350 research outputs found

    The 3-D vision system integrated dexterous hand

    Get PDF
    Most multifingered hands use a tendon mechanism to minimize the size and weight of the hand. Such tendon mechanisms suffer from the problems of striction and friction of the tendons resulting in a reduction of control accuracy. A design for a 3-D vision system integrated dexterous hand with motor control is described which overcomes these problems. The proposed hand is composed of three three-jointed grasping fingers with tactile sensors on their tips, a two-jointed eye finger with a cross-shaped laser beam emitting diode in its distal part. The two non-grasping fingers allow 3-D vision capability and can rotate around the hand to see and measure the sides of grasped objects and the task environment. An algorithm that determines the range and local orientation of the contact surface using a cross-shaped laser beam is introduced along with some potential applications. An efficient method for finger force calculation is presented which uses the measured contact surface normals of an object

    Orientation and Workspace Analysis of the Multifingered Metamorphic Hand-Metahand

    Get PDF
    This paper introduces for the first time a metamorphic palm and presents a novel multifingered hand, known as Matahand, with a foldable and flexible palm that makes the hand adaptable and reconfigurable. The orientation and pose of the new robotic hand are enhanced by additional motion of the palm, and workspace of the robotic fingers is complemented with the palm motion. To analyze this enhanced workspace, this paper introduces finger-orientation planes to relate the finger orientation to palm various configurations. Normals of these orientation planes are used to construct a Gauss map. Adding an additional dimension, a 4-D ruled surface is generated to illustrate orientation and pose change of the hand, and an orientation–pose manifold is developed from the orientation–pose ruled surface. The orientation and workspace analysis are further developed by introducing a triangular palm workspace that evolves into a helical surface and is further developed into a 4-D representation. Simulations are presented to illustrate the characteristics of this new dexterous hand

    Design and control of a multi-fingered robot hand provided with tactile feedback

    Get PDF
    The design, construction, control and application of a three fingered robot hand with nine degrees of freedom and built-in multi-component force sensors is described. The adopted gripper kinematics are justified and optimized with respect to grasping and manipulation flexibility. The hand was constructed with miniature motor drive systems imbedded into the fingers. The control is hierarchically structured and is implemented on a simple PC-AT computer. The hand's dexterity and intelligence are demonstrated with some experiments

    Grasping and Control Issues in Adaptive End Effectors

    Get PDF
    Research into robotic grasping and manipulation has led to the development of a large number of tendon based end effectors. Many are, however, developed as a research tool, which are limited in application to the laboratory environment. The main reason being that the designs requiring a large number of actuators to be controlled. Due to the space and safety requirements, very few have been developed and commissioned for industrial applications. This paper presents design of a rigid link finger operated by a minimum number of actuators, which may be suitable for a number of adaptive end effectors. The adaptive nature built into the end effector (due to limited number of actuators) presents considerable problems in grasping and control. The paper discusses the issues associated with such designs. The research can be applicable to any adaptive end effectors that are controlled by limited number of actuators and evaluates their suitability in industrial environments

    HEAP: A Sensory Driven Distributed Manipulation System

    Get PDF
    We address the problems of locating, grasping, and removing one or more unknown objects from a given area. In order to accomplish the task we use HEAP, a system of coordinating the motions of the hand and arm. HEAP also includes a laser range finer, mounted at the end of a PUMA 560, allowing the system to obtain multiple views of the workspace. We obtain volumetric information of the objects we locate by fitting superquadric surfaces on the raw range data. The volumetric information is used to ascertain the best hand configuration to enclose and constrain the object stably. The Penn Hand used to grasp the object, is fitted with 14 tactile sensors to determine the contact area and the normal components of the grasping forces. In addition the hand is used as a sensor to avoid any undesired collisions. The objective in grasping the objects is not to impart arbitrary forces on the object, but instead to be able to grasp a variety of objects using a simple grasping scheme assisted with a volumetric description and force and touch sensing

    Grasping Force Prediction for Underactuated Multi-Fingered Hand by Using Artificial Neural Network

    Get PDF
    In this paper, the feedforward neural network with Levenberg-Marquardt backpropagation training algorithm is used to predict the grasping forces according to the multisensory signals as training samples for specific design of underactuated multifingered hand to avoid the complexity of calculating the inverse kinematics which is appeared through the dynamic modeling of the robotic hand and preparing this network to be used as part of a control system.Keywords: Grasping force, underactuated, prediction, Neural networ
    • …
    corecore