87 research outputs found

    How to make a greedy heuristic for the asymmetric traveling salesman problem competitive

    Get PDF
    It is widely confirmed by many computational experiments that a greedy type heuristics for the Traveling Salesman Problem (TSP) produces rather poor solutions except for the Euclidean TSP. The selection of arcs to be included by a greedy heuristic is usually done on the base of cost values. We propose to use upper tolerances of an optimal solution to one of the relaxed Asymmetric TSP (ATSP) to guide the selection of an arc to be included in the final greedy solution. Even though it needs time to calculate tolerances, our computational experiments for the wide range of ATSP instances show that tolerance based greedy heuristics is much more accurate an faster than previously reported greedy type algorithms

    Local search heuristics for the multidimensional assignment problem

    Get PDF
    The Multidimensional Assignment Problem (MAP) (abbreviated s-AP in the case of s dimensions) is an extension of the well-known assignment problem. The most studied case of MAP is 3-AP, though the problems with larger values of s also have a large number of applications. We consider several known neighborhoods, generalize them and propose some new ones. The heuristics are evaluated both theoretically and experimentally and dominating algorithms are selected. We also demonstrate that a combination of two neighborhoods may yield a heuristics which is superior to both of its components

    Solution Approaches to the Three-index Assignment Problem

    Get PDF
    This thesis explores the axial Three-Index Assignment Problem (3IAP), also called the Multidimensional Assignment Problem. The problem consists in allocating n jobs to n machines in n factories, such that exactly one job is executed by one machine in one factory at a minimum total cost. The 3IAP is an extension of the classical two-dimensional assignment problem. This combinatorial optimisation problem has been the subject of numerous research endeavours, and proven NP-hard due to its inextricable nature. The study adopts an algorithmic approach to develop swift and e ective methods for solving the problem, focusing on balancing computational e ciency and solution accuracy. The Greedy-Style Procedure (GSP) is a novel heuristic algorithm for solving the 3IAP, guaranteeing feasible solutions in polynomial time. Speci c arrangements of cost matrices can lead to the generation of higher-quality feasible solutions. In addressing the 3IAP, analysing the tie-cases and the matrix ordering led to new variants. Further exploration of cost matrix characteristics has allowed two new heuristic classes to be devised for solving 3IAP. The approach focuses on selecting the best solution within each class, resulting in an optimal or a high-quality approximate solution. Numerical experiments con rm the e ciency of these heuristics, consistently delivering quality feasible solutions in competitive computational times. Moreover, by employing diverse optimisation solvers, we propose and implement two e ective methods to achieve optimal solutions for 3IAP in good CPU times. The study introduces two local search methods based on evolutionary algorithms to solve 3IAP. These approaches explore the solution space through random permutations and the Hungarian method. Building on this, a hybrid genetic algorithm that integrates these local search strategies has been proposed for solving the 3IAP. Implementing the Hybrid Genetic Algorithm (HGA) produces high-quality solutions with reduced computational time, surpassing traditional deterministic approaches. The e ciency of the HGA is demonstrated through experimental results and comparative analyses. On medium to large 3IAP instances, our method delivers comparable or better solutions within a competitive computational time frame. Two potential future developments and expected applications are proposed at the end of this project. The rst extension will examine the correlation between cost matrices and the optimal total cost of the assignment and will investigate the dependence structure of matrices and its inuence on optimal solutions. Copula theory and Sklar's theorem can help with this analysis. The focus will be on understanding the stochastic dependence of cost matrices and their multivariate properties. Furthermore, the impact of variations in cost distributions, is often modelled based on economic sectors. The second extension involves integrating variable costs de ned by speci c probability distributions, enhancing the comprehensive analysis of economic scenarios and their impact on the assignment problem. The study considers various well-de ned probability distributions and highlights more practical applications of the assignment problem in real-world economics. The project's original contribution lies in its algorithmic approach to investigating the 3IAP, which has led to the development of new, fast, and e cient heuristic methods that strategically balance computational speed and the accuracy of the solutions achieved

    A New Approach to Population Sizing for Memetic Algorithms: A Case Study for the Multidimensional Assignment Problem

    Get PDF
    Memetic algorithms are known to be a powerful technique in solving hard optimization problems. To design a memetic algorithm, one needs to make a host of decisions. Selecting the population size is one of the most important among them. Most of the algorithms in the literature fix the population size to a certain constant value. This reduces the algorithm's quality since the optimal population size varies for different instances, local search procedures, and runtimes. In this paper we propose an adjustable population size. It is calculated as a function of the runtime of the whole algorithm and the average runtime of the local search for the given instance. Note that in many applications the runtime of a heuristic should be limited and, therefore, we use this bound as a parameter of the algorithm. The average runtime of the local search procedure is measured during the algorithm's run. Some coefficients which are independent of the instance and the local search are to be tuned at the design time;we provide a procedure to find these coefficients. The proposed approach was used to develop a memetic algorithm for the multidimensional assignment problem (MAP). We show that our adjustable population size makes the algorithm flexible to perform efficiently for a wide range of running times and local searches and this does not require any additional tuning of the algorithm

    Container Hinterland Drayage - On the Simultaneous Transportation of Containers Having Different Sizes

    Get PDF
    In an intermodal transportation chain drayage is the term used for the movement by truck of cargo that is filled in a loading unit. The most important intermodal transportation chain is the intermodal container transportation, in which containers represent the loading unit for cargo. Cost effectiveness constitutes a general problem of drayage operations. A major cost driver within container transportation chains is the movement and repositioning of empty containers. The present thesis investigates the potential to reduce drayage costs. Two solution methodologies are developed for operating a fleet of trucks that transports containers of different sizes, which addresses a recent gap in research in seaport hinterland regions
    corecore