6 research outputs found

    Learning suction graspability considering grasp quality and robot reachability for bin-picking

    Full text link
    Deep learning has been widely used for inferring robust grasps. Although human-labeled RGB-D datasets were initially used to learn grasp configurations, preparation of this kind of large dataset is expensive. To address this problem, images were generated by a physical simulator, and a physically inspired model (e.g., a contact model between a suction vacuum cup and object) was used as a grasp quality evaluation metric to annotate the synthesized images. However, this kind of contact model is complicated and requires parameter identification by experiments to ensure real world performance. In addition, previous studies have not considered manipulator reachability such as when a grasp configuration with high grasp quality is unable to reach the target due to collisions or the physical limitations of the robot. In this study, we propose an intuitive geometric analytic-based grasp quality evaluation metric. We further incorporate a reachability evaluation metric. We annotate the pixel-wise grasp quality and reachability by the proposed evaluation metric on synthesized images in a simulator to train an auto-encoder--decoder called suction graspability U-Net++ (SG-U-Net++). Experiment results show that our intuitive grasp quality evaluation metric is competitive with a physically-inspired metric. Learning the reachability helps to reduce motion planning computation time by removing obviously unreachable candidates. The system achieves an overall picking speed of 560 PPH (pieces per hour).Comment: 18 pages, 2 tables, 7 figure

    Precision Grasp Planning for Integrated Arm-Hand Systems

    Get PDF
    The demographic shift has caused labor shortages across the world, and it seems inevitable to rely on robots more than ever to fill the widening gap in the workforce. The robotic replacement of human workers necessitates the ability of autonomous grasping as the most natural but rather a vital part of almost all activities. Among different types of grasping, fingertip grasping attracts much attention because of its superior performance for dexterous manipulation. This thesis contributes to autonomous fingertip grasping in four areas including hand-eye calibration, grasp quality evaluation, inverse kinematics (IK) solution of robotic arm-hand systems, and simultaneous achievement of grasp planning and IK solution. To initiate autonomous grasping, object perception is the first needed step. Stereo cameras are well-embraced for obtaining an object\u27s 3D model. However, the data acquired through a camera is expressed in the camera frame while robots only accept the commands encoded in the robot frame. This dilemma necessitates the calibration between the robot (hand) and the camera (eye) with the main goal is of estimating the camera\u27s relative pose to the robot end-effector so that the camera-acquired measurements can be converted into the robot frame. We first study the hand-eye calibration problem and achieve accurate results through a point set matching formulation. With the object\u27s 3D measurements expressed in the robot frame, the next step is finding an appropriate grasp configuration (contact points + contact normals) on the object\u27s surface. To this end, we present an efficient grasp quality evaluation method to calculate a popular wrench-based quality metric which measures the minimum distance between the wrench space origin (0⃗6×1\vec{0}_{6\times 1}) to the boundary of grasp wrench space (GWS). The proposed method mathematically expresses the exact boundary of GWS, which allows to evaluate the quality of the grasp with the speed that is desirable in most robotic applications. Having obtained a suitable grasp configuration, an accurate IK solution of the arm-hand system is required to perform the planned grasp. Conventionally, the IK of the robotic hand and arm are solved sequentially, which often affects the efficiency and accuracy of the IK solutions. To overcome this problem, we kinematically integrate the robotic arm and hand and propose a human-inspired Thumb-First strategy to narrow down the search space of the IK solution. Based on the Thumb-First strategy, we propose two IK solutions. Our first solution follows a hierarchical IK strategy, while our second solution formulates the arm-hand system as a hybrid parallel-serial system to achieve a higher success rate. Using these results, we propose an approach to integrate the process of grasp planning and IK solution by following a special-designed coarse-to-fine strategy to improve the overall efficiency of our approach
    corecore