle. As there will be only one winning bid for each request’s task, constraint (6-2), 

the aggregation function over the set of bids, is a simple sum. The overall end-to-end 

aggregation of each quality attribute depends on the specific aggregation function of that 

quality attribute, defined by the function 𝐺𝑙. The function 𝐺𝑙 takes the quality attribute 
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values of all the tasks in a request (grouped by the union operator) and calculates the end-

to-end value of that quality attribute. 

Minimize 

 

∑∑𝑐𝑏 ∗ 𝑧𝑏𝑟
𝑏∈𝐵𝑟∈𝑅

 
(6-1) 

Subject to:    

Full allocation 

constraint 

∀𝑟 ∈ 𝑅, 

∀𝑡 ∈ 𝑇𝑟 
 ∑ 𝑎𝑏𝑡 ∗ 𝑧𝑏𝑟
𝑏∈𝐵

= 1 
(6-2) 

Budget constraint ∀𝑟 ∈ 𝑅  ∑ 𝑐𝑏 ∗ 𝑧𝑏𝑟
𝑏∈𝐵

≤ 𝐵𝑟 
(6-3) 

Quality 

constraints 

∀𝑟 ∈ 𝑅, 

∀𝑙 which is a 

positive quality 

attribute 

𝐺𝑙 (⋃∑(𝑞𝑙𝑏𝑡 ∗ 𝑎𝑏𝑡 ∗ 𝑧𝑏𝑟)) ≥

𝑏∈𝐵𝑡∈𝑇𝑟

  𝑞𝑙𝑟 (6-4) 

 

∀𝑟 ∈ 𝑅, 

∀𝑙 which is a 

negative quality 

attribute 

𝐺𝑙 (⋃∑(𝑞𝑙𝑏𝑡 ∗ 𝑎𝑏𝑡 ∗ 𝑧𝑏𝑟)) ≤

𝑏∈𝐵𝑡∈𝑇𝑟

  𝑞𝑙𝑟 

 

(6-5) 

 

The bidding language presented by this formulation is the OR* language, which has the 

expressive power of both OR and XOR languages: on one hand, each provider can have 

any number of winning bids as in an OR language, on the other hand, as each task of a 

BP should have exactly one service executing it, providers can simulate the XOR 

combinations by adding a common dummy task to the bids that need to be XOR with 

each other. However, to have the OR* language, the market maker needs to support the 

introduction and registration of dummy tasks in the market directory.  

6.3.3 Partial-Matching of Requests and Offers 

The main limitation of the Full-Matching mechanism is that even if one request is not 

feasible due to budget or quality constraints, the whole auction fails and the mechanism 

fails to match any of the requests. To overcome this limitation, we propose the Partial-

Matching mechanism which relaxes the Full-Matching mechanism requirement to find 

providers for all the requests. The Partial-Matching mechanism aims to find the optimal 
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set of providers for as many requests as possible. To achieve this, we need to change both 

the objective function (6-1) and the allocation constraint (6-2). 

We defined a new objective function, equation (6-6), which consists of two parts 

(objectives). The first objective is to minimize the cost for all the requests (the same as 

before) and the second objective aims to maximize the number of feasible requests. The 

feasibility of a request is indicated by a new decision variable, 𝑦𝑟 which is 1 if the request 

𝑟 is feasible and 0 otherwise. 

To construct one linear objective function from the two parts, we have used the Big-M 

method (Padberg 1999, p.54). This method is based on using a sufficiently large number, 

M, in linear optimization problems. In our case, applying the Big-M technique to our 

minimization problem leads the optimization software (solver) to first maximize the part 

which includes the negative M, and then minimize the other part of the objective function.  

The relaxation of the allocation constraint (6-2) is achieved by defining a set of new 

constraints, (6-7) to (6-11), and a new decision variable, 𝑥𝑡𝑟, associated to each task of 

each request. The decision variable 𝑥𝑡𝑟 is equal to 1 if task 𝑡 in request 𝑟 is feasible and 

0 otherwise. A request’s task is called “feasible” if a bid is selected to provision it. Based 

on this definition, if the request 𝑟 does not contain task 𝑡, then 𝑥𝑡𝑟 needs to be 0, which is 

forced by constraint (6-7). 

The set of constraints, (6-8) to (6-11), defines the relationship of a feasible request, a 

feasible request’s task and a winning bid. Constraint (6-8) states that if a request is 

feasible, then “all” of its tasks should feasible. In this constraint, 𝐷 is a 𝑀 ×𝑊 matrix 

that defines the mapping of the tasks in the market to the requests, with an element 𝑑𝑡𝑟 

that is equal to 1 if 𝑟 includes 𝑡 and 0 otherwise. Using this matrix, the set of tasks in a 

request 𝑟 are defined as 𝑇𝑟 = {𝑡| 𝑏𝑡𝑟 = 1}. Constraint (6-9) indicates that if a request is 

not feasible, “none” of its tasks should be feasible. Moreover, a request being infeasible 

also means that no bids should be assigned to it, specified by constraint (6-10). Constraint 

(6-11) ensures that if a task in a request is feasible, then there is one winning bid 

containing that request’s task.  

Constraints (6-12), (6-13) and (6-14) present the budget constraint and the quality 

requirements for positive and negative quality attributes for the feasible requests. The 
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notations presented above to formulate the Full-Matching and Partial-Matching 

mechanisms are summarized in Table 6.1. 

Minimize 

 

∑∑𝑐𝑏 ∗ 𝑧𝑏𝑟
𝑏∈𝐵𝑟∈𝑅

−𝑀 ∗ ∑𝑦𝑟
𝑟∈𝑅

 

 

(6-6) 

 

 
∀𝑟 ∈ 𝑅, 

∀𝑡 ∉ 𝑇𝑟 
 𝑥𝑡𝑟 = 0 (6-7) 

Subject to: ∀𝑟 ∈ 𝑅 𝑖𝑓 𝑦𝑟 = 1 𝑡ℎ𝑒𝑛 ∑𝑥𝑡𝑟
𝑡∈𝑇𝑟

∗ 𝑑𝑡𝑟 = ∑ 𝑑𝑡𝑟
𝑡∈𝑇𝑟

 

 

(6-8) 

 

 

∀𝑟 ∈ 𝑅 𝑖𝑓 𝑦𝑟 = 0 𝑡ℎ𝑒𝑛 ∑𝑥𝑡𝑟
𝑡∈𝑇𝑟

∗ 𝑑𝑡𝑟 = 0 (6-9) 

 

∀𝑟 ∈ 𝑅 𝑖𝑓 𝑦𝑟 = 0 𝑡ℎ𝑒𝑛 ∑𝑧𝑏𝑟
𝑏∈𝐵

= 0 (6-10) 

 
∀𝑟 ∈ 𝑅, 

∀𝑡 ∈ 𝑇𝑟 
𝑖𝑓 𝑥𝑡𝑟 = 1 𝑡ℎ𝑒𝑛 ∑𝑎𝑏𝑡 ∗  𝑧𝑏𝑟

𝑏∈𝐵

= 1 (6-11) 

 

Budget 

constraint 

∀𝑟 ∈ 𝑅 𝑖𝑓 𝑦𝑟 = 1  𝑡ℎ𝑒𝑛 ∑𝑐𝑏 ∗ 𝑧𝑏𝑟
𝑏∈𝐵

≤ 𝐵𝑟 (6-12) 

 

Positive 

quality 

constraints 

∀𝑟 ∈ 𝑅 𝑖𝑓 𝑦𝑟 = 1  𝑡ℎ𝑒𝑛 𝐺𝑙 (⋃∑(𝑞𝑙𝑏𝑡 ∗ 𝑎𝑏𝑡 ∗ 𝑧𝑏𝑟)) ≥

𝑏∈𝐵𝑡∈𝑇𝑟

  𝑞𝑙𝑟 (6-13) 

 

Negative 

quality 

constraints 

∀𝑟 ∈ 𝑅 𝑖𝑓 𝑦𝑟 = 1  𝑡ℎ𝑒𝑛 𝐺𝑙 (⋃∑(𝑞𝑙𝑏𝑡 ∗ 𝑎𝑏𝑡 ∗ 𝑧𝑏𝑟)) ≤

𝑏∈𝐵𝑡∈𝑇𝑟

  𝑞𝑙𝑟 (6-14) 

 

In the above formulation, we had used “if ... then” statements which are not linear. To 

map the problem to an Integer Linear Programming (ILP) problem, we need to linearize 

these constraints by removing the “if … then” statements. 

Revising the non-linear constraints (6-9) and (6-10), we can see that they collectively lead 

to the conclusion that ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇𝑟 , 𝑥𝑡𝑟 = 𝑦𝑟. The linear form is presented in 
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constraint (6-15). The linearized version of constraints (6-10) and (6-11) are presented 

below in constraints (6-16) and (6-17), respectively. The linearization of the constraints 

(6-12), (6-13) and (6-14) for budget and quality attributes are presented in constraints 

(6-18), (6-19) and (6-20), respectively: 

∀𝑟 ∈ 𝑅, 
∀𝑡 ∈ 𝑇𝑟 

𝑥𝑡𝑟 = 𝑦𝑟  (6-15) 

∀𝑟 ∈ 𝑅, 
∀𝑏 ∈ 𝐵 

𝑧𝑏𝑟 ≤ 𝑦𝑟  (6-16) 

∀𝑟 ∈ 𝑅, 
∀𝑡 ∈ 𝑇𝑟 

∑𝑎𝑏𝑡 ∗  𝑧𝑏𝑟
𝑏∈𝐵

= 𝑥𝑡𝑟 (6-17) 

∀𝑟 ∈ 𝑅, 𝐵𝑟 −∑𝑐𝑏 ∗ 𝑧𝑏𝑟 ≥

𝑏∈𝐵

 𝑦𝑟 − 1  (6-18) 

∀𝑟 ∈ 𝑅, 
l: a positive 

quality attribute 
𝐺𝑙 (⋃∑(𝑞𝑙𝑏𝑡 ∗ 𝑎𝑏𝑡 ∗ 𝑧𝑏𝑟))

𝑏∈𝐵𝑡∈𝑇𝑟

 ≥  𝑞𝑙𝑟 ∗ 𝑦𝑟 (6-19) 

∀𝑟 ∈ 𝑅, 
l: a negative 

quality attribute 
𝐺𝑙 (⋃∑(𝑞𝑙𝑏𝑡 ∗ 𝑎𝑏𝑡 ∗ 𝑧𝑏𝑟)) ≤

𝑏∈𝐵𝑡∈𝑇𝑟

  𝑞𝑙𝑟 ∗ 𝑦𝑟 (6-20) 
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Table 6.1. Notation used for the formulation of Full-Matching and Partial-Matching mechanisms  

Notation Definition 

T the set of all tasks registered in the market’s registry 

M the total number of tasks in the market 

𝑡 an element of the set T 

L the set of quality attributes in a QoS profile 

𝑙 an element of the set L  

B the set of all received offers (bids) 

N the total number of all received bids 

𝑏 an element of the set B 

Tb the set of tasks that b offers web services to execute (𝑇𝑏 ⊆ 𝑇) 

𝑐𝑏 the cost of providing service(s) for the task(s) in 𝑇𝑏  

𝑄𝑏  the set of the offered QoS profiles for the services executing Tb 

𝑃𝑏𝑡  the QoS profile of the service executing task t in b bi = (Ti, ci, Qi) 

𝑞𝑙𝑏𝑡  the value of 𝑙-th quality attribute function offered for the task t in bid b 

R the set of all received requests from all service requesters 

W the total number of all received requests 

𝑟 an element of the set R 

𝑇𝑟 the set of tasks requested in r (𝑇𝑟 ⊆ 𝑇) 

Br the budget constraint to procure 𝑇𝑟 

𝑃𝑟  the QoS profile requested for the end-to-end quality of the composite service 

specified by request r 

𝑞𝑙𝑟  the value of the 𝑙-th quality attribute, requested for r 

𝑧𝑏𝑟 the decision variable to be 1 if offer b is selected for request r 

𝐴𝑁×𝑀 the matrix mapping the bids to the tasks in the market 

𝑎𝑏𝑡  an element of the matrix 𝐴𝑁×𝑀 

𝑦𝑟 the decision variable to be 1 if the request r is feasible, 0 otherwise 

𝑥𝑡𝑟 the decision variable to be 1 if t in r finds a provider, 0 otherwise 

𝐵𝑀×𝑊 the matrix, mapping the set of tasks in the market to the requests 

𝑏𝑡𝑟 an element of matrix 𝐵𝑀×𝑊  

 

6.3.4 Providers’ Resource Limitation  

In the formulation presented so far to respond to the multiple composite service selection 

problem, each bid can be selected for multiple requests. This means that this formulation 

does not impose any restrictions on the providers’ capacity to offer their services. Such a 

formulation can be useful in markets where providers claim unlimited resources.   

However, when providers have limit resources, we need to add an appropriate constraint 

to represent resource limitation. The simplest case would be to limit each bid to be 

assigned to at the most one request, as depicted in constraint (6-21). If a provider is willing 

to offer a bid more than once, they can simply replicate the bid with different 

identifications. Alternatively, it is possible to define different resource limitation 
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constraints for different providers, changing “one” at the right-hand side of the constraint 

to the number of times a bid can be selected:  

Resource limitation constraint ∀𝑏 ∈ 𝐵,   ∑ 𝑧𝑏𝑟
𝑟∈𝑅 

  ≤ 1   (6-21) 

6.4 Experiment Design 

To evaluate the proposed simultaneous auction mechanism, we have conducted extensive 

experiments through simulation. The objective of the experiments is to compare the 

performance of the proposed Partial-Matching simultaneous auction mechanism with 

appropriate baseline mechanism(s).21 To achieve this, we need to define the performance 

metrics and the baseline for comparison. 

The design of the experiment is in line with our research methodology, previously 

explained in Chapter 4. Based on this methodology, the evaluation process consists of the 

following main elements:  

 Define the performance metrics to be measured, 

 Establish a baseline, 

 Identify the scenarios to be investigated, that is, the market sections to be studied, 

 Design the stochastic model to generate the input data, 

 Determine the seeding for the simulation. 

6.4.1 Performance Metrics 

We have identified a set of important performance criteria to assess the simultaneous 

auction mechanism based on the literature for composite service selection and auction 

theory. The performance metrics comprise:22 

                                                 

21 From this point, whenever we refer to the simultaneous auction mechanism, it is in fact the Partial-

Matching formulation. 
22 Considering the objective function which is to minimize the procurement cost, we did not find it useful 

to define performance metrics to measure utility. Therefore, the design of the experiment is for the setting 

where offers and requests include a monetary element (cost or budget), and there is no need to other quality 

attributes. 
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1. Success Rate (SR): the number of feasible requests over the total number of 

requests in each simulation round (with specific number of bids and requests), 

2. Cost per composite service (CPC): the average cost of procuring a composite 

service in each simulation round, 

3. Solve time: the time taken by the optimization software to find the set of 

successful requests in each simulation round. 

A simulation round starts with a specific number of requests and offers to be matched. 

The simultaneous auction performs service selection for all the requests in one matching 

round. Therefore, for the simultaneous auction the simulation round is the same as the 

matching round. However, the single auction and the fixed-price mechanisms perform 

the matching of the requests, one at a time. This means that a simulation round for these 

two mechanisms includes multiple matching rounds, to be exact, equal to the number of 

requests in that simulation round. 

6.4.2 Establish a Baseline  

The proposed simultaneous auction mechanism solves the composite service selection 

problem by considering all existing requests at the same time. We compared this 

mechanism with two other mechanisms which solve the service selection problem for 

multiple requests, one at a time: (1) the single auction mechanism introduced in  

Chapter 5 when applied to more than one request, and (2) a fixed-price mechanism where 

the service requester fixes the price to be paid for a composite service.  

While the simultaneous auction demonstrates a long-term strategy for service allocation 

(by waiting for a specific number of requests to arrive the market or the time to reach to 

a specific interval), the baseline mechanisms have a greedy short-term strategy by solving 

the problem for each request.  

6.4.2.1 Single Auction Mechanism 

We compare the performance of the proposed simultaneous auction mechanism to that of 

the single auction mechanism discussed in Chapter 5. The single auction solves the 

composite service selection problem for a single request without considering others. The 

comparison between the two mechanisms is in fact comparing the short-term greedy 

strategy of the single auction with the long-term strategy of the simultaneous auction 
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mechanism. This comparison is interesting as all other current approaches to solve the 

composite service selection problem, discussed in Chapter 3, have considered one request 

only. They can only be extended to a setting with multiple requests by solving the problem 

for each request separately. We expect that the long-term liberal strategy of the 

simultaneous auction achieves better performance compared to the short-term selfish 

strategy of the single auction.  

In our experiment design, the single auction mechanism solves the multiple composite 

service selection problem by considering the requests one by one, based on the first-come, 

first-served (FCFS) policy. For each request, the auction aims to find the lowest 

procurement cost while satisfying all other allocation constraints. If the auction is 

successful, the winning bids are removed from the pool of offers and the auction starts 

over for the next request with the remaining available offers.  

6.4.2.2 Fixed-price Mechanism 

Auctions and their dynamic pricing strategy are seen as efficient alternatives to the fixed 

pricing policy, in electronic markets on the Internet in general (Strauss et al. 2009; Lee 

and Szymanski 2007; Wurman 2001) and in many domains such as cloud computing in 

particular (Zaman and Grosu 2013; Mihailescu and Teo 2010). Therefore, in auction 

literature, a fixed-price mechanism is usually used as the baseline against an auction 

model which allows dynamic pricing.  

The fixed pricing policy can be implemented by either the buyer or the seller depending 

on who is setting up the trade. In settings where there are items for sale, a seller with the 

fixed pricing strategy determines a static price for the items and the buyers can take it or 

leave it. While, in a procurement setting where there is a buyer with a fixed pricing policy, 

they fix the price to be paid for obtaining the products or services and the buyers can 

either take the offer or leave it. In both these settings, the trader with the fixed pricing 

policy does not have the possibility of choosing among all the offers. Rather, the fixed-

price mechanism aims to find the first business partner who agrees to trade at the 

predetermined price. 

As we model the composite service selection as a reverse or procurement auction, in the 

baseline fixed-price mechanism, it is the service requester (buyer) who declares a fixed 

price that they are willing to pay for the composite service. This price is also known as 
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the willingness to pay. For each request, the fixed-price mechanism looks for the first 

feasible solution (set of service offers) which its total price is below the declared 

willingness to pay of the requester and satisfies all the other allocation constraints.  

The fixed-price mechanism considers requests and offers based on the first-come, first-

served (FCFS) policy. After a successful allocation of web services to a request, the set 

of allocated services are removed from the pool of available offers and the search 

continues for the next request with the remaining services.  

6.4.3 Scenarios to Investigate: Market Sections  

Based on the review of the literature on the markets for web services, we decided to 

perform our experiment in four important market sections for web services, rather than in 

a general market. These sections are formed based on two factors, as depicted in 

Table 6.2:  

1. The market economy size which categorizes the markets into small economy and 

large economy, adopted from Tang (2004).  

2. The composite service complexity which divides the markets into markets for 

simple composite services and markets for complex composite services, based on 

Weinhardt et al. (2011). 

Table 6.2. The four market sections in the experiments 

Composite Service  

Complexity 
 

Economy Size 

SIMPLE 

 

COMPLEX 

 

SMALL  small-simple small-complex 

LARGE  large-simple large-complex 

6.4.3.1 Economy Size 

The economy size of a market is determined by the number of participants in that market 

which, in our case, consists of the number of service providers and the number of service 

requesters. Clearly, the more participants attending the market, the larger the economy 

size of that market is.  
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The economy size of a market for a particular domain of web services is affected by the 

maturity of the web service users in that domain. In newly formed communities or the 

ones with less maturity regarding the web service’s technologies, the number of service 

offers and requests are limited. In more mature communities, the number and variety of 

the available services and requests for single and composite service are considerably 

larger. 

A more mature community benefits from having more participants: with the number of 

providers increasing, the number and variety of single and bundled services expand and 

the competition to offer better quality with lower prices increases. This encourages more 

requesters to attend the market, which in turn, attracts a larger number of providers and 

persuades them to develop new web services for the market.  

6.4.3.2 The Complexity of Composite Services  

In Weinhardt et al. (2011a, p.31), two factors are suggested as the basis for dividing the 

web services’ market into four sections (Fig 6.3):  

 The degree of cross-organizational interaction which divides the interaction into 

either no interaction (one provider offers one or more services) or existence of 

interaction (multiple providers offer aggregated services),  

 The degree of composition complexity which divides services into single (or, 

more accurately, simple) and complex services. 

Regarding the first aspect on having one provider or multiple providers offering 

aggregated services, composite web service selection mostly involves more than one 

provider in the provisioning of a composite service. As web services offer simple atomic 

functionalities, it is more likely to procure different services from different providers 

especially if the required composite service is rather large and complex. Therefore, in our 

study we are not dealing with market sections where one provider offers all the aggregated 

services. 
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Fig 6.3. Web services’ market sections (Weinhardt et al. 2011a) 

Regarding the second aspect on simple or complex services, composite web services can 

range from being simple to complex. The two extremes, simple and complex, are 

motivated by the current literature focusing on two application domains for composite 

services:  

1. Mobile computing (Lamparter 2007)  

2. Scientific workflows (Tan and Zhou 2013; Néron et al. 2009; Ludäscher et al. 

2006; Oinn et al. 2004) 

In the following section, a description of each application domain is provided and a 

motivating scenario for that domain is presented. 

6.4.3.2.1 Mobile Applications 

With recent advances in technologies for mobile devices, such as increased computational 

power and increased Internet bandwidth, it has become possible for mobile users to carry 

out more sophisticated operations. However, due to the limited resources of mobile 

devices, parts of these operations are performed on remote computers with the help of 

web services. In mobile applications, the composite services are usually not very complex 

and large due the resource limitations of mobile devices which prevent their users from 

defining very complex queries and workflows. In this environment, the service users are 

generally individual end-users. They usually do not need mission critical services 

(availability), but response time can be very important. 
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Motivating Scenario in Mobile Applications: Mia is a mobile user in Australia. She often 

forgets to fill up her car’s petrol tank. Therefore, she found it helpful to subscribe to a 

mobile application called FuelBuddy which gives her the location of the cheapest fuel 

station, closest to her current location. FuelBuddy combines several services to prepare 

the result for Mia and, in the end, only sends her mobile the route to the first couple of 

options. FuelBuddy outsources these services from various service providers over the 

Internet. The business process of this composite service is depicted in Fig 6.4. 

 

Fig 6.4. A mobile computing scenario: FuelBuddy 

6.4.3.2.2 Scientific Workflows  

Information technology (IT) has revolutionized the way science is conducted in many 

fields such as bioinformatics, biodiversity, life science and astronomy. In a typical 

experiment in these areas, many researchers from different research groups are involved, 

needing to collaborate and experiment on a large amount of distributed data, using 

distributed resources. Therefore, the complexity of manually conducting experiments has 

been a challenge for researchers in these fields. 

Scientific workflows have emerged to tackle the complexity of conducting scientific 

experiments. A scientific workflow consists of a set of computational or data 

manipulation steps to process, transform and carry out the data in a distributed 

environment (Gil et al. 2007). Each step specifies a computation to be executed by a 

software program such as a web service or a legacy system. These steps are chained based 

on the specification of the workflow structure. The requested workflows are usually very 
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complex and may include tens of tasks. The requesters have constraints regarding the 

accuracy of the services (certified by third parties), and preferences about the privacy and 

security of the data. 

Motivating Scenario in Scientific Workflows: Protein sequence analysis or protein 

sequencing refers to the techniques used to determine the protein’s amino acid and its 

conformation. With the help of these techniques, researchers can identify the similarities 

between novel sequences and well-characterized database sequences to answer questions 

like: What is the protein under study? To what family does it belong? What is its function? 

How can we explain its function in structural terms?23 

The analysis of protein sequence data was previously restricted to those with access to 

mainframes or expensive desktop computer programs. It is a very time-consuming 

process which can take up to two days. Nowadays, with online tools and services 

available, these restrictions are largely eliminated. Many web services have been 

developed to search the current protein databases, and many other web services now exist 

for performing different analyses of the data. 

The workflow illustrated in Fig 6.5 performs a generic protein sequence analysis, adopted 

from the website, myExperiment.24 This site is a social networking site for scientists 

where they can share scientific workflows they have created. The workflows can be 

developed using any of the several tools available such as Taverna25 (Oinn et al. 2004), 

Kepler26, rapidminer27 and LONI Pipeline.28 Some of these tools, such as Taverna and 

Kepler, allow researchers to incorporate already existing web services in their workflow 

model as well as executing the workflow. 

                                                 

23 <http://www.biochem.ucl.ac.uk/bsm/dbbrowser/jj/info4frm.html> 
24 <http://www.myexperiment.org/> 
25 <http://www.taverna.org.uk/> 
26 <https://kepler-project.org/> 
27 <http://rapidminer.com/> 
28 <http://pipeline.bmap.ucla.edu/> 

http://www.biochem.ucl.ac.uk/bsm/dbbrowser/jj/info4frm.html
http://www.myexperiment.org/
http://www.taverna.org.uk/
https://kepler-project.org/
http://rapidminer.com/
http://pipeline.bmap.ucla.edu/
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Fig 6.5. Scientific workflows scenario: protein sequence analysis (M.B. Monteiro 2008) 

6.4.4 The Stochastic Model to Generate Data 

While there are some data for real individual web services’ quality attributes such as the 

Quality of Web Service (QWS) data set by Al-Masri and Mahmoud (2007), there is no 

public information on web services’ pricing or bundling. Therefore, we designed a 

stochastic data generation model based on the literature of combinatorial auctions. The 

design of the model includes: firstly, a parametric model to generate data so that it is as 
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close as possible to real-world web services’ offers and requests and, secondly, 

establishing a careful starting configuration for seeding the parameters used in simulation.  

6.4.4.1 Data Generation Model 

In the evaluation of the simultaneous auction mechanism, we need to have the data for 

bids as well as the requests. The data generation model follows three steps to generate the 

data: 

Step 1. Generating the tasks in the market: 

The model starts by generating a fixed number of tasks for the market, based on the given 

value for the simulation parameter Tasks_Number. This is the set of tasks that are mostly 

relevant to a particular business domain, and therefore, there is a community of service 

providers and requesters interested in these tasks.  

Step 2. Generating the set of service providers: 

In the second step, a fixed number of service providers will be created, based on the given 

value for the simulation parameter Providers_Number. Each provider will have an 

independent valuation for each task, drawn from a uniform distribution between [1,100]. 

This is referred to as Independent Private Valuation (IPV) model in auction theory (Kagel 

and Levin 1993) and is similar to the CATS approach in generating the prices for the 

items under auction. Participants with an IPV model only know their own valuation and 

they do not care about others’ valuations for the items being auctioned. The IPV model 

is the common assumption in the auction and mechanism design literature.29 

Subsequently, each provider will be assigned a discount factor which is drawn from a 

uniform distribution between [0, Max_Discount], where Max_Discount is the maximum 

discount given by providers in that market.   

                                                 

29 As discussed in subsection 5.3.2.2 (stage 2), another valuation function in auction theory is called “the 

common value” where the value of offering the service for a task is more or less the same for all providers, 

but each provider’s estimate for how much they can charge to sell the service in the market is different. 

Although this approach seems to be more realistic than the IPV, it is not used very often in research and 

experiments. One reason might be the complexity of analysis related to games based on this model. For 

example, the winners of a game with this valuation model will always suffer from the winner’s curse. 

Moreover, in the previous chapter, the results of the experiments with the two valuation functions did not 

lead to significant difference in the cost or success rate. Therefore, we decided to base the simulation for 

the simultaneous auction on the more commonly used independent private valuation (IPV) model.   
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Step 3. Generating the offers (bids): 

In the third step, a fixed number of combinatorial offers (bids) is generated for one 

simulation round based on the given value for the simulation parameter Offers_Number. 

Offers are then randomly assigned to providers. This means that each provider might have 

one or more bids active in the market. Each bid has the following elements to be 

considered during bid generation: 

1. Number of services to be offered in the bid 

2. The services to be offered 

3. The price for the bundle. 

To decide the number and the services in each bid, we have two options:  

1. Uniform distribution: m, the number of services in each bid, is drawn from a 

uniform distribution between [1, M], where M is the number of tasks in the market. 

Then, choose m random tasks from the set of M tasks, and add the equivalent 

services to the bid. 

2. Decay distribution: Consider a new parameter, α < 100, which determines the bid 

(bundle)’s crowdedness. α can be set at different values for different providers or 

can have the same value across all providers in the market. Randomly, choose the 

first service to be included in the bid. Then, draw a random number between 

[0,100]. If this number is smaller than α, choose another service randomly to be 

added to the bundle and start over, otherwise stop.  

We chose the decay distribution option as it is said to generate harder instances of 

combinatorial bids for solvers (Sandholm et al. 2002). To set α, we initially experimented 

with setting a different α for different providers. As the average α across all providers had 

been close to 50%, the average size of the bids would be less than having three services. 

This would create simple combinatorial bid instances. To have more variety of simple 

and complex bids, we decided to keep α fixed for the whole market on 75%.  

The price requested for the services offered in a bid is calculated as the sum of the 

provider’s valuations for the services in the bid, minus a discount which is calculated 

based on the provider’s discount factor. 
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Step 4. Generating the requests for composite services  

In the final step, a fixed number of requests is generated in the market based on the given 

value for the simulation parameter Requests_Number. To specify a composite service 

request, we needed similar elements to those of a bid: 

1. The size of the composite service (CS) 

2. The tasks requested in the CS 

3. The requester’s budget constraint to procure the CS. 

Based on the market sections considered, the composite services are generated in two 

sizes: small for a market with simple CSs or large for a market with complex CSs. The 

tasks in a request are randomly chosen from the set of tasks in the market. To calculate 

the budget constraint, firstly, the requester’s valuation for each task is generated based on 

the IPV model. Then, the budget is calculated as the sum of the requester’s valuations for 

the tasks in that request.  

Note that, as the data generation model does not guarantee the existence of at least one 

bid for each task in the market directory, there might be some service requests including 

tasks for which no service is being offered. Such a scenario is very likely to happen in a 

real-world web service market. This means that requesters are interested in a specific 

service that is not currently offered and it signals the providers the need for developing 

such a service. However, apparently all the requests including such tasks would be 

infeasible, regardless of the allocation mechanism.  

6.4.4.2 Seeding the Parameters  

Due to the absence of publicly available real data for web services’ offers and requests, 

and lack of similar experiments on web services’ markets in the current literature, seeding 

of the simulation parameters was a challenging problem for this study. The main difficulty 

was related to visualizing a marketplace for web services: What would be the likely 

number of service bids or requests in such a market? Or what would be the range of 

numbers? What is the likely size of composite services requested in that marketplace?  

To answer these questions, we referred to the existing communities around web services 

on the Internet. These communities currently do not have the functionalities of a market, 
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that is, price discovery or facilitating the exchange. Nevertheless, they can be a 

representation of marketplaces in the future.  

We believe that future markets for web services will focus on specific domains, rather 

than being a generic marketplace. Similar to the existing communities of web services 

around different domains, there will be markets focusing on different areas, such as GIS-

related web services to retrieve, store, display and analyze GIS-enabled information. 

General web services might attend domain-specific markets as well as more generic ones. 

Our belief is supported by the studies that we performed over some of the real-world 

examples of web services’ markets. Companies interested in providing a marketplace for 

web services have moved toward offering more specialized web services in a specific 

domain, rather than offering an environment for exchanging all sorts of web services. For 

example, StrikeIron30 and Xignite31 are two start-up companies which initially appeared 

as general web services’ markets (Blau et al. 2010). However, they later focused on 

offering services in specific domains: data quality validation and verification web 

services in the case of StrikeIron, and financial services in the case of Xignite. This trend 

pictures the web services’ market, not as a general purpose market, but rather as 

specialized, domain-dependent markets. 

In our studies, we reviewed active communities of web service providers and requesters 

focusing on different domains, including but not limited to: biodiversity research, GIS-

related web services, life science research, astronomy and eLearning web services. The 

website, ProgrammableWeb, also provides information on web services and their users, 

categorized in more than 60 domains.  

Our search showed that, depending on the maturity level of the community of web service 

users and providers, they form small or large communities (the economy size of the 

communities). Moreover, the services offered in these communities can be composed 

together to create composite services ranging from simple to complex. Simple composite 

services do not include many single web services (less than five), while complex 

composite services may incorporate more than 20 services to achieve their goal.  

                                                 

30 <http://www.strikeiron.com>, active since 2002  
31 <http://splice.xignite.com/>, active since 2003 

http://www.strikeiron.com/
http://splice.xignite.com/
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Table 6.3. Seeding the experiment’s input parameters 

Parameter Values of the parameter for Levels 

Tasks_Number (in the market) [25,50] 2 

Providers_Number  [5,50] 2 

Offers_Number (Bids_Number) 
In small economy: [50,100] 

In large economy: [300,500] 
4 

α in the market 75% 1 

Max_Discount 25% 1 

Requests_Number 
In small economy: [4,12] 

In large economy: [20,28] 
4 

Requests_Size 
Small, #tasks between [3,4,5] 

Large, #tasks between [15,16,..,20] 
2 

Total combinations  128 

For seeding the parameters, we relied on these observations to gain insight on the number 

of service providers, service offers, service requesters and size of requests for composite 

services. Based on the market sections discussed before, Table 6.2, we focused the 

experiments on two extremes of composite service complexity: marketplaces with simple 

requests (such as mobile applications), and marketplaces with complex ones (such as 

scientific workflows). The final seeding of the simulation parameters is depicted in 

Table 6.3. 

6.5 Experiment Execution 

We proposed two variations of the simultaneous auction, the Full-Matching and the 

Partial-Matching mechanisms. We performed the evaluation on the Partial-Matching 

mechanism as it can achieve higher success rate compared to the Full-Matching 

mechanism. In terms of the cost, both mechanisms would achieve the same average cost 

of procurement for problem instances where all the requests are successful in procuring 

web services. In other instances, where not all requests are successful, the Full-Matching 

mechanism would fail and the cost is zero.  

The formulation of the simultaneous auction presented in section 6.3.3 restricts the 

number of service providers selected for each task in a request to be exactly one. With 

some consideration, this constraint can be relaxed to improve the success rate of the 
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mechanism and achieves lower procurement costs for composite services.32 The 

relaxation would allow each task to have “at least” one winning bid, rather than “exactly” 

one.  

We argue that as the mechanism objective function is defined to minimize the cost, there 

is no need to restrict the winning bids for each task. In other words, there is no problem 

if more than one service is selected for a task if such an allocation leads to a less expensive 

provisioning of the composite service. However, the requester needs to decide which of 

the winners will ultimately execute the task. The selection might be random or based on 

some criteria such as choosing the one who is already providing more (or fewer) services 

for other tasks in the composition.  

The intended relaxation is applied to the allocation constraint (6-17) where the equals 

sign is changed to bigger than or equal to relax the exactly one winning provider 

assumption. The final ILP formulation of the simultaneous auction mechanism to be 

evaluated is presented here: 

 

Minimize  ∑∑ 𝑐𝑏 ∗ 𝑧𝑏𝑟
𝑏∈ 𝐵𝑟∈𝑅

− 𝐵𝐼𝐺𝑀 ∗ ∑𝑦𝑟
𝑟∈𝑅

 

Subject to:   

Partial 

allocation 

constraints 

∀𝑟 ∈ 𝑅, ∀𝑡 ∉ 𝑇𝑟 𝑥𝑡𝑟 = 0 

∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇𝑟  𝑥𝑡𝑟 = 𝑦𝑟   

∀𝑟 ∈ 𝑅, ∀𝑏 ∈ 𝐵 𝑧𝑏𝑟 ≤ 𝑦𝑟  

                                                 

32 The relaxation can be applied in a market where the offers and requests include only a monetary element 

(cost and budget). It cannot be used when other quality of service constraints are required as allowing more 

than one provider for each task complicates the service selection problem: with the possibility of multiple 

providers, the requester needs to make a later decision regarding the selection of only one of the providers 

for actually executing the task, even if the decision is as easy as making a random choice. This means that 

the mechanism is not aware of the choice of the actual service at the service selection time. Therefore, it 

cannot determine which of the selected services’ quality profiles to consider when evaluating the 

satisfaction of the end-to-end quality of service constraints. While it is possible to consider an aggregation 

of the QoS of all the selected services in the formulation of the problem, the quality constraints will be 

much tighter than what the requester needs. However, as our evaluation process is focused on performance 

metrics regarding success rate, cost and solve time of the mechanism, the relaxation of the having 

exclusively one provider for each task will not cause any problem. 



159 

 

∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇𝑟  ∑𝑎𝑏𝑡 ∗ 𝑧𝑏𝑟
𝑏∈𝐵

≥ 𝑥𝑡𝑟 

Budget 

constraint ∀𝑟 ∈ 𝑅, 𝐵𝑟 −∑𝑐𝑏 ∗ 𝑧𝑏𝑟 ≥

𝑏∈𝐵

𝑦𝑟 − 1  

Resource 

limitation 

constraint 
∀𝑏 ∈ 𝐵 ∑𝑧𝑏𝑟

𝑟∈𝑅

  ≤ 1   

Based on the seeding of the simulation parameters, as presented in Table 6.3, there are 

128 combinations of variables’ values for evaluation. For each combination, 30 instances 

are generated to be able to have meaningful statistical analysis. The performance metrics 

are averaged over the 30 instances. 

All three mechanisms (fixed-price, single auction and simultaneous auction) were 

implemented in the AMPL language. The related ILP problems were solved by a package 

of AMPL 2014 and CPLEX 12.6 as the solver, using a server computer with 64 AMD 

Opteron processors each 1400 MHz and a total memory of 132 GB RAM. In the 

simultaneous auction model, a time-out option of 60 seconds was set for the solver, due 

to the time complexity of the mechanism. A similar time-out option was set for the solver 

for solving the two other mechanisms to maintain consistency across the three 

mechanisms. 

Now we can define the objective of the experiments more specifically. The objective of 

the experiments is to compare the three mechanisms (fixed-price, single auction and 

simultaneous auction) based on the defined performance metrics (success rate [SR], cost 

per composite service [CPC] and solve time) in the four market sections, as depicted in 

Table 6.4. More specifically, the experiment aimed to answer the following questions:  

Vertical Comparison: How do the performance metrics of the simultaneous auction 

mechanism compare to the two other mechanisms? 

Horizontal Comparison: In the simultaneous auction mechanism, how are the 

performance metrics different in a market section with complex requests and a market 

with simple requests? How do the mechanism’s performance metrics differ in a market 

with large economy compared to a market with a small economy? 
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Table 6.4. The evaluation space 

Composite Service Selection 

Mechanism 

Market Section 
(Economy size-CS complexity) 

Fixed-Pricing Single Auction Simultaneous Auction 

Small-Simple    

Small-Complex    

Large-Simple    

Large-Complex    

6.6 Results 

The results are presented below based on the performance metrics: SR, CPC and solve 

time. 

6.6.1 Success Rate (SR) 

The success rate (SR) demonstrates how successful the mechanism is in finding web 

services for the requests. It is defined as the number of feasible requests to the total 

number of requests in each instance of multiple composite service selection problem. We 

have studied the success rate in two directions: firstly, along the three service selection 

mechanisms and, secondly, for each mechanism along the four market sections.  

6.6.1.1 Comparison between the Mechanisms 

The SRs of the three mechanisms are plotted against the four market sections in Fig 6.6. 

The results show that, among the three mechanisms, the best SR is achieved by “the 

simultaneous auction” in all four market sections. The superiority of the success rate of 

the simultaneous auction is due to its long-term allocation strategy versus the greedy 

short-term strategy of the other two mechanisms. Single auction and fixed-price 

mechanisms allocate web services to requests one request at a time, based on the order of 

the requests’ arrival to the market. With such a greedy allocation strategy, the requests 

that arrive later and have tighter budget constraints might not find the required set of bids 

in the market in the remaining pool of web services’ offers. However, the simultaneous 

auction mechanism has a long-term allocation strategy, and in each simulation round, it 

considers all requests and their needs simultaneously. Therefore, it has the possibility to 
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match the requests and offers more effectively and increase the number of successful 

requests.  

 

Fig 6.6. SR achieved by the three mechanisms in the four market sections 

The results also state that the similarly greedy allocation strategies of the single auction 

and the fixed-price mechanisms have resulted in very close SRs for these two 

mechanisms. 

Fig 6.6 also denotes that the difference between the SR of the simultaneous auction and 

that of the two other mechanisms is most substantial in the (large-complex) market section 

with the simultaneous auction’s SR being 16% higher than the two other mechanisms. 

This trend is followed by the (large-simple) section with the simultaneous auction’s SR 

being 15% higher; the (small-complex) section with the SR being 10% higher, and lastly, 

the (small-simple) section where the SR is 3% higher. 

This trend in the difference of the SRs of these three mechanisms suggests that the 

simultaneous auction’s lead in achieving a better SR is more notable in more complicated 

settings. In other words, the simultaneous auction’s long-term allocation strategy 

demonstrates higher efficiency in more complex settings. In simpler settings, the long-

term and short-term strategies might not lead to very different outcomes. 
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6.6.1.2 Comparison between Market Sections  

Studying each mechanism’s SR in the four market sections leads to several interesting 

results. The results show that firstly, all three mechanisms achieve a higher SR with 

complex requests compared to simple requests, in both economy sizes. For the 

simultaneous auction mechanism, the difference is 5% in the large economy and 14% in 

the small economy. For the two other mechanisms, the difference is approximately 4% in 

the large economy and 7% in the small one. 

Secondly, all mechanisms have a higher success rate in the large economy compared to 

the small economy, regardless of the complexity of the requests. For single auction and 

fixed-price mechanisms, the SR in the large economy is 47% higher than the small 

economy for simple requests (69%–22%) and 44% higher for complex ones (73%–29%). 

The simultaneous auction’s SR in the large economy is 59% higher than the small 

economy for simple requests (84%–25%) and 50% higher for complex requests (89–

39%). 

In general, the SR of all the mechanisms is nearly over 70% for the large economy, while 

it is below 40% for the small one. This means that, success rate-wise, in small economies, 

using a fixed-price mechanism is as good as having a short-term allocation strategy such 

as the single auction, and marginally worse than setting up a simultaneous auction with a 

long-term allocation strategy. The low SR might prevent service requesters and providers 

from attending a service selection mechanism with a business model based on 

subscription fees, while in a business model based on applying fees to only successful 

transactions, it might not be as discouraging. 

6.6.1.3 Sensitivity Analysis 

In this section, the impact of different values of the simulation parameters on the SR of 

the simultaneous auction mechanism is analyzed. These parameters include the number 

of tasks, number of providers, number of bids and number of requests. 
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Number of Tasks      25    50 
# Offers 

 
# Request 

(a) Simple Requests 
# Offers 

 
# Request 

(b) Complex Requests 

Fig 6.7. Impact of number of tasks on the simultaneous auction’s SR 

for (a) simple and (b) complex requests 

In Fig 6.7, the impact of the number of tasks registered in the market’s directory on the 

SR of the simultaneous auction mechanism is studied for (a) simple requests and (b) 

complex ones. The diagrams indicate that the simultaneous auction achieves a higher SR 

in a market with a smaller number of tasks (25 tasks) compared to having a larger number 

(50 tasks) in its directory regardless of the requests complexity. The reason is that when 

we generate a fixed number of bids over a larger set of tasks, there will be fewer bids 

including each task compared to when generating the same number of bids for a smaller 

set of tasks. Having more bids for each task increases the probability of the tasks in the 

smaller set to find a web service. 

The impact of the number of providers on the simultaneous auction’s SR is examined in 

Fig 6.8 for (a) simple requests and (b) complex ones. Our initial expectation was that 

increasing the number of providers who are generating a fixed number of bids leads to 

more variety in the valuations of the tasks, and a subsequently higher variety in the 
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generated bids’ prices. We expected that the higher variation in bids eventually leads to 

a higher SR and lower procurement cost. However, we can see that this parameter does 

not have a significant impact on the SR. This might be related to the fact that the number 

of providers is not directly involved in the ILP formulation of the simultaneous auction 

mechanism. 

Number of Providers      5    50 
# Offers 

 
# Request 

(a) Simple Requests 
# Offers 

 
# Request 

(b) Complex Requests 

Fig 6.8. Impact of number of providers on simultaneous auction’s SR 

for (a) simple and (b) complex requests 

With regard to the impact of the number of bids and number of requests on SR, both 

Fig 6.7 and Fig 6.8 demonstrate that having a higher number of bids increases the SR as 

a result of the increase in supply, and having a higher number of requests in the market 

decreases the SR due to the increase in demand. 

6.6.1.4 Statistical Analysis  

We performed the Kruskal-Wallis test on the success rate (SR) of the three mechanisms 

to determine if the results are statistically significant. The Kruskal-Wallis test (Kruskal 

and Wallis 1952) is used to determine whether there are significant differences between 
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two or more groups of an independent variable on a continuous or ordinal dependent 

variable. The null hypothesis of the Kruskal-Wallis test is that all groups come from the 

same distribution against the alternative hypothesis that is there are at least two groups of 

the dependent variable which are statistically significantly different.  

This test is also known as the “one-way ANOVA on ranks” and is the nonparametric 

alternative to the one-way ANOVA, which unlike ANOVA does not assume a normal 

distribution of the residuals of the dependent variable. 

If more than two groups are involved, the non-parametric tests require that post-hoc 

analysis be performed to detect which groups are significantly different from each other 

usually by pairwise comparisons of the groups. A common procedure used with Kruskal-

Wallis test is the Conover-Iman method (1981) which is a distribution-free rank 

transformation method that replaces data by its rank (Conover and Iman 1982). 

We performed the Kruskal-Wallis test on the success rate (SR) of the three mechanisms 

as the SRs’ residuals did not follow a normal distribution. Firstly, we considered only one 

independent variable, the type of service selection mechanism, which has three values: 

the simultaneous auction, the single auction and the fixed-price mechanism.  

As depicted in Table 6.5, Kruskal-Wallis test shows that the computed p-value is lower 

than the significance level alpha=0.05. Therefore, we should reject the null hypothesis 

and accept the alternative hypothesis that the SRs of at least two mechanisms are 

significantly different. 

Table 6.5. The Kruskal-Wallis test 

(dependent variable: SR, independent variable: type of mechanism) 

K (Observed value) 153.730 

K (Critical value) 5.991 

DF 2 

p-value (Two-tailed) < 0.0001 

alpha 0.05 

As specified in Table 6.6, the multiple pairwise comparisons using the Conover-Iman 

procedure/Two-tailed test shows that the SR of the simultaneous auction is significantly 

different from the SR of the other two mechanisms, while the SR of the single auction 

and that of the fixed-price do not differ significantly. 
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Table 6.6. The Conover-Iman procedure 

(dependent variable: SR, independent variable: type of mechanism) 

Sample Frequency Sum of ranks Mean of ranks Groups 

Single SR 3840 21077732.000 5488.993 A   

Fixed SR 3840 21087877.500 5491.635 A  

Simultaneous SR 3840 24195350.500 6300.873   B 

Single: Single Auction, Fixed: Fixed-price, Simultaneous: Simultaneous auction  

We also want to study the statistical significant of the impact of the economy size and the 

request complexity at the same time as the impact of the service selection mechanism on 

the SR, that is, to consider three independent variables simultaneously. However, the 

Kruskal-Wallis test takes into account only one independent variable. Therefore, we 

defined a dummy independent variable that represents the combination of the three actual 

independent variables forming 12 groups.  

Table 6.7. The Kruskal-Wallis test (dependent variable: SR, 

independent variable: type of mechanism, size of economy and requests’ complexity) 

K (Observed value) 3034.562 

K (Critical value) 19.675 

DF 11 

p-value (Two-tailed) < 0.0001 

Alpha 0.05 

As depicted by Table 6.7, the Kruskal-Wallis test with three independent variables shows 

that the computed p-value is lower than the significance level alpha=0.05. This means the 

null hypothesis is rejected and the alternative hypothesis is accepted. To understand 

which groups are different from each other, we performed the Conover-Iman procedure 

as depicted by Table 6.8. 

The results show that firstly, the SR of the simultaneous auction is statistically 

significantly different to that of the single auction and the fixed-price mechanisms in all 

market sections, except for the (small-simple) section. This means that when the market 

size is small and the requests are for simple composite services, the choice of the service 

selection mechanism does not significantly affect the success rate. Secondly, in all market 

sections, there is no statistical difference between the success rate of a fixed-price and a 

single auction mechanism. 
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Table 6.8. The Conover-Iman procedure (dependent variable: SR, 

independent variable: type of mechanism, size of economy and requests’ complexity) 

Sample Frequency 

Sum of 

ranks 

Mean of 

ranks Groups 

FR | Fixed- 

Small-Simple 
480 

711429.50 
1482.145 A       

FR | Single - 

Small-Simple 
480 

711701.50 
1482.711 A       

FR | Simultaneous- 

Small-Simple 
480 

771509.50 
1607.311 A B      

FR | Fixed- 

Small-Complex 
480 

853577.50 
1778.286  B      

FR | Single- 

Small-Complex 
480 

854901.50 
1781.045  B      

FR | Simultaneous-

Small-Complex 
480 

1094138.50 
2279.455   C     

FR | Single- 

Large-Simple 
480 

1729005.00 
3602.094    D    

FR | Fixed- 

Large-Simple 
480 

1733783.00 
3612.048    D    

FR | Fixed- 

Large-Complex 
480 

1842155.50 
3837.824    D E   

FR | Single- 

Large-Complex 
480 

1856887.50 
3868.516     E   

FR | Simultaneous-

Large-Simple 
480 

2127205.00 
4431.677      F  

FR | Simultaneous-

Large-Complex 
480 

2305386.00 
4802.888       G 

6.6.2 Cost per Composite Service (CPC)  

To compare the performance of the proposed simultaneous auction mechanism in terms 

of the cost of procuring composite services, we defined two units of measurement for the 

cost:  

 Cost per Composite Service (CPC): the average cost of procuring a single 

composite service. It is calculated by dividing the total cost of procurement 

achieved by the mechanism by the number of feasible requests. 

 Cost per Task (CPT): the average cost of procuring a task. The CPT is determined 

by dividing the CPC by the average number of tasks in a request, depending on 

the request’s complexity.  
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Note that as the instances whose SR is equal to zero have an unreal procurement cost of 

zero, we have removed these instances from the results to get a meaningful cost analysis. 

6.6.2.1 Comparison between the Mechanisms 

The average cost per composite service (CPC) of each mechanism is depicted in Fig 6.9 

based on the four market sections. The results show that firstly, the cost of procuring a 

composite service is much higher if the requester attends the fixed-price mechanism, 

compared to the single auction or the simultaneous auction mechanisms. This is according 

to our expectations from the dynamic pricing strategy in auctions: the price discovery of 

auction mechanisms can lead to considerably lower prices compared to the requesters’ 

predetermined prices.  

 

Fig 6.9. CPC achieved by the three mechanisms in the four market sections 

Secondly, the CPC of the simultaneous auction mechanism does not have a significant 

difference from that of the single auction. This may not seem intuitive as the greedy 

strategy of the single auction mechanism aims to find the best providers for each request 

regardless of other existing requests. Therefore, it is expected to lead to lower 

procurement cost for each request compared to the simultaneous auction which aims to 

find the best providers for the collective set of requests, while simultaneously, tries to 

maximize the number of feasible requests. 
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The very close CPC of these two mechanisms is likely to be the result of averaging the 

cost across all successful requests in a simulation round regardless of their order of being 

considered for service selection. In each simulation round, the single auction mechanism 

might be able to find very good deals for the early requests. However, with more service 

offers being matched with the requests, the remaining available services would be the 

more expensive ones, leading to higher costs for the late arriving requests. Therefore, the 

average cost of the composite service by the single auction is not very different from that 

of the simultaneous auction. 

To investigate this possibility, we studied the impact of a request’s order of being 

considered for service selection on its cost of service procurement. We expect that in the 

single auction mechanism the cost of the requests in one simulation round is affected by 

the requests’ order of arrival to the market which is their order of being considered for 

service selection. In contrast, the cost achieved by the simultaneous auction should not be 

affected by the requests’ order of arrival. 

To examine this proposition, we need new performance metrics. The reason is that as the 

CPC and CPT are calculated by averaging the cost of successful requests in one round of 

simulation, they do not provide useful information on how the requests’ order of arrival 

in the market affects the procurement cost. Therefore, we separately measured the cost of 

the first feasible CS and the last feasible one in each simulation round and then averaged 

them across all simulation rounds.  

The results are presented in Fig 6.10, for (a) simple and (b) complex requests where the 

costs of procuring the first and last requests are compared between the single and 

simultaneous auction mechanisms. The results indicate that, firstly, the first request 

attending the single auction mechanism has the lowest procurement cost. At the same 

time, the last request attending the single auction has the highest cost. Secondly, the first 

and last requests which attended the simultaneous auction mechanism are procured at 

very close costs. The costs achieved by the simultaneous auction are positioned between 

the lowest and highest costs obtained by the single auction mechanism. These results 

apply to both simple and complex requests.  
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(a) Simple Requests 

 

 
(b) Complex Requests 

Fig 6.10. Cost of procuring the first arriving and the last arriving request, 

in a simultaneous or single auction mechanism, for (a) simple and (b) complex requests 

Thirdly, the cost of procuring the first request by the single auction mechanism does not 

change substantially with having more requests in the market, while the cost of the last 

request dramatically increases with having more requests. This can be explained based 

on the single auction strategy which aims to find the best deal for each request, where the 

first request benefits from having the most offers available, while the last request is most 

affected by the number of requests that need to be served before it. 
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To summarize, although the auction and simultaneous auction mechanisms achieve close 

outcomes in terms of the average cost for the requests, the simultaneous auction attains 

more “homogenous” costs for the requests compared to the single auction, where the 

order of being considered for service selection affects the final cost. The single auction 

finds the best deals for the requests that are first to arrive, while the last requests will be 

procured with the highest cost compared to the requests already been served. The impact 

of order of arrival on the procurement cost can significantly affect service requesters’ 

decision regarding which service selection mechanism to attend. 

6.6.2.2 Comparison between Market Sections 

To have a meaningful cost analysis between different market sections, we use the average 

cost per task (CPT) performance metric. CPT achieved by each mechanism is depicted in 

Fig 6.11 which highlights several interesting results. Firstly, the cost per task (CPT) in a 

large economy is considerably lower than in a small economy. This is not a surprise as in 

larger economies the variety of offers is expected to result in lower cost of procurement 

for consumers, regardless of the allocation mechanism. 

Secondly, in each economy size, the CPT of complex requests is lower than that of simple 

requests. This might not be very intuitive as generally it is expected that a product with 

higher complexity in its lifecycle imposes a higher procurement cost on its consumers. 

This result is related to our formulation of the composite service selection problem. In 

this formulation, a bid can win the execution of a request’s task as far as it offers a web 

service for that task and it is part of the minimum cost allocation, even if the bid includes 

services that are irrelevant to that request. Therefore, some of the selected bids for a 

request may include service offers which are not required by the requester at all, that is, 

“useless” services. When the request is complex and thus includes many tasks, the number 

of useless services in the winning bids is likely to be lower than in a simple request. 

Ultimately, the higher number of useless services increases the average CPT in simple 

requests. 
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Fig 6.11. CPT achieved by the three mechanisms in the four market sections  

However, it is worth mentioning that restricting the offers on their number of useless 

services to allow them to be part of the winning allocation for a request will not 

necessarily reduce the cost. On the contrary, adding any restriction to the current 

formulation of the composite service selection problem, including restrictions on the 

winning offers’ configuration, is expected to increase the average cost of procurement. 

To summarize, the results presented in Fig 6.9 and Fig 6.11 show that in small economies, 

a fixed-price mechanism attains a procurement cost marginally worse than the cost 

achievable through the single auction or the simultaneous auction. However, in large 

economies, the allocation strategy based on auction models (either single or 

simultaneous) significantly decreases the procurement cost for the composite service 

requesters, compared to the fixed-price mechanism. 

6.6.2.3 Sensitivity Analysis 

In this section, the impact of different values of simulation parameters on the cost of a CS 

is studied in the simultaneous auction mechanism. The set of parameters includes the 

number of tasks, number providers, number of bids and number of requests. 

The impact of the number of tasks in the market’s directory on the average cost of 

procuring service(s) for a single task (CPT) is depicted in Fig 6.12 for (a) simple requests 

and (b) complex requests. We can see that in a market with 25 tasks to bid for, the CPT 

is lower than in a market with 50 tasks, with both simple and complex requests. As was 
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discussed in subsection 6.6.1.3 (Sensitivity Analysis of the SR), the reason is that with a 

fixed number of bids, in a market with 25 tasks there are more service offers for each task 

compared to in a market with 50 tasks which leads to the reduction of cost. 

The impact of the number of providers on the market’s CPT is illustrated by Fig 6.13, for 

(a) simple requests and (b) complex requests. The diagram indicates that the number of 

providers does not have a significant impact on the CTP, which is due to the fact that this 

parameter is not directly involved in the ILP formulation of the composite service 

selection problem.  

Number of Tasks      25    50 
# Offers 

 

# Request 

(a) Simple Requests 
# Offers 

 

# Request 

(b) Complex Requests 

Fig 6.12. Impact of number of tasks on the simultaneous auction’s CPT 

for (a) simple and (b) complex requests 

Finally, as illustrated by both Fig 6.12 and Fig 6.13, the impact of the number of bids and 

number of requests on the CPT is not a surprise: the increase in the number of bids reduces 

the cost due to a higher supply in the market, while increasing the number of requests 

results in higher costs caused by a higher demand. 
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Number of Providers      5    50 
# Offers 

 
# Request 

(a) Simple Requests 
# Offers 

 
# Request 

(b) Complex Requests 

Fig 6.13. Impact of number of providers on the simultaneous auction’s CPT 

for (a) simple and (b) complex requests 

6.6.2.4 Statistical Analysis  

For statistical analysis, we performed the Kruskal-Wallis test on the cost per composite 

service (CPC) of the three mechanisms which residuals did not follow a normal 

distribution. At the first step, we considered the type of service selection mechanism as 

the independent variable. The null hypothesis is that the CPCs of the three mechanisms 

come from the same distribution and they are not statically significantly different.  

As depicted in Table 6.9, Kruskal-Wallis test shows that the computed p-value is lower 

than the significance level alpha=0.05. This means that we should reject the null 

hypothesis and accept the alternative hypothesis that the CPCs of at least two mechanisms 

are significantly different.  
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Table 6.9. The Kruskal-Wallis test (CPC) 

(dependent variable: CPC, independent variable: type of mechanism) 

K (Observed value) 550.410 

K (Critical value) 5.991 

DF 2 

p-value (Two-tailed) < 0.0001 

Alpha 0.05 

As indicated by Table 6.10, the multiple pairwise comparisons based on the Conover-

Iman procedure/Two-tailed test shows that firstly, the CPC of the fixed-price is 

significantly different from the CPC of the other two mechanisms. Secondly, the CPC of 

the single auction and the simultaneous auction do not differ significantly. 

Table 6.10. The Conover-Iman procedure 

(dependent variable: CPC, independent variable: type of mechanism) 

Sample Frequency Sum of ranks Mean of ranks Groups 

CPC | Single 3418 15701800.000 4593.856 A   

CPC | Simultaneous 3418 16040375.000 4692.912 A  

CPC | Fixed 3418 20835210.000 6095.731   B 

Single: Single Auction, Simultaneous: Simultaneous auction, Fixed: Fixed-price  

At the second step, we studied the statistical significant of the impact of the economy size 

and the request complexity at the same time as the impact of the service selection 

mechanism on the CPC. We perfumed the Kruskal-Wallis test again, this time with three 

independent variables. Based on the results presented in Table 6.11, the computed p-value 

is lower than the significance level alpha=0.05 which means that the null hypothesis is 

rejected and the alternative hypothesis is accepted. This states that the CPC of at least two 

groups are significantly different from each other. To identify how these groups are 

different from each other, we performed the Conover-Iman procedure as depicted by 

Table 6.12. 

Table 6.11. The Kruskal-Wallis test (dependent variable: CPC, 

independent variable: type of mechanism, size of economy and requests’ complexity) 

K (Observed value) 4252.894 

K (Critical value) 19.675 

DF 11 

p-value (Two-tailed) < 0.0001 

alpha 0.05 
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Table 6.12. The Conover-Iman procedure (dependent variable: CPC, 

independent variable: type of mechanism, size of economy and requests’ complexity) 

Sample Frequency 
Sum of 

ranks 
Mean of ranks Groups 

CPC | Single- 

Large-Simple 
480 324706.000 676.471 A        

CPC | Simultaneous- 

Large-Simple 
480 378696.000 788.950 A        

CPC | Single- 

Small-Simple 
347 508269.000 1464.752  B       

CPC | Simultaneous- 

Small-Simple 
347 511853.500 1475.082  B       

CPC | Fixed- 

Large-Simple 
480 782395.000 1629.990   C      

CPC | Fixed- 

Small-Simple 
347 573001.500 1651.301   C      

CPC | Single- 

Large-Complex 
480 1476848.500 3076.768    D     

CPC | Simultaneous- 

Large-Complex 
480 1505194.500 3135.822    D     

CPC | Single- 

Small-Complex 
342 1281796.500 3747.943     E    

CPC | Simultaneous- 

Small-Complex 
342 1330697.000 3890.927      F   

CPC | Fixed- 

Large-Complex 
480 2053802.000 4278.754       G  

CPC | Fixed- 

Small-Complex 
342 1511618.500 4419.937        H 

The results show that firstly, the CPC of the fixed-price mechanism is significantly 

different to those of the auction-based mechanisms. In other words, the dynamic pricing 

in auction-based mechanisms achieves lower costs for composite services regardless of 

the size of the market or the complexity of the requests. 

Secondly, the CPC of the simultaneous auction is not statistically significantly different 

to that of the single auction in any of the market sections, except in the (small-complex) 

section. As been discussed in subsection 6.6.2.1, the reason for the close costs achieved 

by the simultaneous auction and the single auction is that the cost is averaged over all the 

successful requests in one simulation round.  

However, the statistical analysis indicates that in small markets with complex requests in 

demand, the greedy strategy of the single auction achieves lower costs for composite 

services compared to the simultaneous auction. This means that in this market section, 

the small number of requests prevents the simultaneous auction to demonstrate its 

efficiency in terms of the cost. 
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6.6.3 Solve Time 

For any allocation mechanism, an important performance metric is the time taken to find 

the allocation based on the objective defined for the mechanism. For our specific problem 

domain and the proposed allocation mechanisms, the solve time is even more important. 

There are many discussions in both the combinatorial auction and composite service 

selection literature that as these problems are NP-hard, it is not possible to solve them in 

polynomial time. As a result, an ILP formulation of the problem is not scalable. Therefore, 

it was critical to our research to perform an analysis of the “solve time” of our proposed 

mechanism. 

We set a time limit of 60 seconds33 to prevent the solver (CPLEX 12.6) from being 

trapped by the complexity of the problem. In a market for complex composite services, 

such as scientific workflows, 60 seconds is considered a relatively short time to allow the 

matching mechanism to finish its job. However, in a market for simple requests, such as 

mobile applications, the time taken to find an allocation can be a determining factor for 

the requesters and greatly influences their decision about which service selection 

mechanism to attend. 

To analyze the solve time of the three mechanisms, we first studied the number of 

instances in which the solver reached the time limit, that is, the solve time is greater than 

or equal to 60 seconds. This study shows that firstly, the fixed-price and single auction 

mechanisms do not reach the time limit in any of the problem instances. Secondly, the 

simultaneous mechanism does not reach the time limit when the requests are simple 

regardless of the size of the economy. However, with complex requests, it reaches to the 

time limited in 137 instances in the large economy and 20 instances in the small economy, 

out of the 480 instances in each market section, that is, 28% of instances in the (large-

complex) market section and 4% in the (small-complex) section.  

We also studied the average solve time of the three mechanisms in each market section. 

The solve time is plotted in the logarithm scale in Fig 6.14 which is averaged across all 

the instances of a market section. The results show that the fixed-price mechanism has 

the shortest solve time in all market sections except (small-simple). This could be 

                                                 

33 This is the “wall clock” time (second) and is measured through the parameter _solve_elapsed_time. 
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anticipated as the fixed-price mechanism has a constraint satisfaction approach by 

searching for the first set of offers which are below the price specified by the requester, 

rather than searching the whole solution space to find an optimal allocation. 

The fixed-price mechanism is then followed by the single auction, again in all market 

sections except (small-simple) where the simultaneous auction mechanism is the fastest. 

The single auction is obviously faster than the simultaneous auction as it solves the 

service selection problem for a single request. 

 

Fig 6.14. Solve Time of the three mechanisms to find the best allocation for the four market sections 

The (small-simple) market section is an exception to these trends. The reason is that the 

single auction and fixed-price mechanisms have to allocate offers to the requests one by 

one, while the simultaneous auction mechanism solves the allocation problem in one go. 

Therefore, when the complexity of the problem instance is not high, such as the instances 

in the (small-simple) section, the simultaneous auction mechanism achieves a better solve 

time than the two other mechanisms.  

Despite having the longest solve time in three out of four market sections, the solve time 

of the simultaneous auction mechanism can be considered reasonable considering the 

market sections: the solve time is around 33 seconds in (large-complex) market section, 

five seconds in (small-complex), one second in (large-simple) and 70 milliseconds in 

(small-simple) section. 
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Comparing the solve time across the four market sections shows that for all three 

mechanisms, the solve time is shorter with simple requests compared to complex ones in 

both economy sizes. Moreover, it takes less time to solve the service selection problem 

in small economies compared to large ones, with either request types.    

6.7 Conclusion 

In this chapter, we introduced and studied the “multiple composite service selection 

problem”. This problem extends the “composite service selection problem” to the setting 

with multiple requests for composite services. In the web service selection literature, the 

current study is the first to consider, investigate and propose a solution to the problem of 

multiple composite web service selection. The significance of this study is its impact on 

the design of web services’ marketplaces where many service requesters and providers 

meet to trade single and composite web services. As one of the main functions in markets, 

the multiple composite service selection approaches can enhance the matchmaking 

between web service offers and requests by considering multiple requests simultaneously. 

We proposed two service selection mechanisms based on combinatorial auctions to solve 

the multiple composite service selection problem by simultaneously matching the web 

service offers (single or bundled services) and requests (for composite services) that 

attend a web service market. The two mechanisms are called the “Full-Matching” and the 

“Partial-Matching” simultaneous auction mechanisms. The Full-Matching mechanism 

aims to find services for all the requests in the market, while the Partial-Matching’s 

objective is to solve the service selection problem for as many requests as possible. We 

presented the mathematical formulation of the proposed approaches including the 

specification of the offers and requests and the Integer Linear Programming (ILP) 

formulation of the allocation mechanisms.  

We performed extensive experiments to evaluate the proposed Partial-Matching 

simultaneous auction mechanism through simulation. Being the first to consider multiple 

requests, the design of the evaluation process was a significant challenge for our study. 

The design included establishing the baseline, defining the performance metrics, 

designing specific scenarios for the experiment which are presented in the form of four 

market sections, developing a stochastic model to generate the data and performing an 

extensive search on current web services’ communities to seed the simulation parameters.  
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The objective of the evaluation was to compare the performance of three mechanisms in 

solving the multiple composite service selection problem. The three mechanisms 

comprise: (1) the Partial-Matching simultaneous auction, (2) the single auction model 

when applied to a set of requests one at a time, and (3) a fixed-price mechanism where 

service requesters fix the price to be paid for composite services and service providers 

can take it or leave it. The performance metrics were defined as the success rate (SR) (the 

ratio of successful requests to all existing requests), the average cost of procuring a 

composite service and the time to solve the problem. 

The evaluations show that that the success rate (SR) of the simultaneous auction 

mechanism is statistically significantly higher than the SR of the other two mechanisms 

in all market section except the (small-simple) section. This means that the long-term 

strategy of the simultaneous auction allows for more efficient matching of service offers 

and requests. The exception is the market section with small number of participants (small 

size of the economy) and the requests for simple composite services where the choice of 

the service selection mechanism does not have a significant impact on the success rate. 

Studying the average cost of procuring a composite service, the evaluations show that the 

simultaneous and the single auction mechanisms do not achieve statistically significantly 

different costs in the long run in all market sections except for the (small-complex) 

section. This indicates that the seemingly greedy strategy of the single auction in solving 

the problem for each request does not achieve lower cost for the collective set of requests 

except for when the market is small and the requesters demand complex composite 

services.  

However, the simultaneous auction procures the composite services at more homogenous 

costs. In other words, the requests’ order of arrival to the market does not impact their 

service procurement cost. Whereas in the single auction mechanism, the requests’ order 

of arrival influences the cost: the first request to arrive gets the best deal with lowest 

prices and the last request gets more expensive deals compared to the requests served 

before it. 

Concerning the solve time taken by mechanisms to solve the multiple composite service 

selection problem, the solve time of the simultaneous auction is much longer than the two 

other mechanisms. This was expected due to the complexity of matching many requests 

and offers at the same time. However, the solve time of the simultaneous auction can be 
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considered reasonable considering the market sections: for requesters who need complex 

composite services the solve time is around 33 seconds in large economy markets and 

five seconds in small economy markets when there is a time limit of 60 seconds to find 

the optimal allocation. For simple requests, this average is around one second in large 

economy markets and 70 milliseconds in small economies.  
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Chapter 7  

7 Conclusion 

This study aimed to advance our understanding of the composite service selection 

problem. Mainly, we were interested in investigating the reasons why the current 

approaches were not as successful as speculated by academia in finding practical 

applications despite the enormous continuing attention of research community to this 

problem for more than a decade. The work presented in this dissertation is a contribution 

to identify and elaborate on the limitations of the current approaches and develop novel 

techniques to address these limitations. 

In this chapter, we summarize the main contributions and results in section 7.1. Then, we 

shed light on the limitations of our research in section 7.2. As an important part of this 

study, we also analyze the proposed mechanisms through the lens of mechanism design 

to examine their limitations in terms of achievable desirable properties (subsection 7.2.2). 

Finally, the theoretical and practical implications of the results of our study for web 

service research community in general, and web service composition community in 

particular are presented in section 7.3. We also suggest directions for future research in 

this section. 

7.1 Contributions and Summary of Results 

7.1.1 A Combinatorial Auction Mechanism for Composite Service Selection  

In Chapter 5, we developed a mechanism based on combinatorial auctions to solve the 

composite service selection problem. We have referred to the proposed mechanism as 
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“the single auction” mechanism as it solves the problem for a single composite service. 

In this mechanism, service providers bid to offer their services to a composite service 

requester.  

A design based on auction theory delivers dynamic pricing for web services, while at the 

same time, reduces the complexity of price determination for composite services. 

Moreover, a design based on combinatorial auctions allows the service providers to offer 

their services in bundles which is proven to enhance economic efficiency (de Vries and 

Vohra 2003). The single auction mechanism has been also used to establish a comparison 

basis for evaluating the proposed “simultaneous auction mechanism” in Chapter 6. 

7.1.1.1 Studying the Impact of Bundling on the Cost of a Composite Service 

Although there are other proposals that have applied combinatorial auctions for service 

selection, this is the first study to investigate the impact of bundling, in terms of the 

number of services in bundles, on the cost of the composite service.  

To study the impact of bundling on the performance of the single auction mechanism, we 

developed a baseline with non-combinatorial bids, that is, each bid only offers a single 

service. The baseline is established based on current optimization-based and negotiation-

based service selection approaches where bundling of services is not considered. The 

performance metric is defined as the cost of the composite service, calculated as the sum 

of the costs specified by the winning bids. We also generated several sets of problem 

instances with different probabilities for the bundle size, that is, different bundle 

crowdedness.  

The results show that firstly, the single auction mechanism achieves lower cost compared 

to the baseline. More specifically, the cost of the composite service is much higher when 

providers offer their services in non-combinatorial bids, compared to when we have 

bundling with discounted price for bundles.  

Secondly, having more crowded bundles does not necessarily lead to lower cost for the 

composite service. Rather, increasing the bundle crowdedness reduces the cost up to a 

threshold. When bundles’ size grows beyond this threshold, the cost starts to increase 

rather than to decrease. More investigation revealed that the increase in cost is closely 

related to the number of single-service bids winning the auction, compared to the number 

of bids with more services winning the auction. This is due to a resource allocation 
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constraint in the auction mechanism which requires that no more than one service should 

be selected to execute each task of the composite service. When bundle crowdedness 

increases, the bids are more likely to have overlaps in services they offer, and 

consequently, more single-service bids win the auction which leads to increase in the 

composite service cost.  

7.1.1.2 Studying Dynamic Pricing against Fixed Pricing 

In Chapter 6, we evaluated the impact of the dynamic pricing in the single auction 

mechanism on the cost of the composite services. We established a fixed-price 

mechanism as the baseline. In this baseline, the service requester determines a fixed price 

for the composite service to be paid to providers. The fixed-price mechanism looks for 

the first set of providers who collectively offer their services below the pre-determined 

price. The experiments show that the single auction mechanism achieves significantly 

lower procurement cost for composite services compared to the fixed-price mechanism.  

7.1.1.3 Introducing and Measuring the Cohesion of a Composite Service 

In Chapter 5, we introduced and defined the concept of cohesion for composite services. 

This concept is used to enable service requester manage important quality requirements 

such as maintainability, reliability and (provider-) dependability. The current study is the 

first to define the cohesion of the composite service and propose a technique to measure 

it based on the cohesion of the bundles of services forming the composition.  

We defined cohesion for the composite service based on “the direct data dependencies 

between the participating services offered in a bundle”. It is measured as the sum of the 

cohesion of the bundles winning the auction to execute the composition. A resource 

allocation constraint was developed to enable the service requester define a lower and an 

upper bound for the cohesion of the composite service, relative to the maximum cohesion 

attainable when all services are procured from the same provider. This constraint is added 

to the winner determination problem of the single auction mechanism. 

Adding this constraint imposes extra limitation on the auction mechanism. Therefore, it 

is important to study its impact on the performance of the mechanism. The comparison 

was performed among three cases:  
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1) The service requester is interested in high cohesion; that is to include relatively 

few providers in provisioning to address concerns regarding maintainability of the 

composite service,  

2) The service requester is interested in low cohesion; that is to include many 

providers to prevent high dependability on any particular provider,  

3) A baseline with no cohesion constraint. 

The results show that firstly, the success rate of the auction is considerably low when 

requester specifies a cohesion constraint as high as the lower bound being at least equal 

to 75% of the maximum achievable cohesion in the composition. This is due to the 

allocation constraint in the auction mechanism that requires each task to be procured from 

exactly one provider. As a result, with the increase in the requester’s need of having fewer 

providers for dependent tasks, the probability of finding non-overlapping bundles from 

the same provider decreases. This, in turn, leads to a very low success rate for mechanism.  

Secondly, the cost of the composite service does not significantly increase when the 

objective is to achieve low cohesion. In other words, if the service requester decides to be 

independent of any specific provider by setting a low cohesion constraint, this is 

achievable at almost no extra cost. In contrast, reaching a high cohesion increases the cost 

of the composite service on average by 20%. These findings can help the service 

requesters to set the appropriate level of cohesion considering the trade-off between the 

cohesion level, the cost of the composite service and the success rate. 

7.1.1.4 Identify the Need and Develop Constraints to Manage the Configuration of 

Composite Service Provisioning 

We identified the service requester’s need to manage the configuration of service 

providers in the execution of a composite service. More specifically, we identified two 

important patterns of service providers’ involvement in the composition: a set of tasks 

need to be executed by the “same” provider or by “different” providers. These patterns 

are very important in the context of service requester’s security and privacy concerns. 

We developed two resource allocation constraints corresponding to each of the patterns, 

which were added to the ILP formulation of the winner determination problem of the 

auction mechanism.  
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7.1.2 A Simultaneous Auction Mechanism for Trading Composite Services  

7.1.2.1 Identifying and Investigating the “Multiple Composite Service Selection” 

Problem 

In Chapter 7, we introduced the problem of “multiple composite service selection” by 

extending the composite service selection problem to include multiple requests. 

Composite services have been recognized as an essential part of a marketplace for web 

services, where service providers and requesters meet to trade single and composite web 

service. However, very limited study has been done to examine how such a marketplace 

impacts the composite service selection process. To the best of our knowledge, this is the 

first study to investigate composite service selection in the presence of multiple requests 

for composite services. All other approaches solve the problem for a single request and 

no discussion exists about solving the problem for multiple requests, neither 

simultaneously nor one by one. 

7.1.2.2 Proposing Two Simultaneous Auction Mechanisms to Solve Multiple 

Composite Service Selection  

We developed “a simultaneous auction mechanism” that solves the composite service 

selection problem for multiple requests. The simultaneous auction mechanism is based 

on combinatorial auctions. A design based on auction models in general, and 

combinatorial auctions in particular achieves these desirable features: (1) enhances 

dynamic pricing for composite services compared to a fixed pricing strategy,  

(2) facilitates price determination of single and composite services by sending constant 

feedback about the status of supply and demand obtained from the information revealed 

after each auction, and (3) accommodates the need for bundling web services due to the 

inter-service dependencies between constituent services of a composition.  

The simultaneous auction mechanism aims to procure web services for the requests at the 

minimum price, subject to resource allocation constraints of service requesters. It comes 

in two variations: the Full-Matching and the Partial-Matching mechanisms. The Full-

Matching mechanism aims to allocate services to all the requests. Therefore, in the case 

that some requests are not feasible due to their allocation constraints, the whole auction 

fails and no request, even the feasible one, will be assigned any services. The Partial-

Matching mechanism relaxes the need to solve the problem for all requests; rather, it aims 

to solve the problem for the largest set of feasible requests. More specifically, the 
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objective of the Partial-Matching mechanism is to maximize the number of feasible 

requests, and then, minimize the cost for this set. 

The proposed Partial-Matching mechanism is backed up with evaluation through 

extensive experiments based on simulations. The objective of the evaluation was to 

compare the performance of the Partial-Matching simultaneous auction with two other 

mechanisms which solve the problem for multiple requests one at a time: (1) the single 

auction mechanism when applied to a set of requests one at a time, (2) a fixed-price 

mechanism where the service requesters determine a fixed price to be paid for the 

composite services. The performance metrics were defined as the success rate (the 

number of feasible requests to all the requests), the average cost of a composite service 

achieved by the mechanism and the time to solve the problem for a specific set of requests. 

Moreover, we defined four market sections for our study based on: (1) the complexity of 

the composite service requests, calibrated based on the number of services in a 

composition, and (2) the number of providers and requesters attending the market; 

referred to as, the size of the economy.  

7.1.2.3 Studying the Impact of the Choice of Mechanism on the Service Selection’s 

Success Rate 

The evaluations show the following results. Firstly, simultaneous auction achieves the 

highest success rate, regardless of the requests’ complexity or the size of economy. This 

result is statistically significant for all market sections except the (small-simple) section 

where the simultaneous auction mechanism is not significantly better than the other two 

mechanisms. Secondly, comparing the single auction’s success rate to that of the fixed-

price mechanism shows that the success rate achieved by the two mechanisms does not 

have a significant difference as they follow a similar greedy service selection strategy.  

To summarize, the difference between the success rates of the simultaneous auction to 

that of the other two mechanisms grows as the market attracts more participants (size of 

economy changes from small to large) and as the requesters demand more complex 

composite services. However, in the simplest market section (small-simple) the difference 

is not significance. This means that when market is small and requesters are after simple 

composite services, the choice of the mechanism does not significantly change the success 

rate of composite service selection. However, in a small market whose service requesters 

need complex composite services and in large markets regardless of the requests’ 
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complexity, applying a simultaneous auction can significantly improve the success rate 

of composite service selection. 

7.1.2.4 Studying the Impact of the Choice of Mechanism on the Cost of the 

Composite Service 

The evaluations show the following results. Firstly, the difference between the costs of a 

composite service achieved by the simultaneous auction to that achieved by the single 

auction is not statistically significant in three out of four market sections. This may not 

seem very intuitive as we expected the greedy strategy of the single auction to achieve 

lower costs. However, as the cost per composite service (CPC) is calculated by averaging 

the costs of all the requests in a simulation round, the simultaneous auction can keep up 

with the single auction in the long run and achieves prices as low as the single auction. 

However, in small markets with complex requests, the greedy strategy of the single 

auction proves to be statistically different to the simultaneous auction in terms of 

achieving lower prices. 

Secondly, while the order of considering the requests for service selection does not affect 

the simultaneous auction, it considerably affects the cost achieved by the single auction 

due to its first-come, first-served policy. This speculation was backed up by repeating the 

measurement of cost, this time comparing the two mechanisms’ costs of the first request 

and that of the last request, being averaged across all the simulation rounds. The 

investigation indicates that the simultaneous auction achieves more homogenous costs for 

the requests, while the cost by the single auction is considerably affected by the order of 

requests: the first request gets the best deals with lowest prices and the last request gests 

the more expensive deals. This impact can be a determining factor for a requester when 

choosing which mechanism to attend for service selection. Thirdly, comparing the cost 

achieved by the two auction-based mechanisms to that of the fixed-price mechanism 

shows that the cost by the auctioned-based mechanisms is lower than the cost by the fixed-

price mechanism. The difference in cost is statistically significant in all market sections.   

To summarize, the cost of procuring a composite service through the simultaneous 

auction is not significantly different to that of the single auction in all market sections 

except for (small-complex), where the single auction can procure composite services at 

lower prices. However, the simultaneous auction achieves more homogenous costs for 

the requests in one simulation round, compared to the single auction where the cost is 



189 

 

affected by the order of considering the requests for service selection. This can be a 

determining factor for requesters to consider before choosing a service selection 

mechanism. Finally, in all market sections, the dynamic pricing in auction-based 

mechanisms leads to lower prices compared to the fixed-price mechanism. 

7.1.2.5 Studying the Impact of the Choice of Mechanism on the Service Selection’s 

Time 

In the experiments to evaluate the time of the proposed simultaneous auction mechanism, 

we set a time limit of 60 seconds (“wall clock” time) to prevent the mechanism from 

being trapped by hard instances of the problem. Similar time limit was set for the single 

auction and fixed-price mechanisms. In a market for complex composite services, such 

as scientific workflows, 60 seconds is considered relatively a very short time to allow the 

matching mechanism to finish its job. However, in a market for simple requests, such as 

mobile applications, the time taken to find an allocation can be a determining factor for 

requesters in choosing what service selection mechanism to attend. The evaluations show 

the following results. 

Firstly, the simultaneous auction mechanism does not reach the time limit when the 

requests are simple. For complex requests, the simultaneous mechanism reaches the time 

limit in 28% of the instances in a large market and 4% of the instances in a small market. 

This means that for this set of instances, we cannot be sure if the simultaneous auction 

mechanism has found the optimal allocation or not. However, based on the following 

results from studying the cost, we conclude that it is very likely that the simultaneous 

auction finds the optimal allocation but the optimality cannot be proven within the time 

limit: (1) the cost of the simultaneous auction was not significantly different to that of the 

single auction, (2) the single auction does find the optimal allocation as the time limit is 

never reached.  

Secondly, the single auction and fixed-price mechanisms never reach the time limit as 

they solve the service selection problem for requests one by one. Thirdly, the fixed-price 

mechanism has the shortest solve time, followed by firstly, the single auction mechanism, 

and secondly, by the simultaneous auction mechanism in all market sections except 

(small-simple) where the simultaneous auction mechanism is the fastest. The reason is 

that the single auction and fixed-price mechanisms have to allocate offers to the requests 

one by one, while the simultaneous auction mechanism solves the allocation problem in 
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one go. Therefore, when the complexity of the problem instances is not high, such as the 

instances in the (small-simple) section, the simultaneous auction mechanism achieves a 

better solve time than the two other mechanisms.  

To summarize, although it takes longer for the simultaneous auction to solve the multiple 

composite service selection problem in three of the market sections (all except the simple-

small section) compared to the other two mechanisms, the solve time can be considered 

reasonable with respect to the market sections. In the (large-complex) market section, this 

time is 31.23 seconds excluding the solve time of instances which reached the time limit, 

and 33.64 seconds for all instances. In the (small-complex) section, the average solve 

time is 5 seconds. These times can be reasonable for requesters who need complex 

composite services that are not time sensitive. For requesters who require a simple 

composite service, the average solve time is below one second in both economy sizes. 

7.1.3 A Comprehensive Evaluation Process 

The evaluation process was presented in Chapter 4. This process was designed to support 

a comprehensive evaluation of the proposed auction-based approaches through 

simulations. The evaluation process includes the following elements: 

1. The performance metrics 

2. The baseline for comparison 

3. The scenarios to be investigated 

4. The data generation model 

5. The seeding of the simulation 

After the first set of experiments for the proposed single auction mechanism, we revised 

and enhanced the implementation of the evaluation process’s elements.  

A challenge for this study was the absence of publicly available data sets of web services’ 

prices, bundling of web services and composite web services. Moreover, the limited 

empirical research on composite service selection with bundling or in the presence of 

multiple requests further exacerbated the problem of data generation and seeding.  

To address the problem of data for bundled service offers, we mainly referred to the 

combinatorial auction literature for the required data distributions. We initially started 

with data sets generated by CATS (Leyton-Brown et al. 2000) which includes a family of 
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distributions to generate data for combinatorial auctions. However, the data generated by 

CATS has some problems regarding: (1) the variety and number of parameters involved 

in the data generation that their impact on the output is not very clear; (2) it is rather an 

old test suit which is not supported anymore. Therefore, we later moved to generate the 

complete data set based on a well-known distribution for combinatorial auctions called 

decay distribution (Sandholm 2002). For the pricing of services, we referred to the IPV 

(independent private valuation) model to generate services’ prices. In auction theory, IPV 

is the most common valuation model used to define the valuation of the bidders for the 

items under auction. 

To address the problem for multiple requests, we studied a number of web service 

communities on the Internet where service requesters need composite services. However, 

these communities were very different in terms of their number of registered web services 

and composite services and the complexity of the composite services. Therefore, we 

decided to limit our study to specific market sections, rather than a generic market. As 

discussed in subsection 7.1.2.2, the market sections were designed based on two factors: 

(1) the complexity of the requests for composite services, and (2) the size of economy. 

Based on these factors, the web services’ market was divided to four sections. 

The proposed evaluation process in general, and the data generation model and seeding 

of the simulation parameter in particular provide a useful framework for the service 

selection community. It improves the clarity of the experiments in this area and 

establishes the basis for more realistic data sets. This is achieved by identifying and 

defining a set of elements for evaluations performed in this area and relying on the data 

obtained from existing web service communities for seeding the simulations. 

7.1.4 Summary Remarks 

In summary, we have provided empirical evidence that considering bundling and multiple 

requests improves the performance of the composite service selection approach, 

specifically in terms of the cost of procuring a composite service and the success rate of 

the approach.  

The proposed single auction mechanism achieves lower costs for composite services by 

allowing providers to bundle their services with a discounted price when compared to the 

baseline with services being offered independently. However, increasing the size of the 
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bundles reduces the cost up to a threshold, beyond which, the cost starts to increase rather 

than to decrease. 

The proposed simultaneous auction achieves significantly higher success rate in 

allocating services to requests compared to the single auction and fixed-price 

mechanisms, both of which follow a greedy strategy by assigning services to requests one 

at a time. The average cost of a composite service achieved by the simultaneous auction 

is not significantly different to that of the single auction mechanism despite the greedy 

approach of the single auction. However, the simultaneous auction mechanism achieves 

more homogenous costs for different requests while the cost achieved by the single 

auction is affected by the order the requests are being considered for service selection. 

This can be a determining factor for service requesters when considering which service 

selection mechanism to attend. Finally, in both single auction and the simultaneous 

auction mechanisms, the dynamic pricing at the core of a design based on auction models 

leads to lower prices for the requesters compared to the fixed-price mechanism.  

7.2 Limitations 

7.2.1 Solve Time  

Composite service selection problem is proven to be NP-complete (Yu et al. 2007). This 

means that it is not possible to guarantee to find an optimal solution within polynomial 

time, as discussed in subsection 3.3. Combinatorial auctions are also proven to be NP-

complete (Sandholm 2002). This indicates that the complexity of a composite service 

selection approach based on combinatorial auctions is at least as hard as any of these two 

problems.  

In the proposed auction-based approaches, the winner determination and matching 

problems are mapped to integer linear programming problems. The ILP problems are then 

implemented using AMPL, a mathematical language, and are solved by CPLEX, the best 

known and most widely used optimization solver. To avoid the complexity of the 

problem, we had to set a time limit of 60 seconds for the solver. The results of the 

experiments on the simultaneous auction presented here are based on using the latest 

version of CPLEX (CPLEX 12.0, 2014). Initially, we ran the experiments with an older 
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version (CPLEX 10, 2005) where the success rate of the simultaneous auction was 

remarkably lower than what was achieved by the new version of the CPLEX. 

Despite the acceptable solve time of the new solver in solving the very hard instances of 

the problem (market section large-complex, average time 33.64 seconds), we need to 

notice that this time was achieved by having set the time limit and within the generated 

data sets. It is not possible to comment on the scalability of the proposed mechanism 

beyond these two limitations. 

One possibility to reduce the complexity of the problem is to aim for finding near optimal 

solutions using heuristic approaches, rather than optimal solutions. Many heuristics have 

already been proposed to solve composite service selection (Yu, Zhang, and Lin 2007, 

Berbner et al. 2006, Menasce et al. 2010) or for combinatorial auctions (Sandholm 2002). 

However, it’s not possible to apply any of these heuristics directly to a composite service 

selection problem based on combinatorial auctions. The heuristics in composite service 

selection do not support bundling of services and the heuristics of combinatorial auctions 

assume free disposal (Sandholm et al. 2002). As discussed in subsection 4.3.1.2, free 

disposal does not exist in composite service selection as the composite service requester 

needs to find services for all the tasks in the business process, abstracting the composite 

service. Therefore, there is a need to new heuristic approaches considering the properties 

of both composite service selection and combinatorial auction problems.  

7.2.2 Economic Efficiency and Incentive Compatibility 

Economic efficiency is an important objective to achieve for auction designers. 

Meanwhile, the necessary condition for designing an efficient auction is to incentivize 

the bidders to truthfully reveal their valuation for the items under auction. In other words, 

the mechanism needs to be incentive-compatible. However, it is not always easy to 

achieve incentive-compatibility due to a number of reasons, as discussed below:  

7.2.2.1 Computational Cost 

Achieving incentive compatibility can be expensive in computational terms, especially 

when multiple items are auctioned simultaneously as in combinatorial auctions. The 

Vickrey-Clarke-Groves (VCG) mechanism (Vickrey 1961; Clarke 1971; Groves 1973) is 
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the most notable mechanism to achieve incentive-compatibility and economic efficiency 

in such a setting.  

However, the VCG payment requires extra optimization problems to be solved to 

calculate the payment (to or from) each winning bidder: first, the winner determination 

problem, and then for each winning bidder, the WDP when taking out the bids of the 

winning bidder. Considering the complexity of the winner determination problem in 

composite service selection, calculating the Vickrey payments may not be scalable 

specially when the economy size of the web service market grows or requests need more 

complex composite services.  

7.2.2.2 Bidders Reluctant to Truthful Revelation 

Bidders might be reluctant to be truthful due to behavioral reasons as well as economic 

reasons (Rothkopf et al. 1990). From the behavioral aspect, many people with experience 

in conducting business are reluctant to reveal their true cost or value and they strongly 

prefer to keep such information confidential (Rothkopf et al. 1990).  

Economic reasons are related to the subsequent transactions after the auction. Most of the 

discussions about incentive compatibility have assumed that an auction is an isolated 

event. However, in many situations an auction might be followed by subsequent 

transactions with the involvement of the bidders, such as: other auctions for similar or 

identical items, secondary markets to re-sale the auctioned items (Haile 2000) or when 

further negotiation is required to seal the contract (Rothkopf et al. 1990).  

Moreover, a truth revealing strategy may inform competitors of valuable information. In 

our problem domain, a service provider can sell a web service over and over, based on 

their capacity, to different requesters. In this setting, providers might be concerned about 

attending a mechanism which reveals their true value (cost) of the offered services to all 

the participants. This information can be used to their disadvantage, in the subsequent 

auctions, secondary markets or negotiations. 

This is an important factor to consider when designing auctions. For example in the case 

of auction for spectrum frequency, the auction designers as well as the bidders know that 

the next auction in this domain will be held not in the near future, and therefore, the 

economics of the problem is very likely to be completely different at the time of the next 

auction. As a result, the bidders may not be concerned about the revelation of their true 
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values. This situation is very different to web service domain where auctions may be apart 

only in minutes and the revealed information can be used to the disadvantage of providers.  

7.2.2.3 The Existence of Secondary Markets for Composite Services 

Secondary markets refer to a market for items or services which had been sold in a 

previous auction. The resale opportunity has fundamental effect on the bidding strategies, 

seller behavior and the interpretation of the bidding data (Haile 2000).   

In composite web service domain, there are many discussions around the role of 

intermediary entities, such as in (Tang 2004), which are interested in composing web 

services together and sell the composite services to the end-users. Having these 

intermediaries as second markets adds to the complexity of designing incentive 

compatible and economic efficient auctions for composite services. 

7.2.2.4 Truthfulness for all Market Participants 

The auction model proposed for a single composite service is incentive-compatible with 

the use of the VCG payment. It is truthful for both sides; providers and the requester. 

Providers are incentivized through the VCG payment. Requesters, as well, has no 

incentive to declare an untruthful budget constraint, as the winners are the providers with 

the lowest prices in the market. In other words, the requester cannot improve their utility 

by shading their budget. 

However, the situation is different for the simultaneous auction mechanism proposed for 

multiple requests. Let us assume that the auction designer accepts the computational cost 

of a VCG mechanism, and the providers are not concerned about the truthful revelation. 

The VCG payment makes the mechanism truthful for service providers. In this setting, 

the requesters need to pay for the VCG payment; in other words they accept to pay the 

price of making providers truthful. As a result of this situation, the requesters find enough 

incentive to shade their budgets. 
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Let us discuss this problem more specifically for the two allocation mechanisms: the Full-

Matching and the Partial-Matching mechanisms with providers which have limited 

resources.34 

In the Full-Matching mechanism, a service requester knows that the mechanism will be 

successful only if it can find solutions for all the requests. This requirement forces the 

mechanism to prioritize the requests based on their budget constraints when allocating 

services to them. Therefore, if there are two requests requiring similar services but they 

have different budget constraints, the request with a lower budget constraint will end up 

receiving lower prices, and the one with a higher budget constraint has to procure the 

same composite service at a higher price. This incentivizes all requesters to shade their 

budgets to receive less expensive services.  

As an example, consider a scenario where there are four requests in the marker, 𝑟1 to 𝑟4, 

and the Full-Matching mechanism finds two feasible solutions, S1 and S2, for the requests 

with equal total costs (14 for both). S1 assigns the combination of (5,4,3,2) as the 

provisioning cost to the requests, while S2 assigns the combination of (6,3,3,2), as 

depicted in Table 7.1.  

As both solutions are feasible considering the budget constraints of the requesters and 

they achieve equal minimum cost, the mechanism needs to break the tie randomly to be 

considered fair by the participants. However, if 𝑟2 shades the budget down to 3, the 

mechanism has to choose S2, instead of randomly breaking the ties. This means that 𝑟2 

can improve its utility by manipulating the mechanism. 

Table 7.1. An example scenario for the full matching mechanism 

 r1 r2 r3 r4 total minimum cost 

Real Budget 8 4 5 3  

Shaded Budget 8 3 5 3  

S1 5 4 3 2 14 

S2  6 3 3 2 14 

                                                 

34 If providers do not have limitation over their resources (each bid can be assigned to as many requests as 

required), the requesters are not competing against each other and therefore, a VCG payment can make 

both sides truthful. 
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The Partial-Matching mechanism aims to minimize the cost for as many requests as 

possible. Therefore, a requester that has a higher budget will be assigned more expensive 

services (up to the budget constraint, of course) and the request with lower budget will 

get the less expensive providers, for the mechanism to be able to maximize the number 

of feasible requests. The example depicted in Table 7.2 shows that if the requesters were 

all truthful, the mechanism could have chosen S1 which achieves the minimum cost. 

While if 𝑟2 strategically shade its budget, the mechanism needs to choose S2 to primarily 

maximize the number of feasible requests, and secondarily, minimizes the cost for this 

set. 

Table 7.2. An example scenario for the partial matching mechanism 

 r1 r2 r3 r4 total minimum cost 

Real Budget 8 7 5 3  

Shaded Budget 8 5 5 3  

S1 5 6 3 2 16 

S2  8 4 3 2 17 

7.2.2.5 Budget-balanced Property 

If we decide to design a mechanism which is incentive compatible for requesters as well 

as providers, we will need a payment rule which sets the price of each composite service 

lower than the truthful budget of the requester, and calculates a payment for each winning 

provider higher than the truthful cost of the service. However, as discussed in 

subsection 2.4.1.7 (Myerson–Satterthwaite Impossibility Theorem), such a payment rule 

makes the mechanism not to be budget-balanced. This means that we need an entity from 

outside the market to subsidize the market by paying for the cost of truthfulness. Such a 

mechanism may be practical for some domains, but not for the composite service 

selection problem. 

To summarize, there is a need to new models of the composite service selection problem 

that consider the impact of revealing the information of one auction to the next ones. 

These models also need to study the trade-off between the four desirable properties, 

economic efficiency, incentive compatibility, individual rationality and budget balance, 

to come up with new approaches for composite service selection problem to achieve 

economic efficiency. 
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7.2.3 Data  

As we discussed in subsection 7.1.3, the public available data for real web services is very 

limited. The existing data sets such as QWS Dataset (Al-Masri and Mahmoud 2007) do 

not have any information about web services’ prices. Therefore, generating appropriate 

datasets for evaluation purposes have been a challenge for web service research 

communities. 

We used common data distributions in combinatorial auction research to generate our 

data. We conducted experiments with two distributions, CATS arbitrary and Decay, being 

well-known distributions in combinatorial auction literature.  

However, more studies are required to test the appropriateness of other distributions for 

composite service selection and also compare the results of different distributions. 

7.3 Implications and Future Work 

The findings of this research have significant theoretical and practical implications. 

Theoretically, this research extends the current research on composite service selection 

problem, building on auction theory and mechanism design. By building on auction 

theory, the proposed mechanisms have in their core the means for “dynamic pricing”, 

which we demonstrated that reduces the cost of procuring composite services compared 

to a fixed pricing strategy. Another key feature of an auction-based approach is to 

facilitate the price determination of the single and composite services for service 

providers and requesters. This is achieved by constantly signaling the status of supply and 

demand obtained from the information revealed after each auction.  

In the proposed mechanisms, we addressed two important aspects of composite service 

selection: bundling of web services by service providers and the presence of multiple 

composite service requests. Bundling is proven to increase the economic efficiency due 

to allowing the bidders more fully express their preferences for combination of items (de 

Vries and Vohra 2003). In composite service selection, bundling allows providers express 

more complex preferences in offering web services:  

1. They can offer discount for the price of bundled services by internalizing some 

of the cost of service provisioning,   
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2. The quality offer for the bundle of services can also be improved by being 

procured from a single provider, rather than many.  

Composite services are considered to be an import element in the web service 

marketplaces (Papazoglou 2003; Yarom et al. 2004; Legner 2009; Weinhardt et al. 

2011b). However, there is a very limited study on how these markets impact composite 

service selection. In other words, the problem of composite service selection in the 

presence of multiple composite services has not received the deserving attention of the 

research community. This study opens up a new research direction in the research on web 

service composition and composite service selection. The results of the current study 

show that the current approaches of service selection do not efficiently extend to the 

setting with multiple composite services, in terms of the success rate of the mechanism. 

If the service selection approach does not consider the presence of multiple requests at 

the time of looking for the optimal service allocation, it fails to accommodate the 

competition of service requesters for the limited resources of service providers, which 

leads to many requests remain un-executable (no web services for them).   

By addressing the two aspects of bundling and multiple requests, this work also makes a 

practical contribution. It enhances the practicality of service selection approaches by 

moving the models of web service offers and composite services to more realistic settings: 

service offers can be single or bundle of services and there can be more than one request 

for composite services.  

Furthermore, the proposed simultaneous mechanism contributes to the development of 

web service marketplaces. The results of our experiments can provide useful guidelines 

for web service market makers in choosing the appropriate service matching mechanism 

based on the complexity of the requests for composite services and the size of the 

economy in the target market.  

Future work involves extending the simultaneous auction mechanism to solve the above-

mentioned problems, including the time complexity and the need for economic efficiency. 

Moreover, an interesting extension to the current study would be supporting the 

application of the simultaneous auction mechanism in other areas of interest, such as 

cloud computing. With the increasing interest to the delivery model of pay-as-you-go and 

providing more high level services in the cloud following the Software as a Service (SaaS) 

model, more web service providers are expected to move to the cloud. The cloud 
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environment can serve as the management layer for web service marketplaces, which was 

originally seen as the role of grid computing (Papazoglou 2003). In this context, service 

selection can be offered by the cloud or by third-parties who offer value- added services 

in the cloud environments to the customers.   
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