5,186 research outputs found

    Recognition of handwritten music scores

    Get PDF
    The recognition of handwritten music scores still remains an open problem. The existing approaches can only deal with very simple handwritten scores mainly because of the variability in the handwriting style and the variability in the composition of groups of music notes (i.e. compound music notes). In this work on the one hand I study the isolated symbols (i.e half-note, quarter-note, clefs, sharps) and on the other hand the compound music notes. Firstly, I will separate the isolated symbols (i.e half-notes, quarter-notes, clefs, sharps) to the compounds and I will study each one separately. The isolated symbols will be recognized with symbol recognition methods and compounds with a primitive hierarchy and syntactic rules. The method has been tested using several handwritten music scores of the CVC-MUSCIMA database and compared with a commercial Optical Music Recognition software. Given that my method is learning-free, the obtained results are promising.El reconeixement de partitures musicals manuscrites segueix sent un problema obert. Els enfocaments existents només poden reconéixer partitures manuscrites molt simples, principalment a causa de la variabilitat en l'estil d'escriptura i la variabilitat en la composició dels grups de notes musicals (p.e. els símbols musicals compostos). En aquest treball, per començar, se separaran els símbols simples (p.e blanques, negres, claus, sostinguts) dels compostos i els estudiaré per separat. Els símbols simples mitjançant mètodes de reconeixement de símbols i els compostos a partir d'una jerarquia de primitives i regles sintàctiques. El meu mètode ha estat provat utilitzant diferents partitures de música escrita a mà de la base de dades CVC-MUSCIMA i comparat amb un programari de reconeixement òptic musical comercial. Tenint en compte que el meu mètode és d'aprenentatge lliure, els resultats obtinguts són prometedors.El reconocimiento de partituras musicales manuscritas sigue siendo un problema abierto. Los enfoques existentes sólo pueden reconocer partituras manuscritas muy simples, principalmente debido a la variabilidad en el estilo de escritura y la variabilidad en la composición de los grupos de notas musicales (p.e. los símbolos musicales compuestos). En este trabajo, para empezar, se separarán los símbolos simples (p.e blancas, negras, llaves, sostenidos) de los compuestos y los estudiaré por separado. Los símbolos simples mediante métodos de reconocimiento de símbolos y los compuestos a partir de una jerarquía de primitivas y reglas sintácticas. Mi método ha sido probado utilizando diferentes partituras de música escrita a mano de la base de datos CVC-MUSCIMA y comparado con un software de reconocimiento óptico musical comercial. Teniendo en cuenta que mi método es de aprendizaje libre, los resultados obtenidos son prometedores

    Optical Music Recognition: State of the Art and Major Challenges

    Get PDF
    Optical Music Recognition (OMR) is concerned with transcribing sheet music into a machine-readable format. The transcribed copy should allow musicians to compose, play and edit music by taking a picture of a music sheet. Complete transcription of sheet music would also enable more efficient archival. OMR facilitates examining sheet music statistically or searching for patterns of notations, thus helping use cases in digital musicology too. Recently, there has been a shift in OMR from using conventional computer vision techniques towards a deep learning approach. In this paper, we review relevant works in OMR, including fundamental methods and significant outcomes, and highlight different stages of the OMR pipeline. These stages often lack standard input and output representation and standardised evaluation. Therefore, comparing different approaches and evaluating the impact of different processing methods can become rather complex. This paper provides recommendations for future work, addressing some of the highlighted issues and represents a position in furthering this important field of research

    Dissimilarity Gaussian Mixture Models for Efficient Offline Handwritten Text-Independent Identification using SIFT and RootSIFT Descriptors

    Get PDF
    Handwriting biometrics is the science of identifying the behavioural aspect of an individual’s writing style and exploiting it to develop automated writer identification and verification systems. This paper presents an efficient handwriting identification system which combines Scale Invariant Feature Transform (SIFT) and RootSIFT descriptors in a set of Gaussian mixture models (GMM). In particular, a new concept of similarity and dissimilarity Gaussian mixture models (SGMM and DGMM) is introduced. While a SGMM is constructed for every writer to describe the intra-class similarity that is exhibited between the handwritten texts of the same writer, a DGMM represents the contrast or dissimilarity that exists between the writer’s style on one hand and other different handwriting styles on the other hand. Furthermore, because the handwritten text is described by a number of key point descriptors where each descriptor generates a SGMM/DGMM score, a new weighted histogram method is proposed to derive the intermediate prediction score for each writer’s GMM. The idea of weighted histogram exploits the fact that handwritings from the same writer should exhibit more similar textual patterns than dissimilar ones, hence, by penalizing the bad scores with a cost function, the identification rate can be significantly enhanced. Our proposed system has been extensively assessed using six different public datasets (including three English, two Arabic and one hybrid language) and the results have shown the superiority of the proposed system over state-of-the-art techniques

    Understanding Optical Music Recognition

    Get PDF
    For over 50 years, researchers have been trying to teach computers to read music notation, referred to as Optical Music Recognition (OMR). However, this field is still difficult to access for new researchers, especially those without a significant musical background: Few introductory materials are available, and, furthermore, the field has struggled with defining itself and building a shared terminology. In this work, we address these shortcomings by (1) providing a robust definition of OMR and its relationship to related fields, (2) analyzing how OMR inverts the music encoding process to recover the musical notation and the musical semantics from documents, and (3) proposing a taxonomy of OMR, with most notably a novel taxonomy of applications. Additionally, we discuss how deep learning affects modern OMR research, as opposed to the traditional pipeline. Based on this work, the reader should be able to attain a basic understanding of OMR: its objectives, its inherent structure, its relationship to other fields, the state of the art, and the research opportunities it affords

    Proceedings of the 4th International Workshop on Reading Music Systems

    Full text link
    The International Workshop on Reading Music Systems (WoRMS) is a workshop that tries to connect researchers who develop systems for reading music, such as in the field of Optical Music Recognition, with other researchers and practitioners that could benefit from such systems, like librarians or musicologists. The relevant topics of interest for the workshop include, but are not limited to: Music reading systems; Optical music recognition; Datasets and performance evaluation; Image processing on music scores; Writer identification; Authoring, editing, storing and presentation systems for music scores; Multi-modal systems; Novel input-methods for music to produce written music; Web-based Music Information Retrieval services; Applications and projects; Use-cases related to written music. These are the proceedings of the 4th International Workshop on Reading Music Systems, held online on Nov. 18th 2022.Comment: Proceedings edited by Jorge Calvo-Zaragoza, Alexander Pacha and Elona Shatr
    corecore