36 research outputs found

    Costing JIT Traces

    Get PDF
    Tracing JIT compilation generates units of compilation that are easy to analyse and are known to execute frequently. The AJITPar project aims to investigate whether the information in JIT traces can be used to make better scheduling decisions or perform code transformations to adapt the code for a specific parallel architecture. To achieve this goal, a cost model must be developed to estimate the execution time of an individual trace. This paper presents the design and implementation of a system for extracting JIT trace information from the Pycket JIT compiler. We define three increasingly parametric cost models for Pycket traces. We perform a search of the cost model parameter space using genetic algorithms to identify the best weightings for those parameters. We test the accuracy of these cost models for predicting the cost of individual traces on a set of loop-based micro-benchmarks. We also compare the accuracy of the cost models for predicting whole program execution time over the Pycket benchmark suite. Our results show that the weighted cost model using the weightings found from the genetic algorithm search has the best accuracy

    Specifying subtypes in SCJ programs

    Full text link
    Modular reasoning about programs that use subtypes requires that an overriding method in a subtype obeys the specifications of all methods that it overrides. For example, if method m is specified in a supertype T to take at most 42 nanoseconds to execute, then m cannot take more than 42 nanoseconds to execute in any subtype of T. Subtyping is an important aid to maintenance of programs, since it allows one to write polymorphic code (reducing code size and increasing reuse), and allows for convenient extension and enhancement of programs, all of which could be very useful in real-time programming. In this paper we show how to specify timing constraints for subtypes in a way that: permits modular reasoning about timing constraints, supports subtype polymorphism and object-oriented design patterns, and still permits precise reasoning about execution times. This technique supports object-oriented coding and design patterns based on subtype polymorphism, with all their maintenance advantages, to be used in real-time software. © 2011 ACM

    A Formal Design of a Tool for Static Analysis of Upper Bounds on Object Calls in Java

    Full text link
    Abstract. This paper presents a formal design of a tool for statically establishing the upper bound on the number of executions of objects’ methods in a fragment of object-oriented code. The algorithm that our tool employs is a multi-pass interprocedural analysis consisting of data flow and region-based analyses. We describe the formalization of each of stage of the algorithm. This rigorous specification greatly aids the implementation of the tool by removing ambiguities of textual descrip-tions. There are many applications for information obtained through this method including reasoning about concurrent code, scheduling, code optimization, compositing services, etc.We concentrate on using upper bounds to instrument transactional code that uses a synchronization mechanism based on versioning, and therefore benefits from a priori knowledge about the usage of shared objects within each transaction. To this end we implement a precompiler for Java that analyzes transac-tions, and injects generated source code to initialize each transaction

    On the effectiveness of cache partitioning in hard real-time systems

    Get PDF
    In hard real-time systems, cache partitioning is often suggested as a means of increasing the predictability of caches in pre-emptively scheduled systems: when a task is assigned its own cache partition, inter-task cache eviction is avoided, and timing verification is reduced to the standard worst-case execution time analysis used in non-pre-emptive systems. The downside of cache partitioning is the potential increase in execution times. In this paper, we evaluate cache partitioning for hard real-time systems in terms of overall schedulability. To this end, we examine the sensitivity of (i) task execution times and (ii) pre-emption costs to the size of the cache partition allocated and present a cache partitioning algorithm that is optimal with respect to taskset schedulability. We also devise an alternative algorithm which primarily optimises schedulability but also minimises processor utilization. We evaluate the performance of cache partitioning compared to state-of-the-art pre-emption cost analysis based on benchmark code and on a large number of synthetic tasksets with both fixed priority and EDF scheduling. This allows us to derive general conclusions about the usability of cache partitioning and identify taskset and system parameters that influence the relative effectiveness of cache partitioning. We also examine the improvement in processor utilization obtained using an alternative cache partitioning algorithm, and the tradeoff in terms of increased analysis time
    corecore