

To cite this document: FERRANDIZ Thomas, FRANCES Fabrice, FRABOUL Christian.
Modeling SpaceWire networks with network calculus. In: 1st International Workshop on Worst-
Case Traversal Time (WCTT'11), 29 Nov 2011, Vienne, Autriche.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 5129

Any correspondence concerning this service should be sent to the repository administrator:
staff-oatao@inp-toulouse.fr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12042764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Modeling SpaceWire networks with Network Calculus ∗

Thomas Ferrandiz
Univ. de Toulouse, ISAE

France
thomas.ferrandiz@isae.fr

Fabrice Frances
Univ. de Toulouse, ISAE

France
fabrice.frances@isae.fr

Christian Fraboul
Univ. de Toulouse,

IRIT/ENSEEIHT-INPT
France

christian.fraboul@enseeiht.fr

ABSTRACT
The SpaceWire network standard is promoted by the ESA
and is scheduled to be used as the sole on-board network
for future satellites. This network uses a wormhole routing
mechanism that can lead to packet blocking in routers and
consequently to variable end-to-end delays. As the network
will be shared by real-time and non real-time traffic, network
designers require a tool to check that temporal constraints
are verified for all the critical messages.

Network Calculus can be used for evaluating worst-case
end-to-end delays. However, we first have to model SpaceWire
components through the definition of service curves. In this
paper, we propose a new Network Calculus element that
we call the Wormhole Section. This element allows us to
better model a wormhole network than the usual multi-
plexer and demultiplexer elements used in the context of
usual Store-and-Forward networks. Then, we show how to
combine Wormhole Section elements to compute the end-to-
end service curve offered to a flow and illustrate its use on
a industrial case study.

Categories and Subject Descriptors
C.4 [PERFORMANCE OF SYSTEMS]: Performance
attributes; C.3 [SPECIAL-PURPOSE AND
APPLICATION-BASED SYSTEMS]: Real-time and
embedded systems

WCTT ’11 November 29 2011, Vienna, UNK, Austria

Keywords
performance evaluation, real-time networks, SpaceWire, Net-
work Calculus

1. INTRODUCTION
SpaceWire [9], [3] is an on-board network for satellites

designed by the European Space Agency and the University
of Dundee. It uses high-speed serial, point-to-point links
and simple routers to interconnect satellite equipment using
arbitrary topologies. In the future, the ESA plans to use
SpaceWire as the sole on-board network in their satellites.
The idea is to use the same network for both the payload
and command/control traffic. This will simplify the network
architecture and reduce the costs of the satellites.

At the moment, SpaceWire provides enough bandwidth
(up to 200 Mbps) to carry both types of traffic at the same
time. However, in order to reduce memory size (radiation-
hardened memory is very expensive), SpaceWire uses worm-
hole routing to transmit the data packets across the network.
The downside of this technique is that it can lead to blocked
packets and thus huge variations in the end-to-end delays
of those packets. Furthermore, SpaceWire does not provide
built-in real-time mechanisms that guarantee the timely de-
livery of urgent packets.

Thus, network designers need a tool to check that tempo-
ral constraints are verified for urgent packets before SpaceWire
can be used to carry command/control traffic. Using simu-
lations is not possible because covering every scenario would
be very long and costly. A better solution is to design an an-
alytical model to compute an upper-bound on the worst-case
end-to-end delay of a flow.

We proposed a first model in [5] that allowed us to com-
pute such an upper-bound for a SpaceWire network. This
model works well in most cases but has some limitations.
As it did not require a specific model of input traffic, it was
pessimistic when the network was not fully loaded.

As a consequence, we chose to create a new model based
on Network Calculus theory [8]. It is a theory designed to
study deterministic queueing systems which we have already
successfully used in [7] to study the AFDX network. One
strong point of Network Calculus is that it allows us to model
the input traffic precisely by using traffic envelopes.

However, Network Calculus has been mostly used to study
Internet components and not wormhole routers. As a con-
sequence, the usual multiplexer and demultiplexer elements
are not adequate to model a wormhole network. Thus, in
Section 2, we propose a new network element we call a
”Wormhole Section”. We can then divide the path of a flow

αSin
i arrival curve of fi at the entrance of section S

αSout
i arrival curve of fi at the exit of section S

αji arrival of fi at port j

βdesti service curve received by fi until its destination
(β)↑ max(sup0≤s≤t β(s), 0)

(positive and non-decreasing upper closure)
δT δT (t) = 0 if t < T

δT (t) = +∞ if t ≥ T for any T ≥ 0
h(α, β) horizontal distance between the two positive,

non-decreasing curves α and β

Table 1: Notations used in the paper

into a series of Wormhole Sections to deduce an end-to-end
service curve.

Then, in Section 3, we show how to use this element to
compute an end-to-end service curve for a flow. Finally, we
illustrate the use of this model on an industrial application
provided by Thales Alenia Space in 4 and conclude in Sec-
tion 5.

2. THE WORMHOLE SECTION ELEMENT
A complete overview of Network Calculus would be be-

yond the scope of this paper. Readers not familiar with this
theory can refer to [1] for a short introduction.

Here, we just recall this fundamental theorem.

Theorem 1. Concatenation of two systems
Assume that a flow traverses two systems S1 and S2 in se-
quence. Assume that S1 and S2 offer the service curves β1
and β2 respectively. Then the concatenation of the two sys-
tems offers the service curve β1⊗β2 to the flow. β1⊗β2(t) =
inf0≤s≤t{β1(t − s) + β2(s)} is the Min-Plus convolution of
β1 and β2.

This allows us to combine the network elements succes-
sively traversed by a flow to obtain an end-to-end service
curve offered to the flow by the network as a whole.

2.1 Assumptions
We consider a network composed of SpaceWire routers

and terminals. Each terminal has only one SpaceWire inter-
face but can be the source and/or destination of any number
of flows. Each flow f is modeled by a source, a destination, a
path through the network and an arrival curve αf . Usually,
the arrival curve is a staircase function which gives a more
precise model of the input traffic than an affine function.

Since SpaceWire routers use static routing, we consider
only a static network. We also assume that the network is
stable, i.e. that no link is required to transfer more data
than its capacity. In Network Calculus terms, this can be
written as follows (see [2]). For each link j, we note Ij the
number of flows traversing that link and αji the arrival curve
of flow fi at link j. The stability condition is now:

∀j, ∀i ∈ {1, . . . , Ij}, lim
t→+∞

[βj −
Ij∑
i=1

αji](t) = +∞ (1)

Throughout the paper, we will use the notations in Ta-
ble 1.

2.2 A new network element
To use Network Calculus theory, we first need to deter-

mine a service curve for each element traversed by a flow.
We can then compute an End-To-End (ETE) service curve
using Theorem 1. However, in a wormhole network, the ser-
vice offered by a router is not independent from the service
offered by downstream routers. Because of the flow control,
a router can output data at an average rate far inferior to
its nominal capacity.

For this reason, we do not propose a classic multiplexer/
demultiplexer model of each router. Instead, we adopt a
macroscopic view of the network which tries to optimize the
ETE service curve of each flow while accounting for the in-
terdependency between routers.

When a flow encounters interferences with other flows,
the impact of each conflict is twofold. First, there is a delay
when the flow is multiplexed with the interfering flow. Then,
when the interfering flow is demultiplexed, the flow control
mechanism will propagate its own delays backward to the
studied flow.

To properly model this, we propose a new network element
that we call a ”Wormhole Section” [4]. The basic idea is to
divide the path followed by a flow into a serie of sections.
Each section is composed of a set of successive output ports
shared by the same flows. Thus, a Section corresponds to
the arrival or the departure of an interfering flow from the
path of the studied flow.

Each wormhole section offers a service curve that depends
on the arrival curves of the interfering flows. Once we have
computed the service curve of every section in the path of
a flow, we can deduce the end-to-end service curve by using
Theorem 1.

Of course, once an interfering flow has left the path of
the studied flow, it will go through other wormhole sections
before reaching its destination. The delays caused in those
sections are those that will be carried over to the studied
flow.

S1

S2 S3

D23

 D14

S4

Section S1 Section S2

Section S3

Section S4

Figure 1: A network divided into wormhole sections

As an example, consider the network in Figure 1. Each
flow fi goes from its source Si to its destination Di. When a
destination is shared by two flows i and j it is denoted Di,j .

Let us take a closer look at f1. f1 has to go through three
wormhole sections (S1, S2, S4) to reach D1,4 with sections
S1 and S4 shared with other flows. S1 and S4 are thus the
two sources of direct delays for f1. In addition, since after
leaving S1, f2 traverses section S3 which it shares with f3,
S3 will be another source of delay for f1 but only indirectly.

As can be seen in this example, the wormhole section net-
work element makes it easier to analyse the conflicts in a
wormhole network. In the next section, we present a de-

tailed model of this new network element.

2.3 Section sharing
We will present the model when there is only one interfer-

ing flow. We note f1 the studied flow. f2 is the interfering
flow. fi has αSin

i as an arrival curve at the entrance of sec-
tion S. Let us assume that section S comprises M routers.

For j = 1, . . . ,M , βj is the service curve offered by the
output port of router Rj to the two flows. Because of the
flow control mechanism, the amount of data which is trans-
mitted by the port may actually be inferior to βj . Thus, βj

should be seen as an intermediate parameter used to deter-
mine the service guaranteed to a given flow by this section
of the network. Once we have analysed the conflicts in each
output port traversed by a flow, we can use Theorem 1 to
compute a service curve for the section, then for the com-
plete path. This end-to-end curve is now valid because it
takes into account the influence of all the ports used by a
flow, including the indirect delays. As a consequence, it
represents the real end-to-end output of the network.

Since all the routers in the section are shared between the
two flows and no other interference occurs, we can view these
routers as a single router with service curve βS =

⊗M
j=1 β

j .

SpaceWire routers use a simplified Round-Robin access
scheme that guarantees that each input port gets a fair ac-
ces to each output port. However, each packet can use the
output port for an unlimited duration. The usual round-
robin model attributes some weight to each flow and shares
the bandwidth in proportion to those weights. Since the
SpaceWire standard does not define such weights, we have
no way of using this model and have to rely on the more
pessimistic ”blind multiplexing” model [8], Theorem 6.2.1.

Thus, the service curve offered by the section to f1 is

βS1 = (

M⊗
j=1

βj − αSin
2)↑. (2)

(β)↑ is the positive and non-decreasing upper closure of β
defined as (β)↑ = max(sup0≤s≤t β(s), 0).

βS1 is a worst-case service curve that implies that all the
interfering flows have a higher priority than f1 and can in-
stantly preempt it. Of course, in reality the packets are not
interrupted but this model ensures that we have a worst-case
service curve for any possible scheduling of the packets.

2.4 Section demultiplexing

2.4.1 Limits of existing models
In a classic Store-And-Forward network model, the pack-

ets are instantaneously demultiplexed. Furthermore, once a
packet has left the router, the delays it can endure are not
propagated backward on the network. Thus, the demulti-
plexer has no impact on the delay (see [2] for example).

However, this is not true for a wormhole network. In fact,
after two flows f1 and f2 have been demultiplexed, f2 can
still have an impact on f1. This is because the flow control
mechanism will carry over the delays caused to f2 on the
end of its path backward to f1.

A possible way to model this phenomenon is given in [10].
In this paper, the authors consider the situation described
on Figure 2. In this network, after they have been demul-
tiplexed both flows f1 and f2 have to go through a flow

βτ2

βτ1

β1

β2

flow control

flow control

f1,α1

f2,α2

Figure 2: Demultiplexing of two flows in a wormhole
network

controller. Flow controller τi models the impact of the flow
control on the downstream output link on flow fi with a
service curve βτi . In turn, βτi depends on the service curve
of the downstream router.

The authors consider that, as far as the aggregate flow
f{1,2} is concerned, τ1 and τ2 are parallel traffic regulators.
As a consequence, the service offered to the aggregate flow
f{1,2} is β{1,2} = min(βτ1 , βτ2). This aggregate service is
then shared between the two flows to derive the service of-
fered to each individual flow.

This service is valid but is is very pessimistic. Let us
consider the example in Figure 2. The arrival curves are
affine: αi(t) = ri.t + bi and the service curves are linear:
βi(t) = Ci.t We use the following values:

f1 f2
ri (Mbps) 50 10
bi (bits) 1000 200
Ci (Mbps) 100 20

On the one hand, the service offered to f{1,2} is β{1,2}(t) =
min(C1, C2).t = C2.t. On the other hand, the arrival curve
of f{1,2} is α{1,2}(t) = α1(t) + α2(t) = r1,2.t + b1,2 with
r1,2 = r1 + r2 = 60 Mbps and b1,2 = b1 + b2 = 1200 bits.

The horizontal distance h(α{1,2}, β{1,2}) between the two
curves is clearly infinite and we have to conclude that the
network cannot carry both flows. This is very pessimistic
because it is easy to see that this network can handle both
flows.

Thus we need a new, more precise network model of worm-
hole demultiplexer.

2.4.2 A new model of demultiplexing
Since both flows go in different directions in the network,

we cannot determine an exact service for the aggregated
flow. Each flow receives its own service but can still cause
delays to the other flow thanks to the flow control mecha-
nism.

The delay actually caused to an individual packet of f1 is
hard to determine because it depends on which exact con-
flicts occur farther on the path of f2. However, we can de-
termine an upper-bound on this delay.

In fact, the maximum delay caused by f2, which we will
denote d2, is at most the maximum delivery delay from the
demultiplexer to the destination of f2. Thus,

d2 = h(αSout
2 , βdest2) (3)

where αSout
2 is the arrival curve of f2 at the end of S and

βdest2 the service curve offered to f2 between the end of S
and its destination.

Here, since we have assumed a blind multiplexing with f2
as the higher priority flow,

αSout
2 = αSin

2 �
M⊗
j=1

βj (4)

where (α� β)(t) = sups≥0{α(t+ s)− β(s)} is the Min-Plus
deconvolution of α and β.

With this model, in the example in Figure 2 the delay
caused by f2 to f1 is only h(α2, β2) = 200

107
s = 10µs. As can

be seen, this model is far less pessimistic than the model
from [10].

2.4.3 Complete service curve offered by a Wormhole
Section

We can combine the results from Subsection 2.3 and 2.4.2
to obtain the complete service curve offered by section S.
When two flows share Section S, the service curve offered to
f1 is

βS1 = (

M⊗
j=1

βj − αSin
2)↑ ⊗ δh(αSout

2 ,βdest
2)

. (5)

When there are N flows sharing a wormhole section, the
service curve for flow k is

βSk = (

M⊗
j=1

βj −
N∑

i=1,i6=k

αSin
i)↑ ⊗ δdSk

(6)

with

dSk =

N∑
i=1,i6=k

di =

N∑
i=1,i6=k

h(αSout
i , βdesti).

3. HOW TO COMPUTE AN END-TO-END
SERVICE CURVE

3.1 Model of the terminals
The first elements in the networks are the terminals them-

selves. Since SpaceWire links are full-duplex, we consider
that each terminal is composed of a source terminal and a
destination terminal that we can model independently.

A source terminal has a FIFO input buffer that is shared
by any number of applications running on the terminal. All
the applications try to emit on the SpaceWire interface. For
each application, we define a separate data flow. Since the
flows share the output port of the terminal just like they
would share the output port of a router, we consider that
this output port is part of a Wormhole Section just like any
routers’ output port.

A destination terminal has a reception buffer large enough
to receive at least one full packet of the maximum size. It
can impose a constant delay to each packet before reading
it. It then reads this packet at a constant service rate, which
is usually less than the speed of the links.

Thus, the service curve of a destination terminal D is
βD(t) = rD.(t − TD)+ where rD is the service speed of D
and TD the delay it forces on the data.

3.2 Solving more complex interferences
The model presented in Section 2 can only be directly ap-

plied when all the interfering flows arrive and depart from
the same router. When it is not the case, we could simply

divide the path of the studied flow into many small worm-
hole sections. We could even have a section for each router
crossed by the flow.

However, this would give us a suboptimal result because
we would have to count several times (once for each router)
the influence of a flow that shares several consecutive routers
with the studied flow. It is better to try and optimize the
end-to-end service curve by combining a set of flows sharing
some routers as an aggregate flow. We can then determine
wormhole sections for this aggregate flow and deduce the
service curves offered to it. Those service curves will then be
shared between the individual flows composing the aggregate
flow.

To automate this process, we use the interference patterns
defined in [10] to determine the order in which the residual
services are computed. The authors define three interference
patterns describing how one studied flow and two interfering
flows interact with one another. They also show that all
conflicts, involving any number of interfering flows, can be
solved once those three patterns are solved.

Below we define the interference patterns and the residual
service curves for the studied flow in each case.

Let us call βj the service curve offered by router Rj . See
Table 1 for the other notations.

We have di = h(αouti , βdesti), i = 2, 3. We will explicit αouti

in each case since it depends on the interference between f2
and f3.

3.2.1 Nested interference pattern
R1 R2 R3 R4 R5

f1

f2 f3

Figure 3: Nested interference pattern

In this configuration (Figure 3), we first treat f1 and f2 as
an aggregate flow sharing the section comprising the output
port of R3 with f3. Then, we consider that f1 and f2 share
the section comprising the output ports of R2, R3 and R4.

The service curve offered to f1 by the section R1 → R5 is
thus

β1→5
1 =β1 ⊗ ([β2 ⊗ (β3 − α3

3)↑ ⊗ δd3 ⊗ β
4]− α2

2)↑

⊗ δd2 ⊗ β
5

(7)

Here, αout2 = α2
2� [β2⊗ (β3−α3

3)↑⊗ δd3 ⊗β4] and αout3 =
α3
3 � [(β3 − α2)↑ ⊗ δ2]

3.2.2 Parallel interference pattern
R1 R2 R3 R4 R5

f1

f2
f3

Figure 4: Parallel interference pattern

In this configuration (Figure 4), f1 shares the section com-
prising the output port of R2 with f2 and the section com-
prising the output port of R4 with f3. The other sections
are not shared.

R1 R2 R3 R4 R5

f1

f2a
f3f2b

Figure 5: Crossed interfering pattern

The service curve offered to f1 by the section R1 → R5 is

β1→5
1 =β1 ⊗ (β2 − α2

2)↑ ⊗ δd2
⊗ β3 ⊗ (β4 − α4

3)↑ ⊗ δd3 ⊗ β
5

(8)

Here, αout2 = α2
2 ⊗ β2 and αout3 = α4

3 ⊗ β4.

3.2.3 Crossed interfering pattern
In this configuration (Figure 5), we have to split f2 into

two sub-flows f2a and f2b at R3. First, f1 shares the sec-
tion comprising the output port of R2 with f2a. Then, the
aggregate flow f1 + f3 shares the section composed of the
output port of R3 with f2b. Finally, f1 shares the section
comprising the output port of R3 andR4 with f3.

In the end, the service curve offered to f1 by the section
R1 → R5 is

β1→5
1 =β1 ⊗ (β2 − α2

2)↑

⊗ ((β3 − α3
2)↑ ⊗ δd2 ⊗ β

4 − α3
3)↑ ⊗ δd3

(9)

Here, αout2 = α3
2 � [(β3 − α3

3)↑ ⊗ δd3], α3
2 = α2

2 � β2,
αout3 = α3

3 � [(β3 − α3
2)↑ ⊗ δd2 ⊗ β4].

3.3 Computing the arrival curves of the inter-
fering flows

As seen above, we need to compute the arrival curves of all
the interfering flows both at the beginning of the wormhole
section where they meet the studied flow and at the end of
this section.

For each interfering flow, the arrival curve at the beginning
of the section depends on the arrival curve of the flow at the
source and on the service received between the source and
the beginning of the shared Wormhole Section. The arrival
curve at the end of the section can then be computed from
the arrival curve at the beginning of the section.

Therefore, the service received by the interfering flow is
itself dependent on other interfering flows. Furthermore,
since the service curve βdest depends on the arrival curve of
other flows which may in turn depend on the studied flow,
we risk being stuck with a circular-dependency problem.

3.4 Fixed-point method
To solve this problem, we use a fixed-point method. All

the arrival curves at the sources and all the service curves
of the output ports are known. In addition, the residual
service curve of a port can be deduced immediately from
the knowledge of the arrival curves of the conflicting flows
at this port. Thus, we only have to determine the arrival
curves at each output port to solve the problem.

We proceed iteratively. Let αi be the arrival curve of
flow fi at its source and αji be the arrival curve at port

j. We start with α
j,(0)
i = αi for all j. This is equivalent to

assuming that the burstiness of a flow does not increase as it
traverses the network. Of course, this is an approximation.

Then, we express each α
j,(n+1)
i as a function of αi, of the

service curves βj and of any number of arrival curves α
l,(n)
k

from the previous step. With each iteration, the computed

arrival curves α
j,(n)
i increase, until they reach their real value

at every point in the network.

At some point, there exists p such that ∀i,∀j, αj,(p+1)
i =

α
j,(p)
i and the computation has converged toward a solution

for the system.
We have implemented and tested this method on several

configurations. In each case, the computation converges in
a few steps toward a solution, provided that the stability
condition is respected (see 2.1).

4. INDUSTRIAL APPLICATIONS
We will now present the results given by our model for an

industrial configuration. This study was based on a network
architecture provided by Thales Alenia Space (see Figure 6)
and designed for use in an observation satellite. Our goal
was to determine a worst-case end-to-end delay for each flow
in the network.

4.1 Description of the network

Figure 6: Network of the industrial application

As can be seen in Figure 6, the network is composed of two
parts. The platform equipment on the right which includes a
mass memory unit (SSMM-MM and SSMM-CTRL), a pro-
cessor module (PM) and two Transmission Modules (TM
Ka and TM X). The processor module monitors the other
nodes and sends back commands. The mass memory is split
in two parts. Data is stored in the MM module but must
go through the controller unit first. Thus, other nodes send
packets to the CTRL unit. This unit then processes the
data during a constant delay and sends the packet to the
MM unit. The CTRL unit only stores one packet at any
given time. On the left, the application terminals (A0 to
A8) represent the payload instruments. These include cam-
eras and any kind of sensors. They send data packets to the
CTRL unit and monitoring traffic to the PM unit.

All the links have the same capacity C = 50 Mbps except
L13 and L14 which have a capacity Cslow = 20Mbps.

We can split the network traffic into four categories (see
Table 2). The table gives the network path and the packet
size for each type of traffic. Among all the nodes, only the
CTRL and PM units introduce a delay for every packet they
receive. The delay is the same for both: DPM = DCTRL =
10µs.

Furthermore, the PM reads data packets at 1250 bytes/s
and the two TM units at 87.5 kbytes/s.

Traffic type Path Packet size
(bytes)

SC (scientific) Ai → CTRL→MM 4000
MON Ai → PM → CTRL→MM 20
(MONitoring) PM → CTRL→MM 100
CMD PM → CTRL 1000
(Command) PM → Ai 1000
TM MM → TM −KA 4000
(TeleMetry) MM → TM −X 4000

Table 2: Network traffic

Some traffic is further divided into several flows according
to the definition we used in Section 2.1. In that case, we
simply take the summation of the delays for each included
flow.

We implemented the model using MATLAB and the RTC
Toolbox [11]. This toolbox implements all the common op-
erations of Network Calculus like the min-plus convolution
and deconvolution.

Our software takes a description of the network and of
the network traffic as input and gives an upper-bound on
the end-to-end delay of each flow as output. It implements
the fixed-point method and all the computations based on
the interference patterns.

4.2 Comparison with simulation results
To estimate the tightness of the bounds we computed,

we compared them to the result of the simulations done by
Thales Alenia Space on this network. Those simulations
were implemented on Thales Alenia Space’s MOST simu-
lator [6] that completely models the low-level behavior of
SpaceWire.

The results are given in Table 3.
The critical traffic includes the CMD, TM and MON flows.

The non-critical traffic includes all the SC flows.
As can be seen, the maximum delays observed during the

simulations and the upper-bound computed using Network
Calculus are in the same order of magnitude. This shows
that our methods is not too pessimistic and gives exploitable
results for a network designer.

It is also worth noting that we do not know if the max-
imum observed delay is the worst-case delay or not. The
real worst-case delay may be higher and, thus, closer to the
bound we computed because worst-case delays are extremely
rare events that are hard to observe with simulations.

For the non-critical traffic, the bound is less tight but it is
not a problem fot this type of traffic. The only thing we are
interested in for non-critical traffic is whether the bound is
finite. If it is, it shows that the network is able to carry all
the traffic in a finite time. This knowledge is sufficient for

Traffic type MOST NetCal

non-critical 16.6 102
critical 145 439

Table 3: Comparison between MOST results and
our model (all results are in ms)

non-critical traffic.

5. CONCLUSION
In this paper, we have defined a new Network Calculus el-

ement that can be used to model a SpaceWire network more
accurately than the usual multiplexer and demultiplexer el-
ements. We call this new element a Wormhole Section since
it represents a part of the path followed by a flow. The
Wormhole Section should allow us to obtain tighter bounds
by considering successive routers as only one element.

Furthermore, we also described a new way to compute
the delay caused by a flow leaving a wormhole section. We
showed on a simple example that our method is a lot less
pessimistic than existing demultiplexer models for a worm-
hole network.

Our model is based on the Network Calculus theory and
uses the interference patterns defined in [10] by Qian et al
to model complex dependencies with the interfering flows.
Furthermore, it uses a fixed-point computation to solve cir-
cular dependencies between the arrival curves of the various
flows.

We evaluated our model on an industrial configuration in
Section 4. On this example, we showed that the bounds
obtained by our method are close to the maximum delay
observed during the simulations.

In the future, we plan to pursue two objectives. The first
goal is to formally prove the convergence of the fixed-point
method use in Section 3. The second will be to find a more
realistic model of the non-preemptive section sharing. This
should allow us to tighten the upper-bounds even more.

Acknowledgment
This work was supported by a PhD grant from the CNES
and Thales Alenia Space.

6. REFERENCES
[1] J. L. Boudec and P. Thiran. A short tutorial on

network calculus. i. fundamental bounds in
communication networks. Circuits and Systems, 2000.
Proceedings. ISCAS 2000 Geneva. The 2000 IEEE
International Symposium on, 4, 2000.

[2] R. L. Cruz. A calculus for network delay, part i:
Network elements in isolation. IEEE Transactions on
Information Theory, 37(1), Jan 1991.

[3] ECSS. Spacewire – links, nodes, routers and networks.
Aug 2008.

[4] T. Ferrandiz, F. Frances, and C. Fraboul. Using
network calculus to compute worst-case end-to-end
delays in spacewire networks. ECRTS 11
Work-in-Progress session.

[5] T. Ferrandiz, F. Frances, and C. Fraboul. A method of
computation for worst-case delay analysis on spacewire
networks. Industrial Embedded Systems, 2009. SIES
’09. IEEE International Symposium on, 2009.

[6] P. Fourtier, A. Girard, A. Provost-Grellier, and
F. Sauvage. Simulation of a spacewire network.
Proceedings of the International SpaceWire Conference
2010, Oct 2010.

[7] F. Frances and C. Fraboul. Using network calculus to
optimize the afdx network. ERTS 2006 : 3rd European
Congress ERTS Embedded real-time software, Jan
2006.

[8] J. LeBoudec and P. Thiran. Network calculus a theory
of deterministic queuing systems for the internet.
Springer Verlag, (LNCS 2050), Apr 2004.

[9] S. M. Parkes and P. Armbruster. Spacewire: A
spacecraft onboard network for real-time
communications. IEEE-NPSS Real Time Conference,
(14), Feb 2005.

[10] Y. Qian, Z. Lu, and W. Dou. Analysis of worst-case
delay bounds for best-effort communication in
wormhole networks on chip. Proceedings of the 2009
3rd ACM/IEEE International Symposium on
Networks-on-Chip-Volume 00, 2009.

[11] E. Wandeler and L. Thiele. Real-Time Calculus
(RTC) Toolbox.
http://www.mpa.ethz.ch/Rtctoolbox.

