6,768 research outputs found

    The Dynamics of Internet Traffic: Self-Similarity, Self-Organization, and Complex Phenomena

    Full text link
    The Internet is the most complex system ever created in human history. Therefore, its dynamics and traffic unsurprisingly take on a rich variety of complex dynamics, self-organization, and other phenomena that have been researched for years. This paper is a review of the complex dynamics of Internet traffic. Departing from normal treatises, we will take a view from both the network engineering and physics perspectives showing the strengths and weaknesses as well as insights of both. In addition, many less covered phenomena such as traffic oscillations, large-scale effects of worm traffic, and comparisons of the Internet and biological models will be covered.Comment: 63 pages, 7 figures, 7 tables, submitted to Advances in Complex System

    Hybrid Epidemics - A Case Study on Computer Worm Conficker

    Full text link
    Conficker is a computer worm that erupted on the Internet in 2008. It is unique in combining three different spreading strategies: local probing, neighbourhood probing, and global probing. We propose a mathematical model that combines three modes of spreading, local, neighbourhood and global to capture the worm's spreading behaviour. The parameters of the model are inferred directly from network data obtained during the first day of the Conifcker epidemic. The model is then used to explore the trade-off between spreading modes in determining the worm's effectiveness. Our results show that the Conficker epidemic is an example of a critically hybrid epidemic, in which the different modes of spreading in isolation do not lead to successful epidemics. Such hybrid spreading strategies may be used beneficially to provide the most effective strategies for promulgating information across a large population. When used maliciously, however, they can present a dangerous challenge to current internet security protocols

    Modeling SpaceWire networks with network calculus

    Get PDF
    The SpaceWire network standard is promoted by the ESA and is scheduled to be used as the sole on-board network for future satellites. This network uses a wormhole routing mechanism that can lead to packet blocking in routers and consequently to variable end-to-end delays. As the network will be shared by real-time and non real-time traffic, network designers require a tool to check that temporal constraints are verified for all the critical messages. Network Calculus can be used for evaluating worst-case end-to-end delays. However, we first have to model SpaceWire components through the definition of service curves. In this paper, we propose a new Network Calculus element that we call the Wormhole Section. This element allows us to better model a wormhole network than the usual multiplexer and demultiplexer elements used in the context of usual Store-and-Forward networks. Then, we show how to combine Wormhole Section elements to compute the end-to-end service curve offered to a flow and illustrate its use on a industrial case study
    • …
    corecore