321,415 research outputs found

    OPTIMAL CONTROL - OPTIMAL IDENTIFICATION (NEW PARADIGMS - NEW SOLUTIONS)

    Get PDF
    A new generic optimal controller structure and regulator design method are introduced avoiding the solution of polynomial equations. The model sensitivity properties of some combined identification and control schemes are investigated. It is shown that a new structure is superior to the others. An applicable strategy for iterative control refinement based on the generic scheme is presented and illustrated by simulation examples. A worst-case optimal input design algorithm is also introduced to increase the robustness of the closed-loop control in the relevant medium frequency range by generating a 'maximum-variance' reference signal. The adaptive version of the control refinement strategy is also shown with a special 'triple-control' extension for recursive optimal input design

    The public health risk posed by Listeria monocytogenes in frozen fruit and vegetables including herbs, blanched during processing

    Get PDF
    A multi-country outbreak ofListeria monocytogenesST6 linked to blanched frozen vegetables (bfV)took place in the EU (2015–2018). Evidence of food-borne outbreaks shows thatL. monocytogenesisthe most relevant pathogen associated with bfV. The probability of illness per serving of uncooked bfV,for the elderly (65–74 years old) population, is up to 3,600 times greater than cooked bfV and verylikely lower than any of the evaluated ready-to-eat food categories. The main factors affectingcontamination and growth ofL. monocytogenesin bfV during processing are the hygiene of the rawmaterials and process water; the hygienic conditions of the food processing environment (FPE); andthe time/Temperature (t/T) combinations used for storage and processing (e.g. blanching, cooling).Relevant factors after processing are the intrinsic characteristics of the bfV, the t/T combinations usedfor thawing and storage and subsequent cooking conditions, unless eaten uncooked. Analysis of thepossible control options suggests that application of a complete HACCP plan is either not possible orwould not further enhance food safety. Instead, specific prerequisite programmes (PRP) andoperational PRP activities should be applied such as cleaning and disinfection of the FPE, water control,t/T control and product information and consumer awareness. The occurrence of low levels ofL. monocytogenesat the end of the production process (e.g.<10 CFU/g) would be compatible with thelimit of 100 CFU/g at the moment of consumption if any labelling recommendations are strictly followed(i.e. 24 h at 5°C). Under reasonably foreseeable conditions of use (i.e. 48 h at 12°C),L. monocytogeneslevels need to be considerably lower (not detected in 25 g). Routine monitoring programmes forL. monocytogenesshould be designed following a risk-based approach and regularly revised based ontrend analysis, being FPE monitoring a key activity in the frozen vegetable industry

    Feasibility studies in relation to the IMO Ballast Water Convention

    Get PDF
    This project is aimed to develop possibilities to overcome the difficulties which arise from the implementation of the Ballast Water Convention (IMO 2004). For this purpose, three feasibility studies have been conducted: assessment of the applicability of small scale test systems; development of protocols for testing active substance residues; risk assessment of ballast water discharge

    Qualitative System Identification from Imperfect Data

    Full text link
    Experience in the physical sciences suggests that the only realistic means of understanding complex systems is through the use of mathematical models. Typically, this has come to mean the identification of quantitative models expressed as differential equations. Quantitative modelling works best when the structure of the model (i.e., the form of the equations) is known; and the primary concern is one of estimating the values of the parameters in the model. For complex biological systems, the model-structure is rarely known and the modeler has to deal with both model-identification and parameter-estimation. In this paper we are concerned with providing automated assistance to the first of these problems. Specifically, we examine the identification by machine of the structural relationships between experimentally observed variables. These relationship will be expressed in the form of qualitative abstractions of a quantitative model. Such qualitative models may not only provide clues to the precise quantitative model, but also assist in understanding the essence of that model. Our position in this paper is that background knowledge incorporating system modelling principles can be used to constrain effectively the set of good qualitative models. Utilising the model-identification framework provided by Inductive Logic Programming (ILP) we present empirical support for this position using a series of increasingly complex artificial datasets. The results are obtained with qualitative and quantitative data subject to varying amounts of noise and different degrees of sparsity. The results also point to the presence of a set of qualitative states, which we term kernel subsets, that may be necessary for a qualitative model-learner to learn correct models. We demonstrate scalability of the method to biological system modelling by identification of the glycolysis metabolic pathway from data

    Analysis of Implicit Uncertain Systems. Part II: Constant Matrix Problems and Application to Robust H2 Analysis

    Get PDF
    This paper introduces an implicit framework for the analysis of uncertain systems, of which the general properties were described in Part I. In Part II, the theory is specialized to problems which admit a finite dimensional formulation. A constant matrix version of implicit analysis is presented, leading to a generalization of the structured singular value μ as the stability measure; upper bounds are developed and analyzed in detail. An application of this framework results in a practical method for robust H2 analysis: computing robust performance in the presence of norm-bounded perturbations and white-noise disturbances
    corecore