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Abstract—Multicore processors usually communicate via
shared memory, which is backed up by a shared level 2 cache
and a cache coherence protocol. However, this solution is not a
good fit for real-time systems, where we need to provide tight
guarantees on execution and memory access times.

In this paper, we propose a shared scratchpad memory as a
time-predictable communication and synchronization structure,
instead of the level 2 cache. The shared on-chip memory is
accessed via a time division multiplexing arbiter, isolating the
execution time of load and store instructions between processing
cores. Furthermore, the arbiter supports an extended time slot
where an atomic load and store instruction can be executed to
implement synchronization primitives. In the evaluation we show
that a shared scratchpad memory is an efficient communication
structure for a small number of processors; in our setup, 9 cores.
Furthermore, we evaluate the efficiency of the synchronization
support for implementation of classic locks.

I. INTRODUCTION

Multi-processor systems-on-chip have become the standard
for modern embedded systems. In these systems, interprocessor
communication is essential to support parallel programming
models. For this, we can use the message passing model, where
each processor has its own private memory and communicates
with other processors by sending and receiving messages. The
shared memory model is an alternative to this. Here, the cores
communicate by reading and writing to a shared memory,
accessible to all processors. The region into which cores write
and read to then determine which cores are communicating.

Furthermore, to allow the processors to cooperate on
the same application, these systems require the support of
synchronization mechanisms for concurrent access to shared
data or external devices. This ensures that accesses to shared
resources, such as a shared memory, are correctly sequenced
and mutually exclusive during the execution of critical sections
of an application. Furthermore, when such embedded systems
have timing requirements, such as real-time systems, the
synchronization mechanism must be predictable in order to
allow for analyzable worst-case execution time (WCET).

All synchronization primitives require some hardware sup-
port in order to guarantee atomicity. This is typically done
using hardware supported atomic instructions. Many soft-core
processors, however, do not support atomic instructions, and
thus other synchronization mechanisms are required to allow
cooperation of the processors.
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In this paper, we investigate the use of a shared scratchpad
memory with hardware support for synchronization and inter-
processor communication. The proposed solution is integrated
into the hard real-time T-CREST multicore platform [13],
where atomic primitives are not available in the cores that
compose the system. Our objective is to provide efficient
and time-predictable synchronization primitives and support
interprocessor communication by utilizing the arbitration
scheme for the shared scratchpad memory. All of this is done
solely by peripheral hardware to the processing core and use
of the bus protocols.

Since we integrate into a real-time system, we analyze
the WCET of the implemented solution. Furthermore, we
present the average-case execution times for interprocessor
communication, using both the shared scratchpad memory and
the Argo NoC of the T-CREST platform implemented on the
Altera Cyclone EP4CE115 device.

The contributions of this paper are: (1) A shared scratchpad
memory with synchronization support integrated into the T-
CREST platform, and (2) an evaluation of the shared scratchpad
memory and a comparison with the Argo NoC.

This paper is organized in six sections: Section II presents
work related to hardware mechanisms for synchronization
support and interprocessor communication. Section III provides
background on the T-CREST platform. Section IV presents the
design and implementation of the shared scratchpad memory
with synchronization support. Section V presents the results
of the implemented solution and evaluates it against the Argo
NoC. Section VI concludes the paper.

II. RELATED WORK

The use of hardware for lock-based synchronization mecha-
nisms is explored in [17]. The authors present best- and worst-
case results for the synchronization primitives implemented.
They implement a global locking scheme to make access to
a shared memory atomic and they also present support for
barrier synchronization.

In TA-32 bus locking through the LOCK instruction guaran-
tees the atomic execution of other instructions, e.g. compare-
and-swap [5]. Bus locking reserves the memory bus for
subsequent instructions allowing for the compare-and-swap
instruction to complete in a globally consistent manner.



Many soft-core processors such as the Xilinx MicroBlaze
and the Patmos processor do not support atomic instructions
for synchronization. The authors in [18] present hardware
implementations of basic synchronization mechanisms to
support locking and barriers for the soft-core Xilinx MicroBlaze
processor.

In [12] a hardware mechanism to control processor synchro-
nization is presented. This work offers fast atomic access to
lock variables via a dedicated hardware unit. When a core fails
to acquire a lock, its request is logged in the hardware unit.
When the lock is released, an interrupt will be generated for
the processor. For interrupts, the system supports both FIFO
and priority-based schemes.

Regarding message passing in a time-predictable network-
on-chip (NoC), the authors of [16] evaluate the Argo NoC
of the T-CREST platform for message passing and analyze
its WCET, providing the end-to-end latency for core-to-core
messages.

In [1], the authors suggest a hybrid message passing and
shared memory architecture using the cache. They introduce
a new cache line state, possibly-stale, using a conventional
coherence protocol. Data is moved between nodes without the
overhead of coherence, while at the same time keeping caches
coherent to provide a traditional shared memory model.

It is argued that multiprocessors should support both message-
passing and shared-memory mechanisms, since one may be
better than the other for certain types of tasks [8]. Message-
passing architectures are found to be suitable for applications
where the data packets are large or the transfer latency is
insignificant compared to other computations. Shared-memory
architectures prevail in situations with appropriate use of
prefetching — in the comparison the performance is equivalent.
They present an architecture supporting both mechanisms for
interprocessor communication.

In [6] an implementation of MPI for the Tile64 processor
platform from Tilera is presented. The data cache is used for
loading messages, resulting in high cache miss costs for large
messages. The usage of the caches also complicates the timing
analysis. The method presented in this paper avoids this by
using the shared scratchpad memory for communication.

III. THE T-CREST PLATFORM

The T-CREST multicore platform is a multi-processor hard
real-time system designed with the goal of having a low WCET
and to ease its analysis [13]. All components have thus been
designed with a focus on time-predictability, to reduce the
complexity and pessimism of the WCET analysis. The platform
consists of a number of processing nodes and two networks-on-
chip (NoCs): A NoC for message passing between cores called
Argo [7] and a shared memory access NoC called Bluetree [2].

A processing node consists of a RISC processor called
Patmos [15], special cache memories and a local scratchpad
memory. Patmos is supported by a compiler developed with a
focus on WCET [11], based on the LLVM framework [10]. The
compiler can work with the aiT [3] tool from AbsInt and the
open-source tool platin [4], which allows static computation

of WCET bounds and supports the specific architecture of
Patmos.

The Argo NoC [7] provides message passing to support inter-
processor communication and offers the possibility to set up
virtual point-to-point channels between processor cores. Data
can be pushed across these circuits using direct memory access
(DMA) controllers in the source end of the circuit, transmitting
blocks of data from the local SPM into the SPM of the remote
processor.

In order to communicate between two processors, the Argo
NoC uses static time-division multiplexing (TDM) scheduling
for routing communication channels in routers and on links.
The network interface between the NoC and the processor node
integrates the DMA controllers with the TDM scheduling such
that flow control and buffering are unnecessary.

Different types of data can thus be transferred on the NoC,
e.g., message passing data between cores and synchronization
operations. The Argo NoC can thus be used to support syn-
chronization primitives [16]. Apart from the NoC, it is possible
to implement software based methods for synchronization in T-
CREST. The data cache can be invalidated [14] and Lamport’s
bakery algorithm [9] can be used to implement locks.

IV. DESIGN AND IMPLEMENTATION

The shared scratchpad memory presented in this paper is
structured with an interface for each processor and an arbiter,
as shown in Fig. 1. From the perspective of a single processor
core the shared scratchpad memory behaves as a conventional
scratchpad on a peripheral device bus with conventional read
and write commands.

The core interfaces keeps read and write requests (referred to
as commands) in a buffer and handles the protocol with a core
associated with each core interface.. The arbiter multiplexes
access to the memory using TDM with time slots, ensuring
both evenly distributed access for all cores and also arbitration
of concurrent access. Only within its time slot can a respective
core fulfill its read or write commands.

If a core requests access outside of its time slot, the core
interface will stall the core by not issuing a command response.
The bus protocol dictates that a core must not issue new
commands before a response has been received; by withholding
this response the shared scratchpad memory can control the
influx of commands from cores. When the time slot arrives,
the arbiter allows for the fulfilment the command and issues a
response, allowing the core to resume execution. Consequently,
the use of time slots incurs a minimum interval of n— 1 cycles
between subsequent commands from a single core, where n
is the number of cores with access to the shared scratchpad
memory.

A. Atomicity Through Bus Locking

Support for atomic operations, such as acquiring a lock, is
implemented by granting exclusive access to a single core for
multiple cycles. This allows for the fulfillment of reads and
writes on the shared scratchpad memory without interference
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Fig. 1. The top level design of the shared scratchpad memory.

from other cores, thus mimicking the global behavior of atomic
operations.

A core can request such an extended time slot from the
shared scratchpad memory by issuing a read request for a
special address. When the core’s time slot arrives, the arbiter
grants an extended time slot to allow for fulfilling multiple
commands consecutively.

In Fig. 2, core 1 and core 3 request extended time slots
(sync) and core 2 has an outstanding read. The current time
slot (“Current Core”) is for core 1 and the extended time slot
is granted immediately. In the meantime, core 2 and core 3 are
stalled and go idle. When the extended time slot has passed, the
arbiter grants access to core 2, followed by core 3’s extended
time slot.

A test-and-set based locking mechanism fits this scheme,
using 3 instructions:

load &sync_request_address
load r1, &lock
store &lock, 1

The extended time slot is requested in the first load, and
when the extended time slot arrives, the second load and the
store can be served uninterrupted. If the load of &lock returned
a 1 (locked), then the sequence of instructions changed nothing
and the processor did not acquire the lock.

The shared scratchpad memory includes a buffer to meet
timing specifications and commands are thus always delayed
by one cycle. A minimum of 6 cycles is thus needed in the
extended time slots to guarantee atomicity.

The extended time slots will influence the worst-case and
average-case performance of loads and stores in the shared
scratchpad memory. In a situation where no cores are using
extended time slots, the observed latency is only influenced by
the alignment with regular time slots.

In a worst-case scenario every core requests an extended
time slot. Thus, the worst-case delay for a command, be it
load, store, or request of an extended time slot, is (7 — 1)cets.
n is the number of cores and ceis is the number of cycles an
extended time slot uses.

cksomiz LU LU

Core 1 .(sync)( sync op. {

Core 2 .(read)( idle ) {op. |
Core 3 .(sync)( idle ) {lidle Y sync op. ).

Current Core .( 1 ) """"" ( 2 X 3 ) """"""

Fig. 2. An example showing the arbiter behavior when multiple cores request
an action simultaneously. When cores are waiting, they go idle until their time
slot arrives.

B. Single Extended Time Slot

In the above implementation (the multi slot implementation),
the potentially large delays from extended time slots could
unnecessarily impede performance. It is assumed that programs
requesting extended time slots can tolerate longer delays,
whereas the delays for conventional commands should be
shorter. These two assumptions allow for an alternate design
for the arbiter.

When read or write commands are handled, the shared
scratchpad memory behaves as the previous case with the multi
slot arbiter: A single time slot per core, taken in sequence and
with no priority. For the single slot arbiter, the only difference
is that if one core requests an extended time slot and has it
granted, then another core cannot be granted an extended time
slot, before a whole “round” has passed. By a “round” it is
meant that every core must get a chance to fulfill a normal
read and write, before a new extended time slot is granted.

A flag is used for tracking if an extended time slot has been
granted in the last round and which core it was assigned to. As
long as this flag is set, no core can be granted an extended time
slot. This flag is lowered when the respective core is granted
a conventional time slot. This ensures that one core can not
immediately be granted an extended time slot again, but instead
the following core is the next candidate for receiving it. Note
that the slot is still dynamically present and takes its place
from the conventional time slot of the respective core.

By limiting the arbiter to grant one extended time slot per
round, a worst-case delay between commands becomes: n —
2 + cets, Where n is the number of cores. The two subtracted
cycles account for the core with an extended time slot and the
core making the read or write command. For requesting an
extended time slot the worst-case delay becomes: n X (n+ cets)-
The breakdown is: n X cets for the delay from extended time
slots and n? for the delay from only having one extended time
slot per round.

V. EVALUATION AND RESULTS

This section presents the experimental evaluation of the
shared scratchpad memory. All results of our architecture were
produced using Altera Quartus (v16.1), targeting the Altera
Cyclone FPGA (model EPACE115) with Quartus’ optimization



TABLE I
WORST CASE DELAYS (WCD) FOR ACCESS TO THE SHARED SCRATCHPAD
MEMORY IN CLOCK CYCLES. ETS INDICATES THE DELAY FROM
REQUESTING AN EXTENDED TIME SLOT TO HAVING IT ALLOCATED.

Single slot Multi slot

Cores  WCD (ETS) WCD (r/w) | WCD (ETS/r/w)
2 16 6 6

4 40 8 18

9 135 13 48

16 352 20 90

32 1216 36 186

64 4480 68 378

mode set to “Performance (Aggressive)”. The clock frequency
was set to 80 MHz as this is the limit for the Patmos core
in this FPGA. A 9 core design was implemented where
the shared scratchpad memory was added to the default T-
CREST implementation containing the Argo NoC. Two such
implementations were tested, one using the single slot shared
scratchpad memory and the other for the multi slot version.
The evaluations against the Argo NoC were performed using
the single slot implementation, since none of the tests for
comparison use extended time slots, which is the only difference
between the two implementations.

A. Worst-case delays

The worst-case delays can be seen in Table I, which also
provides for an early comparison of multi slot and single
extended time slot (single slot). It is immediately seen that
the single slot mechanism significantly reduces the worst-case
delay for reads and writes. However, this guarantee comes at
the cost of the worst-case delay for an extended time slot. For
a multicore system with 32 cores more than a thousand cycles
could potentially be spent on waiting for an extended time slot.

Comparing against the Argo NoC, a nine core NoC was
evaluated in [16] with a worst-case latency of 211 cycles for
blocking transfer of two 4-byte words between two cores. The
shared scratchpad memory occupies the core for 96 cycles
with the multi-slot arbiter. Assuming the single slot arbiter, the
worst-case delay is 26 cycles.

Comparing these results with the conclusion from [8] reveal
that the shared scratchpad memory is positioned as a trade-off
between shared-memory and message passing. Transfer latency
is smaller than for message-passing, but there is no need for
prefetching. However, the shared scratchpad memory includes
a performance penalty which grows linearly with the number
of cores and atomic operations are penalized further.

B. Resource Consumption

The resource consumption results are presented in Table II.
The shared scratchpad memory solutions presented are very
cheap, resource-wise, compared to the Argo NoC and the
Patmos CPU. Compared to the arbiter and controller for main
memory, our solution is also relatively cheap. Furthermore, the
two arbitration schemes have similar resource consumption,
the single slot implementation is expected to have a slightly

TABLE II
THE UTILIZATION OF THE WHOLE SYSTEM (ALL 9 CORES).

Entity LUTs  Flip-Flops RAM bits
Patmos cores 90243 43877 1344192
Argo NoC 15077 8342 99072
Main memory arbiter 1828 765 0
Main memory controller 451 331 0
SSPM: multi slot arbiter 615 462 -
SSPM: single slot arbiter 635 467 -

larger utilization due to the flag checks. We do not show the
size of the scratchpad memory itself, as it is configurable.

C. Communication

Figures of interest are write speed and roundtrip times. We
do not benchmark read times to the scratchpad memories, since
they are equal to the write times, which will be used instead.
We define the roundtrip time as the time from the sender sends
a message until it has observed an acknowledge from the
receiver. The test was parametrized by the word size of the
messages.

In Figure 3a, we show the execution times of writes to
the Argo NoC local scratchpad and the shared scratchpad
memory. The write speed of the NoC is greater than the shared
scratchpad memory. This is expected, as the shared scratchpad
memory’s time multiplexed access will incur a performance
hit for raw write speed. At a message size of 32 words, the
NoC shows a performance decrease. This is the result of the
compiler loop-unrolling the writes when the burst size is 16 or
less, bypassing the loop overhead. Note that this is not done
for the shared scratchpad memory writes for reasons unknown.

Figure 3a also shows the cost of a roundtrip using the
Argo NoC and the shared scratchpad memory. The numbers
demonstrate the advantage of a shared memory structure
compared to a message passing NoC. The Argo NoC has
a high fixed roundtrip overhead cost that scales with message
size. With two word bursts, the average per word cost is ~ 106
cycles, falling to ~ 62 cycles with four word bursts. In contrast,
the shared scratchpad memory’s overhead is a fixed 34 cycles
when no cores are using extended time slots, regardless of
word size.

In Figure 3b we model a simple, synthetic application
scenario: a core receives some input, works on it in some way,
and then sends it on to another core. This scenario requires
one read from a scratchpad, one write to a scratchpad, and
then issuing a send to the next core. We ignore what work
a core would do to the data since we are only interested in
the cost of communication. In our test, the cores do no work.
The figure shows the cost per word for the Argo NoC versus
our shared scratchpad memory with the data extracted from
Figure 3a. We use two writes, since writes and reads cost the
same, and the base cost. The results show that our setup is
more efficient at message passing than the Argo NoC.

The shared scratchpad memory solution does not scale as
well as the Argo NoC. With an increase in core count the shared
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Fig. 3. Results for interprocessor communication.
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Fig. 4. Results with synchronization traffic.

scratchpad memory will struggle to meet timing constraints
in the synthesis. However, the results show that it can afford
to have a few more pipeline stages and still be faster than
the Argo NoC. Additionally, the shared scratchpad memory is
easier to program against, and arguably more flexible.

Conversely, the Argo NoC supports the same bandwidth be-
tween all core pairs. Therefore, when communication channels
are from one to many cores or many to one core, the NoC
has the same bandwidth per channel as it has in a one to one
situation. The shared scratchpad memory solution needs to
share bandwidth between all active channels.

D. Extended Time Slots

Figure 4 presents the effects of extended time slot traffic on
performance in each of the shared scratchpad memory imple-
mentations. The values are the averages of 1000 measurements.

Figure 4a shows the average execution time of a write to
the shared scratchpad memory while other cores are executing
extended time slot requests. We see that for the single slot
implementation, the number of cores performing extended time
slot traffic only has a slight influence on the write time. We
would expect no change at all due to the TDM based arbitration,
but, the initial lower execution time stems from the fact that if
no extended time slots are requested, then none are granted.
For the multi slot, write time increases linearly with extended
time slot traffic.

Figure 4b shows the average execution time of an atomic
locking sequence, which uses extended time slots. We see that
for both implementations the time to acquire a lock, which is
assumed to be free, increases linearly with traffic, though the
single slot implementation’s execution time increases much
faster than the multi slot’s.

We see from these results that the choice of implementation



should be on the basis of expected use case. The multi slot
shared scratchpad memory is superior in scenarios where
many atomic operations are needed, while the single slot
implementation should be used for scenarios where atomic
operations are a much rarer occurrence.

E. Reproducing the Results

We think reproducibility is of primary importance in science.
As we are working in the context of an open-source project, it
is relatively easy to provide pointers and a description of how
to reproduce the presented results.

The T-CREST project is open-source and the README!
of the Patmos repository provides a brief introduction how
to setup an Ubuntu installation for T-CREST and how to
build T-CREST from the source. More detailed installation
instructions, including setup on macOS, are available in the
Patmos handbook [14]. To simplify the evaluation, we also
provide a VM? where all needed packages and tools are already
pre-installed However, that VM is currently used in teaching
and you should reinstall and build T-CREST as described in
the README.

The implementation of the shared scratchpad memory and the
benchmarks are available in two forked repositories: (1) Patmos
and (2) aegean. The implementation of the shared scratchpad
memory itself is open source® and includes a description on
how to build the concrete multicore with the shared scratchpad
memory and how to run the benchmarks.

VI. CONCLUSION

In this paper, we presented a solution for time-predictable
communication between processor cores on a multicore proces-
sor. We presented a shared scratchpad memory with support for
bus locking using extended time slots. In turn, this allowed for
implementing atomic operations on a processing core with no
further modification needed. Using time-division multiplexing
for the access to the shared scratchpad memory provides a
time-predictable communication solution for hard real-time
systems. The worst-case execution time for this operation can
be bounded and therefore supports time-predictable locking.
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