90 research outputs found

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    Intrusion-Tolerant Middleware: the MAFTIA approach

    Get PDF
    The pervasive interconnection of systems all over the world has given computer services a significant socio-economic value, which can be affected both by accidental faults and by malicious activity. It would be appealing to address both problems in a seamless manner, through a common approach to security and dependability. This is the proposal of intrusion tolerance, where it is assumed that systems remain to some extent faulty and/or vulnerable and subject to attacks that can be successful, the idea being to ensure that the overall system nevertheless remains secure and operational. In this paper, we report some of the advances made in the European project MAFTIA, namely in what concerns a basis of concepts unifying security and dependability, and a modular and versatile architecture, featuring several intrusion-tolerant middleware building blocks. We describe new architectural constructs and algorithmic strategies, such as: the use of trusted components at several levels of abstraction; new randomization techniques; new replica control and access control algorithms. The paper concludes by exemplifying the construction of intrusion-tolerant applications on the MAFTIA middleware, through a transaction support servic

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    INSENS: Intrusion-tolerant routing for wireless sensor networks

    Get PDF
    This paper describes an INtrusion-tolerant routing protocol for wireless SEnsor NetworkS (INSENS). INSENS securely and efficiently constructs tree-structured routing for wireless sensor networks (WSNs). The key objective of an INSENS network is to tolerate damage caused by an intruder who has compromised deployed sensor nodes and is intent on injecting, modifying, or blocking packets. To limit or localize the damage caused by such an intruder, INSENS incorporates distributed lightweight security mechanisms, including efficient one-way hash chains and nested keyed message authentication codes that defend against wormhole attacks, as well as multipath routing. Adapting to WSN characteristics, the design of INSENS also pushes complexity away from resource-poor sensor nodes towards resource-rich base stations. An enhanced single-phase version of INSENS scales to large networks, integrates bidirectional verification to defend against rushing attacks, accommodates multipath routing to multiple base stations, enables secure joining/leaving, and incorporates a novel pairwise key setup scheme based on transitory global keys that is more resilient than LEAP. Simulation results are presented to demonstrate and assess the tolerance of INSENS to various attacks launched by an adversary. A prototype implementation of INSENS over a network of MICA2 motes is presented to evaluate the cost incurred

    Routing Security Issues in Wireless Sensor Networks: Attacks and Defenses

    Get PDF
    Wireless Sensor Networks (WSNs) are rapidly emerging as an important new area in wireless and mobile computing research. Applications of WSNs are numerous and growing, and range from indoor deployment scenarios in the home and office to outdoor deployment scenarios in adversary's territory in a tactical battleground (Akyildiz et al., 2002). For military environment, dispersal of WSNs into an adversary's territory enables the detection and tracking of enemy soldiers and vehicles. For home/office environments, indoor sensor networks offer the ability to monitor the health of the elderly and to detect intruders via a wireless home security system. In each of these scenarios, lives and livelihoods may depend on the timeliness and correctness of the sensor data obtained from dispersed sensor nodes. As a result, such WSNs must be secured to prevent an intruder from obstructing the delivery of correct sensor data and from forging sensor data. To address the latter problem, end-to-end data integrity checksums and post-processing of senor data can be used to identify forged sensor data (Estrin et al., 1999; Hu et al., 2003a; Ye et al., 2004). The focus of this chapter is on routing security in WSNs. Most of the currently existing routing protocols for WSNs make an optimization on the limited capabilities of the nodes and the application-specific nature of the network, but do not any the security aspects of the protocols. Although these protocols have not been designed with security as a goal, it is extremely important to analyze their security properties. When the defender has the liabilities of insecure wireless communication, limited node capabilities, and possible insider threats, and the adversaries can use powerful laptops with high energy and long range communication to attack the network, designing a secure routing protocol for WSNs is obviously a non-trivial task.Comment: 32 pages, 5 figures, 4 tables 4. arXiv admin note: substantial text overlap with arXiv:1011.152
    • …
    corecore