

 University of Groningen

How to make a greedy heuristic for the asymmetric traveling salesman problem competitive
Goldengorin, B.; Jäger, G.

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2005

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Goldengorin, B., & Jäger, G. (2005). How to make a greedy heuristic for the asymmetric traveling salesman
problem competitive. s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 06-06-2022

https://research.rug.nl/en/publications/d550aae0-376b-4d42-b071-e924c2db2261

How To Make a Greedy Heuristic

for the Asymmetric Traveling

Salesman Problem Competitive

Boris Goldengorin∗ and Gerold Jäger†

Abstract

It is widely confirmed by many computational experiments that a
greedy type heuristics for the Traveling Salesman Problem (TSP) pro-
duces rather poor solutions except for the Euclidean TSP. The selection
of arcs to be included by a greedy heuristic is usually done on the base of
cost values. We propose to use upper tolerances of an optimal solution to
one of the relaxed Asymmetric TSP (ATSP) to guide the selection of an
arc to be included in the final greedy solution. Even though it needs time
to calculate tolerances, our computational experiments for the wide range
of ATSP instances show that tolerance based greedy heuristics is much
more accurate and faster than previously reported greedy type algorithms.

1 Introduction

Perhaps the most famous classic combinatorial optimization problem is called
the Traveling Salesman Problem (TSP) ([20]). It has been given this picturesque
name because it can be described in terms of a salesperson who must travel to
a number of cities during one tour. Starting from his (her) home city, the
salesperson wishes to determine which route to follow to visit each city exactly
once before returning to his home city so as to minimize the total length tour.
The length (cost) of traveling from city i to city j is denoted by c(i, j). These
costs are called symmetric if c(i, j) = c(j, i) for each pair of cities i and j, and
asymmetric otherwise. A TSP instance is defined by all non-diagonal entries of
the n × n matrix C = ||c(i, j)||. There have been a number of applications of
TSP that have nothing to do with salesman. For example, when a truck leaves
a distribution center to deliver goods to a number of locations, the problem

∗Corresponding author. Department of Econometrics and Operations Research, University
of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands; Fax. +31-50-363-3720, E-
mail: B.Goldengorin@rug.nl and Department of Applied Mathematics, Khmelnitsky National
University, Ukraine
†Computer Science Institute, Martin-Luther-University Halle-Wittenberg, Von-

Seckendorff-Platz 1, 06120 Halle (Saale), Germany, E-mail: jaegerg@informatik.uni-halle.de

1

of determining the shortest route for doing this is a TSP. Another example in-
volves the manufacture of printed circuit board, the problem of finding the most
efficient drilling sequence is a TSP. More applications to Genome Sequencing,
Starlight Interferometer Program, DNA Universal Strings, Touring Airports,
Designing Sonet Rings, Power Cables, etc are indicated at ([19]).

Computer scientists have found that the ATSP is among certain type of
problems, called NP-hard problems which are especially intractable, because
the time it takes to solve the most difficult examples of an NP-hard problem
seems to grow exponentially as the amount of input data increases. Surprisingly,
powerful algorithms based on the branch-and-cut (b-n-c) ([21]) and branch-and-
bound (b-n-b) ([5]) approaches have succeeded in solving to optimality certain
huge TSPs with many hundreds (or even thousands) of cities. The fact that
the TSP is a typical NP-hard optimization problem means, that solving in-
stances with a large number of cities is very time consuming if not impossible.
For example, the solution of the 15112-city TSP was accomplished in several
phases in 2000/2001, and used a total of 22.6 years of computer time, adjusted
to a 500 MHz, EV6 Alpha processor ([18]). A heuristic is a solution strategy
that produces an answer without any formal guarantee as to the quality ([20]).
Heuristics clearly are necessary for NP-hard problems if we expect to solve them
in reasonable amounts of computer time. Heuristics also are useful in speed-
ing up the convergence of exact optimization algorithms, typically by providing
good starting solutions. A metaheuristic is a general solution method that pro-
vides both a general structure and strategy guidelines for developing a specific
heuristic method to fit a particular kind of problem.

Heuristics can be classified into several categories, namely construction, im-
provement, partitioning and decomposition, and specialized heuristics ([25]). A
construction heuristic for the TSP build a tour without an attempt to improve
the tour once constructed. Construction heuristics are the fastest heuristics
among all of the above mentioned categories of heuristics ([6],[7]). They can be
used to create approximate solutions for the TSP when the computing time is
restricted, to provide good initial solutions for exact b-n-c or b-n-b algorithms
([21],[5]).

The Greedy Algorithm (GR) is one of the fastest construction type heuristic
in combinatorial optimization. Computational experiments show that the GR
is a popular choice for tour construction heuristics, work at acceptable level for
the Euclidean TSP, but produce very poor results for the general Symmetric
TSP (STSP) and Asymmetric TSP (ATSP) ([6]-[8]). The experimental results
for the asymmetric TSP presented in [7] led its authors to the conclusion that
the greedy algorithm “might be said to self-destruct” and that it should not be
used even as “a general- purpose starting tour generator”.

A numerical measure for evaluation of heuristics that compares heuristics
according to their so called domination number is suggested in ([9]). The dom-
ination number of a heuristic A for the TSP is the maximum integer d(n) such
that, for every instance I of the TSP on n cities, A produces a tour h which
is not worse than at least d(n) tours in I including h itself. Theorem 2.1 in
[13] (see also [14]) on the greedy algorithm for the ATSP confirms the above

2

conclusion: for every n > 1 there exist instances of the asymmetric TSP with n
vertices for which the greedy algorithm produces the unique worst tour. In the
abstract of [1] the authors send the following message: “The practical message of
this paper is that the greedy algorithm should be used with great care, since for
many optimization problems its usage seems impractical even for generating a
starting solution (that will be improved by a local search or another heuristic).”
Note that all these negative conclusions are drawn for the cost based greedy
(CBG) type heuristics.

There are various heuristic methods based on tolerances and related to a
specific mathematical programming problem, for example to the well known
transportation problem, available to get an initial basic feasible solution, such
as northwest corner rule, best cell method, etc. Unfortunately, there is no reason
to expect the basic feasible solution provided by the northwest corner rule to
be particularly close to the optimal solution. Therefore, it may be worthwhile
to expand a little more effort on obtaining a promising initial basic feasible so-
lution in order to reduce the number of iterations required to reach the optimal
solution. One procedure which is designed to do this is Vogel’s Approximation
Method (VAM) [23]. The VAM is based on the use of the “difference” associ-
ated with each row and column in the original instance C. A row or column
“difference” is defined as the arithmetic difference between the smallest and
next-to-the smallest element in that row or column. This quantity provides a
measure of the proper priorities for making allocations to the respective rows
and columns, since it indicates the minimum unit penalty incurred by failing
to make an allocation to the smallest cell in that row or column [16]. Such a
difference is also called the regret for that row(column) [2] because it represents
the minimum penalty for not choosing the smallest cost in the row (column).
The element with the smallest cost in the row (column) with the largest regret
is selected in VAM for starting the transportation simplex algorithm. A sim-
ilar idea applied to rows is used for the MAX-REGRET heuristic for solving
the three-index assignment problem [2]. In this paper we generalize the above
mentioned “differences” within the notion of upper tolerances and apply them
within a framework of branch-and-bound algorithms for solving the ATSP by
greedy type heuristics. Although the concept of tolerances has been applied for
decades (in sensitivity analysis; see e.g. [12] and [17]), only Helsgaun’s version
of the Lin-Kernighan heuristic for the STSP applies tolerances; see [15]. As easy
to see the VAM, MAX-REGRET and Helsgaun’s version of the Lin-Kernighan
heuristics are not embedded in a unified framework called a metaheuristic for
solving different combinatorial optimization problems. Let us remind that a
metaheuristic is a general solution method that provides both a general struc-
ture and strategy guidelines for developing a specific heuristic method to fit a
particular kind of problem. All above mentioned heuristics are special cases of
our metaheuristic. For example, our metaheuristic applied to the ATSP leads
to a family of heuristics including our R-RTBG heuristic which is an analogy
of MAX-REGRET heuristic for the three-index assignment problem [2]. To our
best knowledge such a family of heuristics does not discussed in the available
literature.

3

Currently, most of construction heuristics for the TSP including the GR
delete high cost arcs or edges and save the low cost ones. A drawback of this
strategy is that costs of arcs and edges are no accurate indicators whether those
arcs or edges are included or excluded in a ‘good’ TSP solution. In ([11]) and
([26]), it is shown that tolerances are better indicators, and they have been
successfully applied for improving the bounds and branching rules within the
framework of b-n-b algorithms. A tolerance value of an edge/arc is the cost of
excluding or including that edge/arc from the solution at hand. In this paper
we present a tolerance based metaheuristic within a framework of branch-and-
bound paradigm and apply it for solving the ATSP.

Our paper is organized as follows. In the next section we embed the GR
for the ATSP in a metaheuristic based on branch-and-bound paradigm and tol-
erances. Here we define the Contraction Problem (CP) of finding an arc for
contraction by the GR and show that an optimal solution to a natural relax-
ation of the Assignment Problem (AP) can be used as an extension of an optimal
solution to CP. In Section 3 we briefly report on previous work related to toler-
ances in combinatorial optimization and discuss the computational complexities
of tolerance problems for the AP and Relaxed AP. In Section 4 we describe a
set of tolerance based greedy algorithms with different relaxations of the ATSP
and report the results of computational experiments with them in Section 5.
The conclusions and future research directions appear in Section 6.

2 The Greedy Algorithm within a framework of

a metaheuristic

Let us remind the GR for the ATSP as it is described in ([8]). We consider the
entries of the n × n matrix C as costs (weights) of the corresponding simple
weighted complete digraph G = (V,E,C) with V = {1, . . . , n} vertices and
E = V × V arcs such that each arc (i, j) ∈ E is weighted by c(i, j). The GR
finds the lightest arc (i, j) ∈ E and contracts it updating the costs of C := Cp
till C consists of a pair of arcs. The contracted arcs and the pair of remaining
arcs form the “Greedy” tour in G.

We shall address the GR in terms of the b-n-b framework for solving the
ATSP. A b-n-b algorithm initially solves a relaxation of the original NP-hard
problem. In case of the ATSP, the Assignment Problem (AP) is a common
choice. The AP, in terms of the ATSP, is the problem of assigning n city’s
outputs to n city’s inputs against minimum cost; an optimal solution of the AP
is called a minimum cycle cover. In terms of the ATSP an AP feasible solution
requires that each city will be visited exactly once without necessarily creating
a single (Hamiltonian) cycle. If the minimum cycle cover at hand is a single
tour, then the ATSP instance is solved; otherwise, the problem is partitioned
into new subproblems by including and excluding arcs. In the course of the
process, a search tree is generated in which all solved subproblems are listed.
B-n-b algorithms comprise two major ingredients: a branching rule and a lower

4

bound. The objective of branching rule is to exclude the infeasible solutions to
the ATSP found for its relaxation. A lower bound is applied to fathom as many
vertices in the search tree as possible. A subproblem is fathomed if its lower
bound exceeds the value of the best ATSP solution found so far in the search
tree. For sake of simplicity, we consider only the so called binary branching rules
([29]), i.e. such a branching rule which either include or exclude a selected arc
from the current optimal solution to a relaxation of the ATSP.

We present the execution of the GR by a single path of the corresponding
b-n-b search tree such that the lower bound is equal to the Glover et al.’s
Contraction Problem (CP) ([8]) and the branching rule is defined by a lightest
arc in the given ATSP instance. Since at each iteration the GR contracts a single
lightest arc, i.e. creates a subproblem which includes that arc in the unknown
GREEDY solution, it means that the GR discards the another subproblem in
which the same arc is prohibited. Thus the GR can be represented by a single
path in a search tree consisting only vertices (subproblems) related to each
inclusion of an arc from the optimal solution of a relaxed ATSP. We define the
CP as follows:

min {c(i, j) : i, j ∈ V } = c(i0, j0),

We also use the following two simple combinatorial optimization problems
related to either the ATSP or CP, namely either the Assignment Problem (AP)
or the Relaxed AP (RAP), respectively. We define the AP as follows:

min
{
a(π) =

n∑

i=1

c(i, π(i)) : π ∈ Π
}

= a(π0),

here a feasible assignment π is a permutation which maps the rows V of C
onto the set of columns V of C and the cost of permutation π is a(π) =∑

(i,j)∈π c(i, j); Π is the set of all permutations, and π is called feasible if

a(π) <∞.
Now we define the RAP. A feasible solution θ to the RAP is a mapping θ

of the rows V of C into the columns V of C with a(θ) < ∞. We denote the
set of feasible solutions to the RAP by Θ. It is clear that Π ⊂ Θ. The RAP
is the problem of finding a(θ0) =

∑
i∈V min{c(i, j) : j ∈ V }. Further we will

treat a feasible solution θ as a set of n arcs. As easy to see an optimal solution
(arc) (i0, j0) to the CP is included in an optimal solution θ0 to the RAP, i.e.
(i0, j0) ∈ θ0. So, one may to consider θ0 as an extension of an optimal solution
to the CP. If the set of optimal solutions (arcs) to the CP has more than one arc
and these arcs are located in pairwise distinct rows of C, then at most n arcs
will be included in an optimal solution to the RAP. The relationship between
the optimal values of CP and RAP is described in the following lemma.

Lemma 1 For any n > 1 we have that c(i0, j0) ≤ a(θ0)/n.

Proof. a(θ0) =
∑

i∈V min{c(i, j) : j ∈ V } ≥∑i∈V c(i0, j0) = nc(i0, j0).

For sake of completeness we define the ATSP as follows. A feasible solution
π to the AP is called a cyclic permutation and denoted by h if the set of its arcs

5

represents a Hamiltonian cycle in G. The whole set of Hamiltonian cycles in G
is denoted by H. Thus, the ATSP is the problem of finding

min{a(h) : h ∈ H} = a(h0).

It is clear that H ⊂ Π ⊂ Θ implies that nc(i0, j0) ≤ a(θ0) ≤ a(π0) ≤ a(h0).
Note, that the computational complexities for finding an optimal solution to the
CP, RAP, and AP are O(n2), O(n2), and O(n3), respectively.

3 Tolerances for the RAP and AP

The second concept we have built on is the tolerance problem for a relaxed
ATSP. The tolerance problem for the RAP is the problem of finding for each
arc e = (i, j) ∈ E the maximum decrease l(e) and the maximum increase u(e) of
the arc cost c(e) preserving the optimality of θ0 under the assumption that the
costs of all other arcs remain unchanged. The values l(e) and u(e) are called
the lower and the upper tolerances, respectively, of arc e with respect to the
optimal solution θ0 and the function of arc costs c. In the following portion we
consider a combinatorial minimization problem defined on the ground set E :

min{a(S) : S ∈ D} = a(S∗),

with an additive objective function a(S) =
∑
e∈S c(e), the set of feasible solu-

tions D ⊂ 2E , set of optimal solutions D∗ such that S∗ ∈ D∗. For each e ∈ E ,
D∗+(e) and D∗−(e) are the sets of optimal solutions containing e and not contain-
ing e such that D∗ = D∗+(e)∪D∗−(e) and D∗+(e)∪D∗−(e) = ∅. If D = Π then we
have the AP, and if D = Θ then we have the RAP. As shown [11],[10] for each
e ∈ S∗ the upper tolerance uS∗∈D(e) = a(S) − a(S∗) for each S ∈ D∗−(e), and
means the upper tolerance of an element e ∈ S∗ with respect to the set of feasi-
ble solutions D. Similarly, the lower tolerance lS∗∈D(e) = a(S)−a(S∗) for each
S ∈ D∗+(e), and means the lower tolerance of an element e /∈ S∗ with respect to
the set of feasible solutions D. If one excludes an element e from the optimal so-
lution S∗, then the objective value of the new problem will be a(S∗)+uS∗∈D(e).
The same holds for the lower tolerance if the element e ∈ E \S∗ is included. So
a tolerance-based algorithm knows the cost of including or excluding elements
before it selects the element either to include or to exclude. Moreover, based on
the upper tolerances one may describe the set of optimal solutions D∗ to RAP
as follows ([11],[10]):

(i) if u(e) > 0 for all e ∈ S∗, then |D∗| = 1;
(ii) if u(e) > 0 for e ∈ R ⊂ S∗ and u(e) = 0 for e ∈ S∗ \R,

then |D∗| > 1 and ∩D∗ = R.
(iii) if u(e) = 0 for all e ∈ S∗, then |D∗| > 1 and ∩D∗ = ∅.

As shown in ([11],[26],[15]) the average percentage of common arcs in cor-
responding AP and ATSP optimal solutions varies between 40% and 80%, and
we claim that the average percentage of common arcs in corresponding RAP
and ATSP optimal solutions varies between 20% and 50%. Moreover, an arc

6

with the largest upper tolerance from an optimal AP solution will appear in an
optimal ATSP solution in average 10 times more often than a lightest arc from
the optimal AP solution. Similarly, an arc with the largest upper tolerance from
an optimal RAP solution will appear in an optimal ATSP solution in average
15 times more often than a lightest arc from the optimal RAP solution. These
results confirm that predictions based on upper tolerances are clearly better
than predictions based on costs ([11],[26],[15]). Hence, our branching rule for
the tolerance based algorithms will use an arc with the largest upper tolerance
w.r.t. either the RAP or the AP.

It is important to mention that the time complexity of the tolerance problem
for a Polynomially Solvable (PS) problem (for example, either the RAP or AP)
defined on the set of arcs E ([3],[27]) is at most O(|E|g(n)|), assuming that the
time complexity of PS problem is equal to g(n). Hence, the time complexities of
solving the tolerance problems for RAP and AP are at most O(n4) and O(n5),
respectively, because the time complexities of solving the RAP and AP are
O(n2) and O(n3), respectively.

Recently, Volgenant ([28]) has suggested an O(n3) algorithm for solving the
tolerance problem for AP. Let us show that the time complexity of tolerance
problem for the RAP is O(n2). For finding the optimal value a(θ0) of RAP
we should find in each i-th row of C its smallest value min{c(i, j) : j ∈ V } =
c[i, j1(i)] and for computing the upper tolerance u[i, j1(i)] of the arc [i, j1(i)] it
is enough to know a pair of smallest values in the same row i, i.e. c[i, j1(i)] and
c[i, j2(i)] = min{c(i, j) : j ∈ V \{j1(i)}}. Thus, u[i, j1(i)] = c[i, j2(i)]−c[i, j1(i)]
will be computed in O(n) time with O(1) space complexity. For computing all
lower tolerances for entries in i-th row it is enough to reduce each entry of
the i-th row by the smallest value c[i, j1(i)], i.e. l(i, j) = c(i, j) − c[i, j1(i)] for
j ∈ V \{j1(i)} and l[i, j1(i)] =∞. Again, such a reduction can be done in O(n)
time and the result can be stored in i-th row of C. Now we are able to solve the
RAP and compute all tolerances in O(n2) time and O(n) space complexities.

Note that the AP can be solved in O(n3) time and computing all upper
tolerances for an optimal AP solution w.r.t. the AP needs also O(n3) time,
but an optimal AP solution is a feasible RAP solution. Hence, with purpose to
decrease the computational complexity of upper tolerances for an optimal AP
solution from O(n3) time to O(n2) time, we have decided to compute the upper
tolerances for an optimal AP solution w.r.t. the RAP as follows. Let π0 =
{[i, jk(i)] : i = 1, . . . , n} be a set of arcs [i, jk(i)] from an optimal AP solution.
Then we define the upper tolerance uπ0∈Θ[i, jk(i)] of an arc [i, jk(i)] from an
optimal AP solution w.r.t. the RAP as follows: uπ0∈Θ[i, jk(i)] = c[i, jk+1(i)]−
c[i, jk(i)], for k = 1, . . . , n−1; uπ0∈Θ[i, jn(i)] = c[i, jn(i)]−c[i, jn−1(i)], for k =
n. Here, for each row i of C we have ordered all its entries in a non-decreasing
order, i.e. c[i, j1(i)] ≤ c[i, j2(i)] ≤ . . . ≤ c[i, jn−1(i)] ≤ c[i, jn−1(i)].

7

4 A tolerance based metaheuristic

Let us explain our enhancements of tolerance based greedy algorithms compared
to the cost based GR in the framework of b-n-b algorithms. Our first enhance-
ment is based on an improved lower bound for the ATSP (either the RAP or
AP) compared to the CP. Our second enhancement is based on an improved
branching rule which uses the largest upper tolerance of an arc from an opti-
mal solution to either the RAP or AP instead of a lightest arc from an optimal
solution to the CP. Note that by using the RAP instead of CP we may expect
the quality improvement of a RAP based greedy solutions without essential in-
creasing of the computing times. Since the time complexity of AP is O(n3), the
question whether we may reach further improvements by the AP based greedy
algorithm without essential increment of computing times will be answered by
means of computational experiments.

Now we are ready to present two Tolerance Based Greedy (TBG) algorithms,
namely the X-Y TBG algorithms with X,Y ∈ {R,A} in the same framework as
the original GR. Here the first letter “X” stands for a relaxation of the ATSP and
the second letter “Y” stands for the tolerance problem of one of the relaxations
of ATSP. Our first algorithm is the RAP Tolerance Based Greedy (R-RTBG)
algorithm. The R-RTBG algorithm recursively finds an arc (i, j) ∈ E with
the largest upper tolerance from an optimal RAP solution, and contracts it
updating the costs of C := Cp till C consists of a pair of arcs. The index p
in Cp stands for a new vertex p found after each contraction of the arc (i, j).
The contracted arcs and the pair of remaining arcs form the “R-RTBG” tour in
G. The R-RTBG algorithm runs in O(n3) time since a single contraction needs
O(n2) time. Note that if at the current iteration after a single contraction the
deleted column does not include either a lightest out-arc or a corresponding
upper tolerance, then at the next iteration of R-RTBG algorithm we preserve
all lightest out-arcs and the corresponding upper tolerances. Otherwise, at the
next iteration the rows containing either a lightest out-arc or a corresponding
upper tolerance will be updated.

8

Figure 1: Example: 6× 6 matrix, class 8.
GR R - RTBG

1 2 3 4 5 6

1 6 7 7 7 7

2 35 12 13 13 13

3 35 13 18 19 19

4 35 13 19 24 25

5 35 13 19 25 30

6 216 13 19 25 31

306 112

E

A

B

C

D

A - RTBG

105

6x6 cost matrix, class 8

12 (1)

6 (1)
1 2

3

45

6

3

5

6

21

18 (1)

12 (1)

7 (0)

19 (6)

13 (6)

12 (1)

13 (5)
13 (6)

13 (6)

6 (1)
1 2

3

45

6

35

216

7

6

51 2 3 4

30

1 36 4 2 5

1

3

5

6

24

19 (6)

4

18 (1)

5

6

4

31 2

19 (16)

13 (22)

7 (0)

1

35

26 4

24 (1)

5

6

41 32

7 (0)

18 (1) 19 (6)

13 (0)

13 (6)

2 6

34

5 1

19 (5)

18 (1)

3 4

13 (6)

2 6

13 (0)
7 (0)

1

5

35 ()

7

12

13

7

13 13

18

19

1313

13

13

6

19

35

18 (1)

7 (0)

13 (0)
25 (6)

1

6

24

35

For example (see the R-RTBG algorithm in Fig. 1), after first contraction
on the iteration A we delete the second column from the 6 × 6 costs matrix
together with the minima attained on the arcs (1, 2), (3, 2), (5, 2), (6, 2), and
preserve the minimum attained on the arc (2, 3) in the third column. Hence,
on the next iteration B the R-RTBG algorithm updates the minima and upper
tolerances in rows 1, (4, 2), 5, 6 and preserves the minimum c[3, (4, 2)] = 12 and
its upper tolerance u[3, (4, 2)] = 1. Here p = (4, 2) is a new vertex representing
the contracted arc (4, 2). This book-keeping technique (for preserving either
a lightest out-arc or a corresponding upper tolerance) incorporated in the R-
RTBG algorithm explains why in average we have reduced the PC times of
R-RTBG compared to GR (see Table 1).

Our second algorithm is the A-RTBG. The choice of the AP as the ATSP
relaxation can be motivated as follows. The out-degree of each vertex in a graph
representing an optimal RAP solution is equal to one and the in-degree of each
vertex can be an arbitrary number between 0 and n − 1 such that the sum of

9

in-degrees of all vertices is equal to n (see iteration A of the R-RTBG in Fig.
1). The in-degree and out-degree for each vertex in the graph representing an
optimal AP solution are equal to one (see iteration A of the A-RTBG in Fig. 1).
Hence, the structural distinctions between the graphs of a feasible ATSP tour
and a feasible RAP solution are worse compared to the structural distinctions
between the graphs of a feasible ATSP tour and a feasible AP solution (see
Fig. 1). Since the AP can be solved in O(n3) time and computing all upper
tolerances to an optimal AP solution needs also O(n3) time, in the AP with
RAP Tolerance Based Greedy (A-RTBG) algorithm we have decided to use
an optimal AP solution as a better approximation of the unknown optimal
ATSP solution. Note that each optimal AP solution is a feasible RAP solution.
Therefore, with purpose to decrease the computational complexity of upper
tolerances for an optimal AP solution from O(n3) time to O(n2) time, we have
decided to compute the upper tolerances of RAP for the optimal AP solution
instead of upper tolerances for the optimal AP solution itself.

The A-RTBG algorithm recursively finds an arc (i, j) in an optimal AP
solution with the largest upper tolerance from the tolerance RAP, and contracts
it updating the costs of C := Cp till C consists of either a hamiltonian cycle or
a pair of arcs. The contracted arcs and the pair of remaining arcs form the “A-
RTBG” tour in G. The A-RTBG algorithm runs in O(n4) time, since a single
contraction needs O(n3) time. A slight modification of the A-RTBG algorithm
based on upper and lower tolerances is denoted by A-R1TBG algorithm and
contracts an arc with the largest tolerance chosen from all tolerances as follows.
Each lower tolerance is used with a negative sign and each upper tolerance with
a positive sign. Hence, in the A-R1TBG algorithm all involved tolerances have
finite numbers.

The distinctions in behavior of the GR, R-RTBG, and A-RTBG by means
of the 6× 6 numerical example taken from class 8 are illustrated in Fig. 1. The
numbers 1, 2, ..., 6 on the left side of the vertical line and above the horizontal
line in the 6× 6 costs matrix are the numbers of cities. The same numbers are
indicated as cycled numbers for vertices (cities). An optimal RAP (respectively,
AP, ATSP) solution is indicated in the 6 × 6 costs matrix by cycled (respec-
tively, squared, red) entries. A blue(yellow) vertex is an out-(in-) vertex before
contraction and a red arc is an arc chosen for contraction. Each red arc after
contraction is oriented from left to right and represented by two red neighboring
vertices. If an end of a contracted sequence of arcs (path) is chosen for contrac-
tion, then the corresponding end became either blue or yellow. The numbers
x(y) along each arc are the weight x (respectively, upper tolerance y) of the
arc for GR, R-RTBG, and A-RTBG, where the upper tolerance y is computed
w.r.t. the RAP. A bold letter on the left side corresponds to the current it-
eration number for each algorithm. The GR, R-RTBG, A-RTBG algorithms
output greedy solutions with values 306, 112, 105 (optimal value), respectively.
Fig. 1 shows that the A-RTBG algorithm needs less iterations (contractions)
than the A-RTBG algorithm and returns a greedy solution at the second iter-
ation (B) since all depicted arcs are arcs from an optimal AP solution which is
a Hamiltonian cycle.

10

5 Computational experiments

The algorithms were implemented in C under Linux and tested on an AMD
Opteron(tm) Processor 242 1.6 GHz machine with 4 GB of RAM. We test all
four greedy algorithms GR, R-RTBG,A-RTBG, and A-R1TBG on the following
8 classes of instances. The classes from 1 to 7 are exactly the classes from ([8])
and class 8 is the class of GYZ instances introduced in ([13]) for which the
domination number of GR algorithm for the ATSP is 1 (see Theorem 2.1 in
[13]). The exact description of the 8 classes is as follows.

1 All asymmetric instances from TSPLIB ([24]) (26 instances).

2 All symmetric instances from TSPLIB with dimension smaller than 3000
(99 instances).

3 Asymmetric instances with c(i, j) randomly and uniformly chosen from
{0, 1, · · · , 100000} for i 6= j, 10 for each dimension 100, 200, · · · , 1000 and
3 for each dimension 1100, 1200, · · · , 3000 (160 instances).

4 Asymmetric instances with c(i, j) randomly and uniformly chosen from
{0, 1, · · · , i · j} for i 6= j, 10 for each dimension 100, 200, · · · , 1000 and 3
for each dimension 1100, 1200, · · · , 3000 (160 instances).

5 Symmetric instances with c(i, j) randomly and uniformly chosen from
{0, 1, · · · , 100000} for i < j, 10 for each dimension 100, 200, · · · , 1000
and 3 for each dimension 1100, 1200, · · · , 3000 (160 instances).

6 Symmetric instances with c(i, j) randomly and uniformly chosen from
{0, 1, · · · , i · j} for i < j, 10 for each dimension 100, 200, · · · , 1000 and
3 for each dimension 1100, 1200, · · · , 3000 (160 instances).

7 Sloped plane instances with given xi, xj , yi, yj randomly and uniformly
chosen from {0, 1, · · · , i · j} for i 6= j and c(i, j) =√

(xi − xj)2 + (yi − yj)2 −max{0, yi − yj} + 2 · max{0, yj − yi} for i 6=
j, 10 for each dimension 100, 200, · · · , 1000 and 3 for each dimension
1100, 1200, · · · , 3000 (160 instances).

8

c(i, j) =

n3 for i = n, j = 1
in for j = i+ 1

n2 − 1 for i = 3, 4, · · · , n− 1, j = 1
nmin{i, j}+ 1 otherwise

for each dimension 5, 10, · · · , 1000 (200 instances).

Table 1 gives for all classes the average excess of all algorithms above the
optima (the TSPLIB classes 1 and 2 are with known optima [24]), the AP
lower bound (for the asymmetric classes 3, 4, 7, and 8) or the HK (Held-Karp)

11

lower bound ([15]) (for the symmetric classes 5 and 6) over all instances of this
class. Additionally, it gives the average execution times over all instances of the
classes.

Table 1: Average excess over optimum, AP or HK, average time

Cl. 1 (26) Cl. 2 (99) Cl. 3 (160) Cl. 4 (160)
Opt. Time Opt. Time AP Time AP Time
(%) (sec.) (%) (sec.) (%) (sec.) (%) (sec.)

GR 30.45 0.04 118.20 4.14 287.31 21.27 1135.64 17.84

R-RTBG 23.28 0.04 107.31 2.53 85.75 12.81 22.00 11.80

A-RTBG 7.17 0.31 96.64 27.03 22.29 149.01 2.60 228.48

A-R1TBG 10.95 0.35 75.42 29.68 25.67 179.88 1.86 246.28

Cl. 5 (160) Cl. 6 (160) Cl. 7 (160) Cl. 8 (200)
HK Time HK Time AP Time AP Time
(%) (sec.) (%) (sec.) (%) (sec.) (%) (sec.)

GR 233.12 19.61 924.53 18.66 2439.86 18.67 481.97 1.07

R-RTBG 84.28 12.56 27.90 12.12 119.49 11.56 93.64 1.28

A-RTBG 38.69 165.05 14.77 271.94 61.12 901.74 0 55.79

A-R1TBG 28.89 201.99 11.42 294.86 50.10 909.37 0 56.14

Table 1 provides an overview of the quality of solutions and corresponding
PC times. The R-RTBG algorithm returns in average 14.86 times better quality
and requires in average only 0.75 of GR PC times. The highest improvement in
quality (51.62 times) is attained for class 4 (randomly and uniformly distributed
asymmetric instances) by spending in average just 0.66 of PC times GR. The
second best improvement for asymmetric instances is attained on class 7 in
quality with the average factor 20.42 and decreasing the GR PC times in average
by the factor 0.62. The worst improvement in quality (in average just 1.1 times)
is attained for class 2 (all symmetric TSPLIB instances with n < 3000 which
are not the target of this paper) by spending just 0.61 of GR PC times. Further
improvements in quality for classes 1 to 7 (in average by factor 80.53 (109.12))
by spending more in average 15.05 (16.14) PC times are reached by the A-RTBG
(A-R1TBG) algorithm. Note that for class 8 the A-RTBG algorithm finds a
tour with optimal length or with optimal length +1 in all cases, whereas the
GR always finds the worst tour.

Table 2 shows the quality of the greedy algorithms for all examples of class
1, i.e. all 26 asymmetric TSPLIB instances. Note that both A-RTBG and
A-R1TBG have solved all asymmetric TSPLIB instances with 323 ≤ n ≤ 443
exactly.

12

Table 2: Excess for all asymmetric TSPLIB instances (Class 1)

br17 p43 ry48p ft53 ft70 ftv33 ftv35 ftv38 ftv44

Dim. 17 43 48 53 70 34 36 39 45

GR 148.72 5.16 32.55 77.73 14.84 33.51 24.37 34.44 18.78

R-RTBG 107.69 2.60 28.87 25.04 5.78 20.45 15.61 21.96 26.78

A-RTBG 5.13 1.12 9.81 16.99 1.84 23.41 14.46 6.54 11.53

A-R1TBG 112.82 0.52 6.98 15.58 2.50 17.34 8.15 13.40 7.87

ftv47 ftv55 ftv64 ftv70 ftv100 ftv110 ftv120 ftv130 ftv140

Dim. 48 56 65 71 101 111 121 131 141

GR 26.01 22.57 26.54 28.21 27.29 25.54 30.89 32.16 33.18

R-RTBG 17.12 7.59 8.81 20.46 29.64 27.22 18.65 18.25 19.38

A-RTBG 9.74 11.13 2.01 4.51 15.44 6.59 7.57 6.20 6.07

A-R1TBG 5.80 10.57 8.48 19.54 5.26 3.52 12.19 9.06 4.01

ftv150 ftv160 ftv170 kro124p rbg323 rbg358 rbg403 rbg443
Dim. 151 161 171 100 323 358 403 443
GR 36.92 37.20 37.06 21.01 7.16 8.00 0.65 1.10

R-RTBG 13.33 15.17 16.55 17.86 16.59 30.18 41.91 31.76
A-RTBG 4.83 5.29 4.72 11.53 0 0 0 0
A-R1TBG 3.60 4.32 6.61 6.66 0 0 0 0

It is worth mentioning that the construction heuristics from Table 1 in
([8]) have the following qualities in average over all classes of instances 1 to 7:
GR= 580.35%, RI= 710.95%, KSP= 135.08%, GKS= 98.09%, RPC= 102.02%,
COP= 23.01% while for our algorithms R-RTBG= 67.14%, A-RTBG= 34.75%,
and A-R1TBG= 29.19%.

6 Conclusions and future research directions

The tolerance based b-n-b framework suggests a new metaheuristic, proves to
be a powerful methodology for creating new greedy type algorithms and fast
finding high quality solutions for the ATSP instances; it has the robustness and
consistency required by large-scale applications.

Our experimental results for tolerance based greedy (TBG) type heuristics
question the above mentioned messages. For example, our R1-TBG algorithm
(see Sections 4 and 5 in this paper) applied to the most popular randomly
generated asymmetric instances (class 4 in our paper) returns TBG solutions
the quality of which better in average by factor 610.5 compared to usual CBG
solutions and took approximately 13.11 times longer than CBG greedy heuristic.
Our experiments with the same R1-TBG algorithm on the GYZ instances (class
8) used in the theoretical analysis (see [13]) show that we are able to solve all
these instances with optimal length or with optimal length + 1, whereas the
GR always finds the worst tour. Moreover, our very simple R-RTBG algorithm

13

applied to the class 4 finds TBG solutions with better quality in average by
factor 51.62 (compared to usual CBG solutions) and took approximately just
0.66 times shorter than CBG greedy heuristic.

All TBG heuristics presented in this paper have in average better qual-
ity than the following well known cost based construction heuristics: Greedy
(GR), Random Insertion (RI), Karp-Steele patching (KSP), Modified Karp-
Steele patching (GKS), Recursive Path Contraction (RPC), and our A-R1TBG
heuristic is competitive with the Contract or Patch (COP) heuristic (see [8]).

The simplicity of our R-RTBG algorithm shows that this algorithm can be
recommended for practical usage as an online algorithm which can be used by
a vehicle driver for finding high quality Hamiltonian cycles.

An interesting direction of research is to construct different classes of toler-
ance based heuristics (for example, construction, improvement etc.). Moreover,
by using the suggested metaheuristic for presenting the GR we have opened a
way for creating tolerance based heuristics for many other combinatorial opti-
mization problems defined on the set of all permutations, for example the Linear
Ordering [4], Quadratic and Multidimensional Assignment [22] problems. Fi-
nally, an open question: find the domination numbers of X-Y TBG algorithms
with X,Y ∈ {R,A}.

7 Acknowledgements

This work is done when both authors have enjoyed the hospitality of Ap-
plied Mathematics Department, Khmelnitsky National University, Ukraine. We
would like to thank all colleagues from this department including V. G. Kam-
burg, S. S. Kovalchuk, and I. V. Samigulin. The research of both authors was
supported by a DFG grant, Germany and SOM Research Institute, University
of Groningen, the Netherlands.

References

[1] J. Bang-Jensen, G. Gutin, A. Yeo. When the greedy algorithm fails. Dis-
crete Optimization 1, 121–127, 2004.

[2] E. Balas, M.J. Saltzman. An algorithm for the three-index assignment prob-
lem. Oper. Res. 39, 150–161, 1991.

[3] N. Chakravarti, A. P. M. Wagelmans. Calculation of stability radii for
combinatorial optimization problems. Oper. Res. Lett. 23, 1–7, 1999.

[4] S. Chanas, P. Kobylanski. A new heuristic algorithm solving the linear
ordering problem. Comput. Optim. and Appl. 6, 191–205, 1996.

[5] M. Fischetti, A. Lodi, P. Toth. Exact methods for the asymmetric traveling
salesman problem. Chapter 2 in: The Traveling Salesman Problem and Its

14

Variations. G. Gutin, A.P. Punnen (Eds.). Kluwer, Dordrecht, 169–194,
2002.

[6] D.S. Johnson, L.A. McGeoch. Experimental analysis of heuristics for the
STSP. Chapter 9 in: The Traveling Salesman Problem and Its Variations.
G. Gutin, A.P. Punnen (Eds.). Kluwer, Dordrecht, 369–444, 2002.

[7] D.S. Johnson, G. Gutin, L.A. McGeoch, A. Yeo, W. Zhang, A. Zverovich.
Experimental analysis of heuristics for the ATSP. Chapter 10 in: The Trav-
eling Salesman Problem and Its Variations. G. Gutin, A.P. Punnen (Eds.).
Kluwer, Dordrecht, 445–489, 2002.

[8] F. Glover, G. Gutin, A. Yeo, A. Zverovich. Construction heuristics for the
asymmetric TSP. European J. Oper. Res. 129, 555–568, 2001.

[9] F. Glover, A. Punnen. The traveling salesman problem new solvable cases
and linkages with the development of approximation algorithms. J. Oper.
Res. Soc. 48, 502–510, 1997.

[10] B. Goldengorin, G. Sierksma. Combinatorial optimization toler-
ances calculated in linear time. SOM Research Report 03A30,
University of Groningen, Groningen, The Netherlands, 2003
(http://www.ub.rug.nl/eldoc/som/a/03A30/03a30.pdf).

[11] B. Goldengorin, G. Sierksma, M. Turkensteen. Tolerance Based Algorithms
for the ATSP. Graph-Theoretic Concepts in Computer Science. 30th Inter-
national Workshop, WG 2004, Bad Honnef, Germany, June 21-23, 2004.
Hromkovic J., Nagl M., Westfechtel B. (Eds.), Lecture Notes in Comput.
Sci. 3353, 222–234, 2004.

[12] H. Greenberg. An annotated bibliography for post-solution analysis in
mixed integer and combinatorial optimization. In: D. L. Woodruff (Ed.).
Advances in computational and stochastic optimization, logic program-
ming, and heuristic search. Kluwer Academic Publishers, Dordrecht, 97–
148, 1998.

[13] G. Gutin, A. Yeo, A. Zverovich. Traveling salesman should not be greedy:
domination analysis of greedy type heuristics for the TSP. Discrete Appl.
Math. 117, 81–86, 2002.

[14] G. Gutin, A. Yeo. Anti-matroids. Oper. Res. Let. 30, 97-99, 2002.

[15] K. Helsgaun. An effective implementation of the Lin-Kernighan traveling
salesman heuristic. European J. Oper. Res. 126, 106–130, 2000.

[16] F.S. Hillier, G.J. Liberman. Introduction to Operations Research. Holden-
Day, Inc. San Francisco, 1967.

[17] M. Libura. Sensitivity analysis for minimum hamiltonian path and traveling
salesman problems. Discrete Appl. Math. 30, 197–211, 1991.

15

[18] http://www.tsp.gatech.edu/d15sol/

[19] http://www.tsp.gatech.edu/apps/index.html

[20] D.L. Miller and J.F. Pekny. Exact solution of large asymmetric traveling
salesman problem. Science 251, 754–761, 1991.

[21] D. Naddef. Polyhedral theory and branch-and-cut algorithms for the sym-
metric TSP. Chapter 2 in: The Traveling Salesman Problem and Its Vari-
ations. G. Gutin, A.P. Punnen (Eds.). Kluwer, Dordrecht, 29–116, 2002.

[22] Nonlinear Assignment Problems. Algorithms and Applications. P.M.
Pardalos and L.S. Pitsoulis (Eds.). Kluwer, Dordrecht, 2000.

[23] N.V. Reinfeld and W.R. Vogel. Mathematical Programming. Prentice-Hall,
Englewood Cliffs, N.J., 1958.

[24] G. Reinelt. TSPLIB – a Traveling Salesman Problem Library. ORSA J.
Comput. 3, 376–384, 1991.

[25] E.A. Silver. An overview of heuristic solution methods. J. Oper. Res. Soc.
55, 936–956, 2004.

[26] M. Turkensteen, D. Ghosh, B. Goldengorin, G. Sierksma. Tolerance-based
Search for Optimal Solutions of NP-Hard Problems. Submitted.

[27] S. Van Hoesel, A. Wagelmans. On the complexity of postoptimality analysis
of 0/1 programs. Discrete Appl. Math. 91, 251–263, 1999.

[28] A. Volgenant. An addendum on sensitivity analysis of the optimal assign-
ment. European J. Oper. Res. (to appear).

[29] L.A. Wolsey. Integer programming. John Wiley & Sons, Inc., New York,
1998.

16

