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ABSTRACT

Learning to Grasp

Jacob Varley

Providing robots with the ability to grasp objects has, despite decades of research, remained a

challenging problem. The problem is approachable in constrained environments where there is

ample prior knowledge of the scene and objects that will be manipulated. The challenge is in

building systems that scale beyond specific situational instances and gracefully operate in novel

conditions. In the past, heuristic and simple rule based strategies were used to accomplish tasks such

as scene segmentation or reasoning about occlusion. These heuristic strategies work in constrained

environments where a roboticist can make simplifying assumptions about everything from the

geometries of the objects to be interacted with, level of clutter, camera position, lighting, and a

myriad of other relevant variables. With these assumptions in place, it becomes tractable for a

roboticist to hardcode desired behaviour and build a robotic system capable of completing repetitive

tasks. These hardcoded behaviours will quickly fail if the assumptions about the environment are

invalidated. In this thesis we will demonstrate how a robust grasping system can be built that is

capable of operating under a more variable set of conditions without requiring significant engineering

of behavior by a roboticist.

This robustness is enabled by a new found ability to empower novel machine learning techniques

with massive amounts of synthetic training data. The ability of simulators to create realistic sensory

data enables the generation of massive corpora of labeled training data for various grasping related

tasks. The use of simulation allows for the creation of a wide variety of environments and experiences

exposing the robotic system to a large number of scenarios before ever operating in the real world.

This thesis demonstrates that it is now possible to build systems that work in the real world trained

using deep learning on synthetic data. The sheer volume of data that can be produced via simulation

enables the use of powerful deep learning techniques whose performance scales with the amount

of data available. This thesis will explore how deep learning and other techniques can be used to



encode these massive datasets for efficient runtime use. The ability to train and test on synthetic data

allows for quick iterative development of new perception, planning and grasp execution algorithms

that work in a large number of environments. Creative applications of machine learning and massive

synthetic datasets are allowing robotic systems to learn skills, and move beyond repetitive hardcoded

tasks.
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Chapter 1

Introduction

1.1 Robotic Grasping

The field of robotic grasping is easy to describe, it is study of making robots pick things up. One may

think that endowing a robotic system with an ability to pick up objects off a table would be relatively

easy. After all, this is a skill that young children are able to master within their first several months

of life as shown with the robotic equivalent in Figure 1.1.

(a) baby grasps (b) robotic grasp

Figure 1.1: Examples of successful grasping, a task even a small child can accomplish. Despite the

task’s apparent simplicity, it has been deceptively difficult to engineer robotic grasping systems.

While it is possible to build useful repetitive robotic systems that execute the same motion

repeatedly, building general purpose robotic grasping systems is still a difficult engineering challenge.

It is hard in a manner that is shared with many other problems in robotics - the complexity of building

robotic systems quickly spirals out of control due to interdependencies with a variety of other fields.
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Robotic grasping requires competency in perception, planning, and control; with each one of these

fields containing many open questions and challenges:

1. Perception - Robotic grasping requires an ability to interpret the rich stream of sensory data

and determine what sorts of graspable things are in a robot’s environment. How do you build a

system that is capable of recognizing the millions of objects that exist in our environment, and

even instances of objects the system has never seen before? People are capable of recognizing

a new mug as being a mug even if they have never seen that specific brand of coffee mug

before. Not only do we have an ability to recognize a vast array of objects, we are also very

good at generalizing this knowledge to novel object instances.

2. Planning - After a robotic system has recognized an object that it wants to grasp out of its

environment, a grasp plan must be formulated. The formulation of a desired plan for interacting

with the world, requires a robotic system to be in possession of semantic information relevant

to the task at hand, and have an ability to reference this information efficiently. What is that

object I am picking up? What is that object used for? How will I use it? Why am I picking it

up? It makes no sense to have a robot pick up a filled coffee cup by sticking its fingers inside

of it. How do we tell a robot to be gentle with a wine glass? Or that it should hold a drill in a

way that allows it to drill holes. If you have a robot in a factory that only picks up wine glasses

and mugs, maybe you can hand craft a system that picks up wine glasses carefully, and mugs

by the handle. The challenge is in building a robotic system that can operate in our messy

unconstrained world and interact with the millions of objects that we do and possesses the

semantics or common sense knowledge required to succeed in our world. A system that is

aware of and able to utilize this common sense knowledge will be able to plan robotic grasps

that are both stable and semantically useful.

3. Control - Sometimes even the best plan needs to be adjusted. There is always error in camera

calibration, sensor models, encoder values, estimates for coefficients of friction, and object

masses, among many other things. These errors accumulate, and mean even the best plan

will often need to be modified to account for new observations of the environment while we

are interacting with it. How can a robot incorporate feedback, and actually realize a planned

grasp while making adjustments as new sensory data is collected? Tactile sensor data and
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visual data seem like the right sensory modalities for robotic grasping, but visual information

is often occluded by the hand during robotic grasping and tactile data is still often incredibly

sparse and noisy. How exactly should a robot interpret and react to sensory information while

executing a planned robotic grasp is an open question.

In the past roboticists have dealt with this complexity by limiting the scope in which the robotic

system was expected to operate, and by encoding common sense knowledge in heuristics. To make

perception easier, constraints are placed on what sort of objects will be interacted with, assumptions

are made about where they will be placed, and object geometry is provided ahead of time. These

constraints allow heuristic methods to work; when you can assume an object on the table is a cylinder

of given dimensions, it is much easier to write code for a cylinder detector, than for a general purpose

object recognition system. The heuristic, or short cut, is to assume everything is a cylinder. This

heuristic works great, as long as the constraint, that everything on the table must actually be a cylinder,

holds true. Even a single heuristic assumption such as this makes the design of the entire robotic

system much simpler. With objects of known geometry, planning can be be done offline ahead of

time and verified by a human. The robot’s end-effector can even be specialized for the picking up

cylinders task. Most control problems can be avoided by running open loop execution, and simply

stopping if anything out of the ordinary occurs, rather than reacting to it by adjusting how the task is

executed. This sort of setup has been incredibly valuable for automating warehouses and factories.

We have made robotic systems complete useful work by constraining the scope of what they are

designed to accomplish, and by encoding the relevant prior knowledge in the form of heuristics.

1.2 Problem Statement

Our problem statement can be formulated as follows:

Robotic grasping systems suffer from high dimensionality in terms of everything; workspace

arrangements, lighting conditions, grasp postures, encountered objects, difficult to ground semantics,

etc... To cope with this complexity, researchers have developed heuristics based hand crafted

systems and apply strong constraints regarding what conditions a system can operate in. These

heuristic methods are prohibiting robotic systems from operating outside of controlled lab and factory
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conditions where the required hard constraints hold true.

Our Approach

1) Generate massive simulated datasets of 
prior experience

3) Utilize prior experience to accomplish 
tasks in the real world. 

2) Find creative representations to 
efficiently encode prior experience within  

Figure 1.2: Overview of the general approach to robotic grasping from this thesis: Simulate large

amounts of prior experience, find good representations for the simulated data, and utilize this stored

prior experience at runtime.

There is a need to provide robotic systems with knowledge about a wide variety of environments

and objects in order to allow them to operate outside of controlled environments. It is not feasible

for roboticists to hand-craft code for every sort of situation a robotic system could find itself in as

we currently do now. Rather than implicitly embedding common sense knowledge in handcrafted-

heuristics, this thesis looks at how data driven systems can be developed to operate in a wide variety

of situations and to modify behaviour based on the data the system was provided. This allows the

behavior of the system to adapt when different training data is used rather than requiring code to be

rewritten. Gathering training data by running a robotic system in large numbers of new environments

is time consuming, expensive, and dangerous. To avoid these problems, the data driven systems in

this thesis are all developed using simulated data. The use of simulation allows for the quick, easy

creation of massive datasets with data for unique environments and many possible situations. This

thesis also explores how to encode the information within this datasets into deep neural networks

and other data structures to allow this information to be leveraged quickly and efficiently by the

robotic system at runtime. An overview of our general approach to simulate, represent and utilize
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prior experience is given in Figure 1.2.

Thesis Contributions

The purpose of this thesis is to create a robust framework for robotic grasping that is data driven

and made effective by leveraging simulation to create massive datasets which are then distilled in

an effective manner using tools such as a deep learning so that the information can be utilized at

runtime. The goal is to aggressively avoid encoding assumptions about the environment and tasks to

be accomplished with handcrafted heuristics. The main contributions of this thesis are broken into

four chapters as overviewed below:

1.2.0.1 Multi-Fingered Robotic Grasp Planning:

A grasp planner trained with synthetic data whose prior experience is distilled into a CNN. This

demonstrates that a grasp planner for a multi-fingered robotic hand can be trained using simulated

data to detect good hand configurations based on prior experience. The CNN is used at runtime

to generate affordance maps showing where good palm and fingertip locations exist in the scene.

These affordance maps are used by a simulated annealing grasp planner to plan stable robotic grasps.

Contributions from this section will include:

1. A framework for generating synthetic image patches from simulated robotic grasps that can be

used to train a system to recognize good fingertip and palm locations.

2. A data driven grasp planning algorithm for GraspIt!’s simulated annealing planner that learns

to recognize good palm and fingertip locations and detect good robotic grasps based on prior

experience.

1.2.0.2 Shape Completion Enabled Robotic Grasping:

A novel shape completion algorithm to enable robotic grasping by reasoning about occlusion. In

this chapter, nearly half a million synthetically rendered depth images are used to train a 3D CNN to

reason about object geometry. This system is able to generalize these examples to reason about novel

objects as well. The CNN can be used fill in occluded regions of a scene to enable grasp and motion

planning. Contributions from this section will include:



CHAPTER 1. INTRODUCTION 6

1. A 3D CNN architecture, and method for training the CNN to reason about 3D geometry and

occlusion.

2. A training data pipeline for generating voxel grids of partial views of mesh models aligned

with voxel grids representing the ground truth occupancy of the respective mesh.

3. A framework for utilizing the trained CNN to fill in occluded regions of a robotic workspace

and enable a grasp planner to act of the predicted geometry of an object to be grasped.

1.2.0.3 Fused Visual-Tactile Object Refinement:

A framework for the integration of depth and tactile sensory information into a unified hypothesis of

an object’s geometry. Here, synthetic depth renderings of objects are paired with simulated tactile

contact information to train a CNN to use multi-modal sensory data to reason about 3D occupancy.

This is challenging due to the sparse nature of tactile data. The contributions from this section will

be:

1. A pipeline for generating synthetic depth and tactile information of robotic grasps.

2. A 3D CNN architecture and method for training the CNN to reason about 3D geometry and

occlusion by utilizing both tactile and depth information.

3. A framework for the integration of tactile and depth sensory information into a unified

hypothesis of an object’s geometry during exploratory robotic actions or grasp execution.

1.2.0.4 Workspace Aware Online Grasp Planning:

A workspace representation that allows a grasp planner to be guided by a learned notion of what

grasp configurations are reachable. Offline, in simulation, half a million inverse kinematic(IK) checks

are made to determine workspace reachability. This data is used to build a signed-distance field

representation of the workspace which can be used to speed up grasp planning. The contributions

from this section will be:

1. A novel representation of reachability space using a signed-distance field (SDF) to provide a

gradient field during grasp planning.
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2. An online grasp planning system with an integrated notion of reachability.

3. A method for embedding obstacles into the reachability space online during grasp planning.

These four chapters highlight several different robotic subtasks where we are able to move from

heuristic based methods to data driven approaches. The data driven approaches here are powered by

simulated data efficiently embedded in priors, CNN’s, and signed distance fields for efficient use at

runtime. The robotic systems here learn to accomplish robotic grasping rather than being hardcoded

to execute robotic grasps.
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Chapter 2

Related Work

This chapter starts with an overview of several related works in the fields of simulation and deep

learning. A full overview of these areas is well outside the scope of this thesis, but I will highlight

several recent works and discuss how these fields are impacting the way robotic grasping systems are

built. Our improved ability to simulate robotic systems makes it possible to produce large amounts

of training data for various robotic tasks. Deep learning is becoming the mechanism to encode this

simulated data in a manner that can be accessed and used efficiently at runtime.

Section 2.2 discusses various strategies for modeling a robot’s self and its surroundings. A

common initial step to robotic grasping is to model the object to be grasped, and to make predictions

about it’s full geometry in the face of occlusion. Several strategies for this geometric reasoning from

visual observations are overviewed. In addition, this section covers notions of workspace reachability.

Robotic systems can often be sped up if information about what areas of their workspace can be

feasibly reached is cached in a useful way.

Section 2.3 overviews different grasp planning paradigms. These methods all produce a planning

goal, or a desired hand object configuration. Most of these approaches only consider the relationship

between the hand and the object, leaving reasoning about reachability to be done at a later time.

Finally, Section 2.4 covers related works for incorporating sensory feedback into the grasping

process. This feedback often comes in the form of tactile and visual sensory observations.
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2.1 Fast Moving Fields Related to Robotic Grasping

2.1.1 Simulation

Figure 2.1: Renderings from the Embree high-performance ray tracing kernels, developed at Intel. It

is becoming increasingly difficult to discern synthetic images from real ones.

Figure 2.2: SceneNet desk layouts automatically generated via simulated annealing. Realistic

simulated environments to train robotic systems can be generated without human hand crafting.

The ability to use synthetic images to train perception systems is quickly maturing due to improved

renders such as Embree[Woop et al., 2013], and algorithms for generating realistic scenes such as

SceneNet[Handa et al., 2015]. Several example images rendered using Embree are shown in Figure

2.1, and Figure 2.2 shows how environments can be automatically laid out using Scenenet. Simulation

of visual data has been used to create perception systems for the Amazon Picking Challenge (APC)

[Wurman and Romano, 2015][Mitash et al., 2017][Rennie et al., 2016]. With these systems, it

is possible to render massive amounts of realistic labeled data offline that can be used to train a

perception system to recognize objects, segment scenes, and reason about occlusions. The ability to

leverage simulation in order to enable robotic vision systems is just getting interesting. Systems like

OpenAI[Brockman et al., 2016] and Microsoft’s AirSim are allowing agents to stream data from

virtual environments that at first glance is difficult to discern from "Real World" data.
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Figure 2.3: Domain randomization training and test renderings from [Tobin et al., 2017]. The system

is trained on such a wide variety of conditions, that at test time no additional training is required to

work on real sensory data.

An ability to synthetically render large amount of realistic images is incredibly useful for

developing robotic perception system. Despite its utility, these powerful rendering tools do not help

with the development of new planning algorithms or the training of new grasp execution policies.

These problems require a robotic simulator that is true enough to reality that a system trained within

it also works well in the real world. This way the results from a new planner, and new policies for

grasp execution can be evaluated at scale in simulation. Grasping simulators have been around since

the early 2000s [Miller and Allen, 2004]. Current popular simulators include GraspIt! [Miller and

Allen, 2004], Klampt[Rocchi et al., 2016], Gazebo[Koenig and Howard, 2004], VREP[Rohmer et al.,

2013], OpenRave[Diankov and Kuffner, 2008], OpenGrasp[León et al., 2010], MuJoCo, DartSim,

and Bullet.

While robotics simulators and rendering engines have been incredibly successful in enabling

vision-based robotic agents. It is just becoming possible simulate other sensory information especially

related to sustained contact between rigid bodies at a level that is accurate enough to simulate robotic

manipulation tasks. Until very recently, it was not possible to simulate tactile, or force torque

sensory data as the underlying models of how contact occurs were not accurate enough in the

robotic grasping situations we are interested in. The simulations would often become unstable, or

exhibit large amounts of jitter whenever an object was caged by a robotic hand. As our simulators
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have improved, different research groups continue to explore enabling grasping systems via more

dynamics simulation with several examples including [Kappler et al., 2015][Veres et al., 2017][Dang

et al., 2011] [Johns et al., 2016].

In addition, recent works have begin to further explore how to train systems that are agnostic

to whether or not the data they are fed in is simulated or real. In [Tzeng et al., 2015], a CNN is

trained with multiple loss terms to predict an end effector’s location. The additional loss terms ensure

that the system, while trained in simulation, performs well on real data. The domain randomization

approach taken in [Tobin et al., 2017] and shown in Figure 2.3 ensures that the trained system has

been exposed to such a wide variety of environmental conditions and textures, that real-world sensory

data is nothing out of the ordinary to the trained system.

2.1.2 Deep Learning

Figure 2.4: Imagenet Examples.

Imagenet is a challenge that evaluates algorithms for object localization and detection from images

and videos at scale. Figure. 2.4 shows several example images from the classification competition.

In 2012, Imagenet was won by the SuperVision team using a Convolutional Netural Network (CNNs)

[LeCun and Bengio, 1995]. Again in 2013, the competition was won by Clarifai using a similar

CNN based approach. Since then, deep learning has become an increasingly popular way to build

powerful classifiers with applications to a wide variety of areas including computer vision, audio
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processing, and natural language processing.

With an eye towards robotics many of the RGB image processing approach have been adapted

to the RGB-D domain, for example the per pixel segmentation of [Couprie et al., 2013], and more

recently, this work was further improved with the Fully Convolutional Network (FCN) from [Long et

al., 2015].

Figure 2.5: Semantic Fusion creates semantically labeled SLAM maps via an FCN.

These technique has already begin to be ported over to robotics. The per pixel classification

algorithms are being paired with SLAM to create rich semantic maps for robot navigation [McCormac

et al., 2016]. These approaches are also used by teams involved in the Amazon Picking Challenge

[Zeng et al., 2016]. These convolutional methods are also being used to enable grasp planning and

execution as discussed further in the sections below.

2.2 Representations of Robotic Workspaces

2.2.1 Reasoning about Object Geometry with Vision

Once a robotic system has segmented out the points related to the visible portion of an object, and it

can be helpful to reason about the occluded regions of the object. There has been a large amount of

work in object modeling. Prior approaches followed two main schools of thought. Either instance

recognition which often involved a database of objects to be detected in the scene. These approaches
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usually take advantage of some variant of RANSAC or ICP [Papazov and Burschka, 2010]. The

second school of thought belongs to more general completion heuristics, these often involve finding

axes of symmetry or axes of extrusion and using those to complete the object [Quispe et al., 2015].

The instance based methods tended to be limited to at most tens of objects and fail to translate

to novel objects. The general completion methods fail on objects more complicated than simple

geometric primitives.

Since 2016, more advanced data driven techniques using machine learning have developed both

to reason about occluded geometry, and to localize known objects. In [Firman et al., 2016] a Random

Forrest approach is used to generate a voxel grid of the full scene given a voxelized grid of the scene

as shown from a single perspective. A similar approach was taken by [Song et al., 2016] where a 3D

CNN was used to decide whether occluded voxels were occupied or not. In [Zeng et al., 2016], a 3D

CNN is used to estimate the poses of APC objects.

2.2.2 Reasoning about Workspace Reachability

A 2016 review of the Amazon Picking Challenge (APC) [Correll et al., 2016] explicitly highlighted

the fact that many teams opted against online grasp planning. This was due in part to the fact that

grasp planning metrics typically ignore the notion of reachability, a large percentage of the planned

grasps end up being unreachable and not useful for the robot. Hence, an extra computational step is

required to check each of the planned grasps for reachability; a top performing APC team [Hernandez

et al., 2016] uses this post-check solution which shows that this limited partial solution is built into

even competitive systems. This post-check solution has a number of drawbacks: first, the post-

processing check for reachability might not contain any reachable grasps which implies that the entire

grasp planning process has to be repeated. Another closely related problem with post-reachability

checking is that more time is incurred when replanning grasps that fail the reachability test stage.

Also, many systems, such as those in APC, are highly tuned to specific use-cases which do not

generalize well especially when the grasping environment changes in small ways.

Many grasp planning platforms such as GraspIt![Miller and Allen, 2004], OpenRave[Diankov

and Kuffner, 2008], and OpenGrasp[León et al., 2010] only consider properties specific to the end-

effector during grasp planning. Given the hand description and the object, these platforms compute

grasp quality for different hand-object configurations using metrics such as force/form closure and
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return the best quality grasps found. These approaches ignore reachability of the resulting grasp

as often the arm is not even modeled in the simulator, and leaves the burden of verifying the grasp

outputs to the subsequent stages of robotics applications. Miller etal. [Miller et al., 2003] paper

mentions the concept of arm reachability in grasp planning but does not discuss any details neither

does it explicitly input reachability as an optimization objective in grasp planning.

An early example of a reachability space is demonstrated in [Berenson et al., 2007]. In their

work, they use an "Environment Clearance Score" to guide grasps away from obstacles in the

robot workspace. The same work introduced the idea of "Grasp-scoring function" which uses an

approximate kinematics of the robot to score a grasp.

The concept of offline reachability analysis exist in the literature [Vahrenkamp et al., 2009]

[Porges et al., 2014]. However, most of this work uses offline precomputed grasps.

[Haustein et al., 2017] has recently looked at combining grasp planning and motion planning.

Their method uses a bidirectional search approach to randomly sample grasp candidates in one

direction and sample arm trajectories in the opposite direction till a connection is made to form a

hand grasp/arm trajectory pair.

2.3 Grasp Planning Paradigms

There is a significant body of work related to grasp planning with incomplete sensor data as well

as different metrics for generating grasps for known objects for which we overview here while also

referring the reader to [Bohg et al., 2014]. Trade offs in these different grasp planning approaches

include considerations such as planning speed, whether the object geometry must be known ahead of

time, whether the target object’s geometry will be modeled at all, the sophistication of the end-effector,

and constraints on allowed approach directions.

2.3.1 Simulated Annealing Grasp Planning

One common approach to grasp planning is to anneal through a search space. A point in the space

represents a specific hand-object configuration. Different heuristics related to force closure can be

used to evaluate points within this space, and simulated annealing can be used to navigate towards

strong local minima which represent stable grasp locations. This approach is well represented in
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[Ciocarlie et al., 2007] where the eigen-grasp dimensionality reduction technique is used to reduce

the size of the search space and allow the planner to quickly arrive at good grasp configurations.

2.3.2 Data Driven Grasp Planning

In the approach taken by [Goldfeder et al., 2009b][Goldfeder and Allen, 2011], a grasp planner such

as the simulated annealing planning approach from the previous section plans grasps that maximize a

given quality metric offline to generate grasp for known 3D objects. Then, when attempting to grasp

an object in a scene, the scene is segmented, and the segmented object’s closest model is found in the

database and the precomputed grasps from the closest matching model are used on the new object.

This approach works reliably when the object to be grasped can easily be segmented out of the scene

and is not markedly different than models in the database, but it is difficult to fine tune a retrieved

grasp with this system especially when the full geometry of the object is unknown. Other related

works in this area include [Detry et al., 2013][Kopicki et al., 2014].

2.3.3 Deep Learning for Parallel Jaw Grasp Planning

Figure 2.6: The grasping rectangles approach from [Lenz et al., 2014]. A CNN is trained to recognize

good grasping positions for a parallel jaw gripper approaching from above.

In another approach [Lenz et al., 2014][Lenz et al., 2015] [Jiang et al., 2011] [Johns et al., 2016]

[Pinto and Gupta, 2015] the grasping system learns grasps for a parallel jaw gripper from labeled

images. The labels consist of rectangles with two of the edges representing where the gripper should

be placed as shown in Figure 2.6. The grasping rectangles approach was a successful adaptation

of the CNNs from Imagenet to robotic grasping for the Baxter robot. This approach, while able to
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learn arbitrary grasp types based on whatever training data is given, is not easily extensible to more

complicated robotic hands and only allows grasps to be planned from above. This approach has

been thoroughly researched, and more recently several groups have successfully explored generated

training data for these systems entirely in simulation [Kappler et al., 2015] [Johns et al., 2016].

2.3.4 Fingertip Space and Precision Grasp Planning

Figure 2.7: The hierarchical fingertip space from [Hang et al., 2014]. A grasp planner anneals

through the different levels of the fingertip space, from a coarse to a fine-tuned hand configuration.

The concept of a Fingertip Space and an efficient algorithm for producing stable grasps within this

space has been proposed by a number of researchers including [Hang et al., 2014][Rosales et al.,

2011][Lin and Sun, 2015]. For example, [Hang et al., 2014] can synthesize precision grasps as long

as the observed parts of the object are graspable as shown in Figure 2.7. This stands in contrast to

work in this thesis where information about the observed parts of the object is supplemented with

knowledge gained from prior grasps generated on known objects.

2.4 Incorporating Sensory Feedback

The idea of incorporating sensory information from vision, tactile and force sensors has been around

for a long time [Miller and Leibowitz, 1999]. Despite the intuitiveness of using multi-modal data,

there is still no agreed upon framework to best integrate multi-modal sensory information in a way

that is useful for robotic manipulation tasks. In this thesis, we are interested in reasoning about object

geometry and grasp stability in particular.
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2.4.1 Tactile Geometric Refinement

Several recent uses of tactile to improve estimates of object geometry has focused on the use of

Gaussian Process Implicit Surfaces(GPIS) [Williams and Fitzgibbon, 2007]. Several examples along

this line of work include [Caccamo et al., 2016][Yi et al., 2016] [Bjorkman et al., 2013][Dragiev et

al., 2011][Jamali et al., 2016][Sommer et al., 2014][Mahler et al., 2015]. This approach is able to

quickly incorporate additional tactile information and improve the estimate of the objects geometry

local to the tactile contact or observed sensor readings. There has additionally been several works

that incorporate tactile information to better fit planes of symmetry and super quadratics to observed

pointclouds [Ilonen et al., 2014][Ilonen et al., 2013][Bierbaum et al., 2008]. These approaches work

well when interacting with objects that confirm to the heuristic of having clear detectable planes of

symmetry or are easily modeled as super quadratics.

2.4.2 Continuous Geometric Refinement

There has been successful research in utilizing continuous streams of visual information similar to

Kinect Fusion[Newcombe et al., 2011] or SLAM[Thrun and Leonard, 2008] in order to improve

models of 3D objects for manipulation. One example being [Krainin et al., 2011b][Krainin et al.,

2011a] In this work, the authors develop an approach to building 3D models of unknown objects based

on a depth camera observing the robot’s hand while moving an object. The approach integrates both

shape and appearance information into an articulated ICP approach to track the robot’s manipulator

and the object while improving the 3D model of the object. Similarly [Hermann et al., 2016] attaches

a depth sensor to a robotic hand, and plans grasps directly in the sensed voxel grid as shown in Figure

2.8. The use of a voxel grids rather than meshes significantly speeds up the grasp planning process

and the representation lends itself more naturally to GPU programming and allows the system to

quickly incorporate new observations. These approaches improve their models of the object using

only a single sensory modality, but from many time points.
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Figure 2.8: The grasp planner from [Hermann et al., 2016] operates directly on a voxel grid rather

than mesh of the object, this allows for incredibly fast planning on a GPU.

2.4.3 Grasp Stability Estimation

There has been a massive amount of work related to producing analytical definitions of grasp stability

which are well reviewed in [Roa and Suárez, 2015]. More recently the applicability of analytical

approaches to stability analysis has been debated. With [Weisz and Allen, 2012] demonstrating

uncertainty in the pose of the object in relation to the hand can cause planned grasp quality measures

to correlate poorly with executed grasp quality. [Krug et al., 2016] has shown that while the planned

grasp quality measure may not correlate with the executed grasp quality, the executed grasp quality

can be accurately estimated and predict the success of lifting an object when using tactile sensors to

localize the true contact locations.

In addition to the analytical definitions of grasp stability, there has also been a large number of

data-driven approaches utilizing sensory data to predict whether a grasp will result in a successful

lift. These approaches do not explicitly reason about the hand-object configuration. Several recent

notable examples of these works include [Cockbum et al., 2017][Madry et al., 2014][Dang and Allen,

2014][Levine et al., 2016].
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Chapter 3

Heuristic Grasping

In this chapter, the robotic grasping system used in the Columbia University Robotics Lab prior

to the contributions of this thesis is overviewed, highlighting both some of the systems strengths

and its weaknesses. This robotic system is highly representative of many robotic systems at various

labs around the world. Most labs have an equivalent system in place, while research is conducted

to improve a portion of the framework whether it is the introduction of a new perception algorithm,

a new grasp planner, or a new control policy for grasp execution. A high level overview of the

Columbia setup is shown in Figure 3.1, and discussed in the following sections.

3.1 Perception

Our workspace consists of a table on which objects to be manipulated are placed. Augmented Reality

(AR) tags are fixed to the table at a known position and orientation relative to the base of the robot.

When the tags are viewed by the camera, we are able to determine the series of transformations that

relate the robot to the table, and the table to the camera. In order to perceive objects, the pointcloud

from the camera was converted into the table’s frame of reference, and the points that were part of or

below the table were removed via a pass through filter. This process leaves all the points associated

with objects sitting on the table in a new filtered cloud while removed all other points. This cloud

was then passed to a RANSAC based method from [Papazov and Burschka, 2010]. This CUDA

based method detects mesh models from pointclouds using a database of mesh models, it outputs the

names and poses of detected meshes.
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4) Grasp Planning 5) Reachability Checking 

Planning

1) Detect table with AR 
tags

2) Pass Through Filter 3) RANSAC based 
Object Detection Perception

6) Guarded Approach to 
Grasp with FT sensor

7) Tactile Post-Grasp 
Adjustment Execution

Figure 3.1: A robotic grasping framework representative of the setup in many labs. The Perception

component segments out and reasons about the geometry of an object to be grasped. The Planning

component includes both grasp and arm-motion planning. The Execution component realizes the

planned grasp, and incorporates sensory feedback.
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The method required a relatively uncluttered work environment resting on a table in order for the

initial pass through filter to work. The RANSAC recognition database approach works incredibly

well as long database contained around 5-10 mesh models. If more meshes were loaded in it, the

system would either run out of memory or would quickly begin to hallucinate objects everywhere

and provide nonsensical results. This meant that our system was unable to handle novel objects, and

unable to handle more than a handful of objects even if they were known ahead of time.

3.2 Grasp Planning

Once the objects in the scene have been detected, all the detected objects, as well as a model of the

table are loaded into GraspIt!. A target object to be grasped is then selected either programmatically,

or by a human user. A set of precomputed grasps for the target object would be retrieved from the

Columbia Grasp Database. These grasps would be ranked based on their ability to resist external

forces and torques using Graspit. Then the list of grasps would be traversed in order checking for

reachability using MoveIt!. If no reachable grasps were found, then GraspIt!’s Online Simulated

Annealing planner would be run in order to plan additional grasps.

Another common problem with the RANSAC based approach for recognizing objects was that

it would often detect roughly symmetrical objects as upside-down. This made it very difficult to

precompute semantically meaningful grasps as objects were often detected in poses that, while

aligned somewhat well with the pointcloud of the scene were very incorrect. For example a mug

detected as upside down could still overlap a lot with a right-side up mug, but the way the robot

should plan to interact with these two objects is very different. This flip in orientation would place

any useful grasps that should be approaching the object from above as approaching the upside object

from below and would be invalid due to collisions with the table. In addition, whenever the online

planning method had to be used, it was significantly slower than other components of the grasping

pipeline taking 20 seconds to plan a grasp. These grasps were planned using the Contact and

Potential Energy Function within GraspIt!. This heuristic, while a reasonable proxy for grasp stability

has no notion of semantics, meaning it often produced grasps that while potentially stable would

prohibit the system from accomplishing any further task with the grasped object.
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3.3 Grasp Execution

Once a reachable grasp was found, it would be executed. This grasp execution process would

incorporate minimal feedback from the attached Force Torque Sensor, and tactile sensors on the hand.

The move of the hand towards the object, was guarded, and would stop prematurely if contact was

registered via the Force Torque Sensor. Additionally, work has been done to utilize the tactile sensor

on the hand. Once a grasp was completed, the tactile sensor values would be used to determine if the

current grasp was stable, and update the grasp posture if the current configuration was found to be

unstable [Dang and Allen, 2014].

The largest weakness in this grasp execution process is the lack of feedback. The only use of the

Force Torque sensor is a simple heuristic to stop the hand from directly knocking over the object. The

only use of the tactile sensors is to evaluate each grasp after it has been executed and to determine if

an adjustment needs to be made as opposed to incorporating tactile feedback during the grasping

process. In addition, there is no visual feedback of any kind.

3.4 Where is the Common Sense?

We argue that this current system does has common sense, or access to prior experiences that it

can utilize to assist in perceiving, planning for, and acting in the system’s environment. Much

of the system’s common sense exists in hard-coded heuristics which only operate under certain

conditions. For example, the perception system requires a constraint that the objects are all resting on

a table. When this constraint is satisfied, it allows for the use of a heuristic to remove uninteresting

points from the pointcloud, the pass through filter. For grasp planning, constraints include the

assumption that the objects are rigid bodies with uniformly distributed mass. This constraint allows

us to use GraspIt!’s Eigen Grasp planner which computes grasp quality metrics dependent on these

assumptions using heuristic estimates of a given grasps ability to resist external disturbances.

Over the course of this thesis we will aggressively work to remove these hard-coded heuristics

and move from the system shown here towards a grasping system that has common sense in the

form of data-driven representations powered by simulation. This means that they are adaptable to

new situations and can have their behaviour changed by introducing new data rather than having to

rewrite any code. They also represent case studies in how large amounts of simulated data, which is
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much cheaper to collect that real data, can be leveraged to make robotic systems work in the real

world. These large bodies of simulated data distilled into CNN’s, Signed Distance fields, and other

representations compose the systems common sense, the prior experiences on which it relies when

operating in new situations.

For example, we will show in later chapters how the RANSAC-based perception algorithm can

be replaced with a CNN trained to accomplish shape completion. This new approach is able to handle

novel objects, as well as hundreds of different objects rather than 5-10. Also, the performance of the

CNN is modified by changing its training data rather than rewriting any code. We will demonstrate

how we can use an additional CNN during the grasp planning stage to encode notions of stability

as well as knowledge of what a good grasp looks like rather than explicitly computing heuristics

related to stability. This thesis will also show how a learned notion of reachability can further speed

up online planning time and move the planners attention to regions of the workspace that are feasible.

In addition, this thesis will demonstrate how simulated tactile and depth information can be used to

improve the systems model of the environment during grasp execution providing valuable feedback

about the environment.
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Chapter 4

Multi-Fingered Robotic Grasp Planning

This chapter presents a system relying on deep learning methods to generate grasps for objects that

may or may not have been seen before and whose current full geometry is unknown. The proposed

system uses a Convolutional Neural Network to quickly calculate grasp affordances such as force

closure [Ferrari and Canny, 1992] directly from RGBD images. These methods make our system

efficient, allow the use of a large context window for determining grasp quality, and enable the

system to generalize precomputed grasps for known models to novel 3D objects.

The proposed approach involves training a deep learning network on thousands of quality grasps

generated using known object models from BigBIRD[Singh et al., 2014], the Berkeley Instance

Recognition Dataset. Training grasps are generated in an environment where the full object geometry

is known using GraspIt![Miller and Allen, 2004], a grasp simulator. For each grasp, the locations

of the fingertip positions and palm are recorded along with the grasp quality score representing the

stability of the given grasp for this known environment. Then, RGBD images of the grasp can be

rendered, and RGBD image patches centered on the fingertip and palm locations can be extracted.

These patches paired with the recorded grasp quality score are used to train a deep network to

recognize stable fingertip and palm locations for different canonical grasp types directly from RGBD

images.

At runtime, an RGBD image and a pointcloud for a scene are generated from a single point of

view. The pointcloud is segmented and meshes are created for the segmented objects. Since the

pointcloud was generated from a single view, these meshes are incomplete, and represent only the

faces of the object that were visible to the camera. At the same time that the pointcloud is processed,
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Figure 4.1: Overview of the grasp training data generation stages. Initially, a large number of grasps

are generated offline using GraspIt!’s simulated annealing planner. These grasps, are then labeled

with a grasp type. Only the 8 most common grasp types are kept. These canonical grasp examples

are rendered in Gazebo, and image patches around the finger tip and palms are extracted.

the RGBD image passes through the deep learning network in order to generate heatmaps or dense

per pixel labels revealing how well every location in the image would act as a fingertip or palm

location for a number of different canonical hand configurations. The incomplete meshes are then

imported into GraspIt!, and Simulated Annealing is run to find stable grasps that align well with the

visible portions of the mesh model to be grasped, and whose fingertips and palm positions project

into low energy locations in the heatmaps produced by the deep network.

4.1 Grasp Training Data Generation

The generation of training data is a multi-stage process. Grasps are generated in GraspIt! using

complete object models. The locations of the palm and fingertips for grasps in prototypical hand

configurations are saved along with the energy of the given grasp. RGBD images of these palm and

fingertip locations are then captured in simulation, and patches around these locations are saved. An

overview of the data generation process is shown in Figure 4.1.

4.1.1 Grasp Generation

Training of the grasp generation system required the generation of quality grasps on known objects.

In order to generate these grasps, models from BigBIRD, the Berkeley Instance Recognition Dataset,

were uploaded into GraspIt!. The dataset contains mesh models for approximately 125 everyday

objects. Several of the models had large holes due to transparent regions and were not used as valid

training grasps could not be generated for them. In GraspIt! each model was uploaded along with a

Barrett Hand model as shown in Figure 4.2. From each object, points were chosen uniformly over
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Figure 4.2: Barrett Hand with virtual contacts shown in red. The hand has 7 joints, but only 4 degrees

of freedom. The virtual contact points are used within GraspIt!’s simulated annealing planner, where

a grasp’s quality is dependent on how close these points are to a target object, and how well aligned

they are to the surface of the object.

the mesh surface and GraspIt!’s Simulated Annealing planner ran for 30 seconds at a time seeded

over the chosen points on the object. For the grasp data generation, GraspIt!’s Contact and Potential

Energy function was used to score the generated grasps. The Potential Energy function ensures that

the generated grasps exhibit force closure. Only the grasps with low-energy quality scores below

a threshold were kept. This generated 41,708 grasps with quality scores below our threshold to be

used for training.

4.1.2 Grasp Type Labeling

The generated grasps were then categorized into different grasp types based on the 7 joint values

and the roll of the wrist. Each joint value of the hand and the wrist roll were given nBins = 5 bins.

This provided nBinsnJoints = 58 = 390, 625 different grasp types. The grasp type is simply an

integer between 0 and 390,624 that is determined by the coarse configuration of the hand. The exact

formulation is given by:

grasp_type =
nJoints−1∑

i=0

bin(joint[i]) ∗ nBinsi (4.1)

4.1.3 Grasp Type Reduction

The vast majority of the above grasp types had no grasp examples. For instance, the grasp type

corresponding to the hand being completely open never results in a stable grasp. Only the n = 8
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Figure 4.3: Image patches extracted from a grasp on an All brand detergent bottle. The center of

each image patch corresponds to where the palm and fingertips from the grasp project into the image

plane. These for images will be used to train a CNN to recognize good palm and image locations for

the canonical grasp type associated with this grasp.

Figure 4.4: The four image patches and associated label vectors for a single grasp with energy e. The

enery is used in the label vector as a one-hot encoding.
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Layer 1 2 3 4 5 6 7 8

Stage conv + pool conv + pool conv conv conv full full full

# channels 96 256 256 256 256 1000 100 f ∗ n

Filter Size 11x11 3x3 3x3 3x3 3x3 - - -

Filter Stride 2x2 - - - - - - -

Pool Size 2x2 2x2 - - - - - -

Pool Stride 2x2 2x2 - - - - - -

Input Size 480x640 118x158 58x78 56x76 54x74 52x72 52x72 52x72

Table 4.1: Architecture for the model. The final number of channels in the final stage is the number of

grasp types (n) multiplied by the number of interest points on the hand (f) i.e the palm and fingertips.

Pooling refers to max pooling.

most common grasps types were kept as the set of canonical grasps. The set of 41,708 quality grasps

from above contained 3,770 grasps of the 8 most common grasp types. The number of examples per

grasp type was no longer sufficient past the 8th most common grasp type.

4.1.4 Grasp Rendering

For each grasp, the target object was placed into Gazebo[Koenig and Howard, 2004]. The position of

the palm with relation to the object was calculated and a simulated Kinect sensor was positioned 2

meters backed off from the object along the approach direction of the hand and an RGBD image was

captured.

4.1.5 Training Patch Extraction

From each RGBD image, patches around the location of the palm and fingertips are extracted. These

training patches allow the deep learning model to learn what good fingertip locations look like for

specific grasp types, for a known object, from a specific viewing angle. Figure 4.3 demonstrates how

4 patches are generated from a single grasp of a known model.
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Figure 4.5: Deep Model with local contrast normalization (LCN), 5 convolutional layers, and 3 fully

connected layers. The input to this network is a 480x640 RGBD image. The output is a set of 52x72

heatmaps representing good palm and fingertip locations within the scene for each of the canonical

grasp types.

Figure 4.6: The output of the Deep Network can be thought of as a set of heatmaps representing how

well each location in the image acts as a fingertip (F0, F1, F2) or palm (P) location for each of the n

grasp types. At runtime, the set of four heatmaps for the canonical grasp configuration closest to the

current grasp posture will be used to determine the current hand configuration’s energy.
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4.2 Deep Learning Model

4.2.1 Training Data Labels

For each training patch, a label vector the length of the number of canonical grasp types (n) multiplied

by the number of palm and finger tip locations (f ) is created, i.e. len(label_vec) = n∗f = 8∗4 = 32

The vector contains zeros except at the entry corresponding to the grasp and finger type of the patch.

This entry is filled with the grasp quality score for the grasp that this patch was extracted from. Figure

4.4 shows how the training labels for a set of patches from the same grasp are composed.

4.2.2 Model Description

Our model was implemented using Pylearn2 [Goodfellow et al., 2013] and consists of a local contrast

normalization stage(LCN) [Jarrett et al., 2009] followed by five Convolutional Rectified Linear layers

and then by three fully connected Linear layers. The model was trained using an Nvidia GTX 780

GPU. The parameters of the model are shown in Table 4.1, and the architecture is shown in Figure

4.5. This network is small compared to networks built for the ImageNet challenge [Russakovsky et

al., 2014], which have 1000 output categories compared to our 32.

4.2.3 Heatmaps

While the model was trained on image patches of 72x72, when running it takes as input an entire

RGBD image (480x640) and outputs a label vector for every pixel in the image with the exception of

the border pixels where a full 72x72 patch is not available. The output matrix is downsampled due to

the Filter Strides and Max Pooling in the first two Convolutional Layers. This output matrix can be

thought of as a set of potentials showing how well every pixel would work as a fingertip location for

every fingertip type for each of the canonical grasp types. Figure 4.6 demonstrates how the output of

the deep learning model can be interpreted.

4.2.4 Training

The model is trained using stochastic gradient descent (SGD) with minibatches of size 20, for 151

epochs. The learning rate was .1, and an L1 term was used to induce sparsity in the weights. In

addition, small amounts of Gaussian noise was randomly added to the training patches.
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Figure 4.7: Overview of the Grasp Generation System. After an image is captured, the scene is

segmented and meshed while the heatmaps are generated in parallel. The meshed scene and the

heatmaps are used within GraspIt! to plan grasps.

4.3 Grasping from Partial Views

In order to realize a grasp of an object using the model above, several additional steps must be taken.

An RGBD image must be captured, the scene must be segmented, and meshes must be generated

for the segmented objects in the scene. Then Simulated Annealing can be run within GraspIt! on

the mesh of the scene in order to find an optimal grasp that is well aligned with the visible portions

of the object and is stable according to the deep network. An overview of this process is shown in

Figure 4.7.

4.3.1 Scene Segmentation

The system segments the point cloud associated with the RGBD image using Euclidean Cluster

Extraction [Rusu and Cousins, 2011][Rusu, 2010]. The largest plane in the pointcloud is found using

RANSAC and then removed. Euclidean clustering is then run on the remaining points, and any

objects that were previously resting on the largest plane in the scene now form separate clusters.
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4.3.2 Mesh Generation

The segmented clusters from the previous step are then meshed and the set of meshed partial objects

is returned.

4.3.3 Heatmap Generation

In parallel with the generation of the meshes, the RGBD image is sent through the deep learning

network. A given input RGBD image creates a set of f ∗ n heatmaps, one for each of the f finger

and the palm locations for each of the n canonical grasp types.

4.3.4 Grasp Planning

Within GraspIt!, the meshes are loaded into a planning scene, a partial mesh is selected for grasp

planning, and GraspIt!’s Simulated Annealing planner is started [Ciocarlie and Allen, 2009]. At

each step, the planner calculates the energy associated with the current hand configuration as a

weighted sum of a Contact Energy term and the Heatmap Energy term, both of which are described

in the following section. The grasp planner stores a list of the top grasps ranked by energy that are

calculated over a pre-specified number of iterations of the planner. At this point, either the lowest

energy grasp that is reachable can be executed automatically or a user can select a preferred grasp

from the list generated by the planner.

4.4 Grasp Energy Calculation

4.4.1 Contact Energy

The Contact Energy function makes use of Virtual Contacts, or user-specified points of interest on

the hand as shown in Figure 4.8. In our case, we spread a total of 16 virtual contacts uniformly

over the Barrett Hand. The Contact Energy metric penalizes grasps whose virtual contacts are either

distant from the object or whose normals do not align well with the object. The algorithm is fully

described in Algorithm 1. The two components come from the distance between the closest point

on the object to be grasped, and the dot product of the normalized vector extending from the virtual

contact location to the closest point on the model with the normal of the virtual contact and the hand.
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Figure 4.8: Minimizing Contact Energy is equivalent to minimizing both oi · ni and the length of oi

to stay close to and aligned with the object.

γ is used to scale how large of a contribution the alignment term makes relative to the distance term.

Two versions of the isVisible function were explored. For forward facing grasps using only the 4

virtual contacts on the palm was sufficient, while for all cases, the orientation of the vector extending

from the virtual contact to the nearest point on the mesh was compared to the vector extending from

the camera location to the same point. The sign of the dot product was used to ensure that contact

was being made on a visible face of the mesh. The Contact Energy term encourages grasps to align

well with the visible portions of the meshed object.

4.4.2 Heatmap Energy

The second component of the energy function comes from the heatmaps generated by the deep

learning network. The distance from the current hand configuration to the nearest canonical grasp

type is computed. If there are no nearby grasp types, then the Heatmap Energy is returned as a large

value implying that the current hand configuration is not well associated with any of the learned

grasp types. If there is a nearby grasp type, then the corresponding heatmaps are used to determine

the Heatmap Energy. The current locations of the palm and finger tips of the hand are projected

back into the plane of the image captured by the Kinect, and the heatmap values for the individual

fingers and the palm for the current grasp type are added to the energy score for the current hand

configuration. In addition, the distance to the nearest grasp type is multiplied by µ and added to

the energy. This penalizes grasps for moving away from the canonical hand configurations. Higher

µ values keep the hand in configurations close to the canonical grasp hand configuration. A full
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Algorithm 1 Grasp Energy Calculations

1: procedure CONTACTENERGY()

2: numVisible = 0

3: energy = 0

4: energy = 0

5: for vc in virtualContacts do

6: ip = getIntersectionPoint(vc, body)

7: if isVisible(ip) then

8: numVisible ++

9: energy += dist(vc, ip)

10: energy += γ∗ (1 - (vc.norm · ip.norm))

11: return energy / numVisible

12: procedure HEATMAPENERGY()

13: energy = 0

14: graspType, distance = getGraspType()

15: if distance > α then

16: return MAX_ENERGY

17: for vc in virtualContacts do

18: fingerType = getFingerType(vc)

19: if fingerType in [Palm, F0, F1, F2] then

20: u,v = contactToImagePlane(vc.x, vc.y, vc.z)

21: index = getIndex(graspType, fingerType)

22: energy += heatmaps[index][u][v]

23: energy += µ∗distance

24: return energy
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description of this algorithm is shown in Algorithm 1. Overall, the Heatmap Energy function favors

hand configurations where the palm and fingertips project into low energy areas of the heatmaps,

areas that the deep model has associated with stable grasps.

Real World Grasps

Scene Target Success
Scene

Seg. (s)

Mesh

Gen. (s)

Heatmap

Gen. (s)

Sim.

Ann. (s)

Total

Time (s)

All bottle All bottle yes 0.168 3.014 3.122 10.982 14.164

water bottle water bottle yes 0.159 2.977 3.141 10.471 13.612

drill drill yes 0.157 2.991 3.119 12.745 15.893

shampoo shampoo yes 0.339 3.277 3.122 12.253 15.869

tool case tool case no 0.175 3.026 3.242 14.328 17.570

crowded shampoo yes 0.181 3.307 3.127 14.328 17.816

crowded drill no 0.181 3.167 3.118 15.940 19.288

crowded All bottle yes 0.188 3.338 3.118 15.507 19.033

Success: 6/8 Average: 16.655

Table 4.2: Results of grasp attempts for varying scenes and objects. ρ = .1, µ = 10, and γ = 500

4.4.2.1 Combined Energy

The Contact Energy and Heatmap Energy terms are combined using a mixing parameter ρ as shown

in the following equation:

ρ ∗ heatmapEnergy + (1− ρ) ∗ contactEnergy (4.2)

Higher values of ρ lead to grasps where the fingertips are able to move into lower energy positions at

the expense of increasing the contact energy. It is a balance for how much a grasp should be rewarded

for aligning nicely with the visible portions of the object against how the current hand configuration

compares to the learned idea of what a stable grasp should look like.
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RGBD Input Found finger positions

L Gripper Palm R Gripper

Figure 4.9: Scene from the Grasping Rectangles Dataset. Positive grasp examples were scored +1

and negative examples -1. Red corresponds to good gripper or palm positions, and the argmax for

each heatmap is displayed in the overlaid image.

4.5 Experimental Results

4.5.1 Grasping Rectangle Dataset

In order to demonstrate the ability of the system to learn arbitrary grasp quality functions, we trained

our system on the Grasping Rectangle Dataset from [Lenz et al., 2014]. In this dataset, two of the

edges of a rectangle represent where to place the gripper. Image patches were extracted from the

center of each edge of the rectangle to represent each finger, and from the center for the palm. The

grasps were discretized based on the rotation of the rectangle, so that grasp types related to the

rotation of the wrist. The system was able to reproduce results similar to those found by[Lenz et al.,

2014]. Figure 4.9 shows an example scene with a set of heatmaps produced by the deep learning

network and the best fingertip positions found by our system.

4.5.2 BigBird Generated Dataset

Using the deep learning model trained on the BigBird dataset, grasps were generated for several

different real world scenes, and executed using a Barrett Hand attached to a StaubliTX60 robotic

arm. None of the objects in the scenes were present in the training data for the deep learning model.
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For each trial, a single RGBD image and pointcloud of the scene was captured. The Simulated

Annealing Planner was run for 10,000 steps using the Combined Energy function and the lowest

energy reachable grasp generated within that time was executed by the arm. Success was determined

by whether or not the object was contained in the hand and lifted off of the table. The total time is

generated with the following formula as the heatmap generation and scene segmentation are run in

parallel:

ttotal = max(tsegment + tmesh, theatmap) + tsim.ann. (4.3)

The results for the experiments are shown in Table 4.2. While ρ = .1 sets more weight to the Contact

Energy, the unweighted Contact Energy is smaller than the unweighted Heatmap Energy, so this

value balances the two. The experimental results demonstrate that our system is able to generalize

grasps generated on the BigBird models to these new objects. Several example grasps are shown in

Figures 4.10, 4.11, 4.12, 4.13. These experiments reveal not only that our system generalizes well,

but that it is effective in crowded scenes and with semi transparent objects. As long as some portion

of the object is visible and able to be meshed, then this system is able to generate grasps around that

portion of the object. While the current system failed to generate a stable grasps for the tool case, we

attribute this partially to the fact that very few of the objects in the training set have handles, and

none of them had horizontal handles like the tool case. For the failure case involving the drill, when

the partial mesh of the drill was created, it was missing portions of the handle. While closing, the

hand collided with a portion of the drill that had not been meshed, this is difficult to avoid, as we can

only plan trajectories and generate hand configurations that avoid collisions with portions of objects

that are meshed.

4.5.3 Comparison of Grasp Energy Components

Using a single scene, grasps were planned using Contact Energy, Heatmap Energy, and Combined

Energy to demonstrate how the different components of the Combined Energy function work in

isolation. The Contact Energy function aligns the palm to the object to be grasped, but does not

place the fingers into any specific configuration. The Heatmap Energy alone places the fingers into

positions that project into low energy locations within the heatmaps, but often finds low energy

regions of the heatmaps that are for other objects, or may be either to far into the scene, or too close

to the camera. The Combined Energy function uses the Contact Energy to ensure that the hand is near
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(a) RGB input (b) Planned Grasp (c) Palm heatmap

(d) F0 heatmap (e) F1 heatmap (f) F2 heatmap

Figure 4.10: Input scene, resultant grasp, and associated heatmaps.

(a) RGB input (b) Planned Grasp (c) Palm heatmap

(d) F0 heatmap (e) F1 heatmap (f) F2 heatmap

Figure 4.11: Input scene, resultant grasp, and associated heatmaps.
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(a) RGB input (b) Planned Grasp (c) Palm heatmap

(d) F0 heatmap (e) F1 heatmap (f) F2 heatmap

Figure 4.12: Input scene, resultant grasp, and associated heatmaps. The RGB input component

allows for a grasp to be planned on a partially transparent object.

(a) RGB input (b) Planned Grasp (c) Palm heatmap

(d) F0 heatmap (e) F1 heatmap (f) F2 heatmap

Figure 4.13: Input scene, resultant grasp, and associated heatmaps. The Contact Energy term keeps

the hand close to the object of interest, while the heatmaps pull the fingers into a stable configuration.
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(a) Contact Energy Grasps

(b) Heatmap Energy Grasps

(c) Combined Energy Grasps

Figure 4.14: Grasps calculated for the same scene using different energy functions. Top-Contact

Energy: These grasps stay close to the target object, but the energy function does nothing to

encourage any sort of grasp stability. Middle-Heatmap Energy: The energy function here pulls

the hand into configurations that often result in stable grasps, but there is nothing in the energy

function to keep the hand near the particular target object in the scene we are interested in grasping.

Bottom-Combined Energy: This energy function uses the Contact Energy term to stay local to the

object of interest, while the Heatmap Energy term pulls the hand into locally optimal configurations

similar to the training grasps.
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the target object, while the heatmap energy refines the fingertip and palm locations locally. Figure

4.14 shows several low energy grasps computed with the different energy functions.

4.6 Discussion

We have shown that traditional methods for calculating grasps on known 3D objects can be paired

with a deep learning architecture in order to efficiently estimate arbitrary grasp affordances from

RGBD images. The deep architecture can learn grasp qualities that may take arbitrarily long to

calculate on the training models enabling the use of thorough and meaningful grasp quality scores

to generate training grasps. The generated grasps can then be used to train a deep model to quickly

recognize quality grasps without explicitly calculating the grasp quality or even requiring a full 3D

model of the object to be grasped.

This chapter has shown that heuristic grasp quality functions can be replaced with a learned

notion of grasp stability encoded in a CNN. The training grasps can be produced in a variety of

ways, for example a large number of grasps can be generated offline using GraspIt! as was done here,

and going further, Mechanical Turk could be used to filter the training grasps. Where grasps that

semantically do not make sense can be removed. We have replaced a heuristic-based grasp planner

with a simulated data-driven planner whose behavior can be modified by changing the training data

rather than writing additional code.
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Chapter 5

Shape Completion Enabled Robotic

Grasping

One limitation of the heatmap-based approach from the previous chapter is that the resultant grasps

must come from roughly the direction that the camera is viewing the object from. This is because the

Contact Energy term encourages contact with the visible portion of the mesh, and these portions of

the mesh are only available from the approach direction of the camera. In this chapter, we propose a

method to fill in occluded portions of the target object’s geometry so that a planner like the one from

the previous chapter can generate grasps approaching the object from a wider variety of approach

directions.

Grasp planning based on raw sensory data is difficult due to occlusion and incomplete information

regarding scene geometry. This chapter utilizes a 3D CNN to enable stable robotic grasp planning

via shape completion. The 3D CNN is trained to do shape completion from a single pointcloud of a

target object, essentially filling in the occluded portions of objects. This ability to infer occluded

geometries can be applied to a multitude of robotic tasks. It can assist with path planning for both

arm motion and robot navigation where an accurate understanding of whether occluded scene regions

are occupied or not results in better trajectories. It also allows a traditional grasp planner to generate

stable grasps via the completed shape.

The proposed framework consists of two stages: a training stage and a runtime stage. During the

training stage, the CNN is shown occupancy grids created from thousands of synthetically rendered
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depth images of different mesh models. Each of these occupancy grids is captured from a single

point of view, and occluded portions of the volume are marked as empty. For each training example,

the ground truth occupancy grid (the occupancy grid for the entire 3D volume) is also generated

for the given mesh. From these pairs of occupancy grids the CNN learns to quickly complete mesh

models at runtime using only information from a single point of view. Several example completions

are shown in

Figure 5.1: Ground Truth, Partials, and Completions (L to R). The top four are completions of

synthetic depth images of Grasp Dataset holdout models. The mug and drill show completions of

Kinect-captured depth images of physical objects.

Figure 5.1. This setup is beneficial for robotics applications as the majority of the computation time

takes place during offline training, so that at runtime an object’s partial-view pointcloud can be run

through the CNN and completed in under a tenth of a second on average and then quickly meshed.
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During the runtime stage, a pointcloud is captured using a depth sensor. A segmentation algorithm

is run, and regions of the pointcloud corresponding to graspable objects are extracted from the scene.

Occupancy grids of these regions are created, where all occluded regions are labeled as empty. These

maps are passed separately through the trained CNN. The outputs from the CNN are occupancy grids,

where the CNN has labeled all the occluded regions of the input as either occupied or empty for each

object. These new occupancy grids are either run through a fast marching cubes algorithm[Lorensen

and Cline, 1987], or further post-processed if they are to be grasped. Whether the object is completed

or completed and post-processed results in either 1) fast completions suitable for path planning and

scene understanding or 2) detailed meshes suitable for grasp planning, where the higher resolution

visible regions are incorporated into the reconstruction. This framework is extensible to crowded

scenes with multiple objects as each object is completed individually. It is also applicable to different

domains because it can learn to reproduce objects from whatever dataset it is trained on, and further

shows the ability to generalize to unseen views of objects or even entirely novel objects. This

applicability to multiple domains is complemented by the thousands of 3D models available from

datasets such as ShapeNet[Chang et al., 2015] and the rapidly increasing power of GPU processors.

The contributions of this work include: 1) A novel CNN architecture for shape completion; 2)

A fast mesh completion method, resulting in meshes able to quickly fill the planning scene; 3) A

second CUDA enabled completion method that creates detailed meshes suitable for grasp planning

by integrating fine details from the observed pointcloud; 4) A large open-source dataset of over

440,000 403 voxel grid pairs used for training. This dataset and the related code are freely available

at http://shapecompletiongrasping.cs.columbia.edu. In addition, the website makes it easy to

browse and explore the thousands of completions and grasps related to this work; 5) Results from

both simulated and live experiments comparing our method to other approaches and demonstrating

its improved performance in grasping tasks.

5.1 Previous Approaches to General Shape Completion

General shape completion to enable robotic grasping has been studied in robotics. Typical approaches

[Bohg et al., 2011][Quispe et al., 2015][Schiebener et al., 2016] use symmetry and extrusion

heuristics for shape completion, and they are reasonable for objects well represented by geometric
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Figure 5.2: Training Data; In X, the input to the CNN, the occupancy grid marks visible portions of

the model. Y, the expected output, has all voxels occupied by the model marked.

primitives. Our approach differs from these methods in that it learns to complete arbitrary objects

based upon a large set of training exemplars, rather than requiring the objects to conform to heuristics.

A common alternative to general shape completion in the robotics community is object recogni-

tion and 3D pose detection [Rennie et al., 2016][Papazov and Burschka, 2010][Hinterstoisser et al.,

2011]. In these approaches objects are recognized from a database of objects and the pose is then

estimated. These techniques fill a different use case: the number of encountered objects is small, and

known ahead of time often in terms of both texture and geometry. Our approach differs in that it

extends to novel objects.

The computer vision and graphics communities have become increasingly interested in the

problem of shape completion. Some examples include [Wu et al., 2014][Wu et al., 2015], which

use a deep belief network and Gibbs sampling for 3D shape reconstruction, and [Firman et al.,

2016], which uses Random Forests. In addition, work by [Rock et al., 2015] uses an exemplar

based approach for the same task. Others [Tulsiani et al., 2016][Choy et al., 2016] have developed

algorithms to learn 3D occupancy grids directly from 2D images. [Li et al., 2015] uses a database of

pre-existing models to do completion.

It is difficult to apply many of these works directly to robotic manipulation as no large dataset

of renderings of handheld objects needed for robotic manipulation tasks existed until now. Also,

[Tulsiani et al., 2016][Choy et al., 2016] use pure RGB rather than the RGBD images prevalent in

robotics, making the problem more difficult as the completed shape must somehow be positioned
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Figure 5.3: CNN Architecture. The CNN has three convolutional and two dense layers. The final

layer has 64000 nodes, and reshapes to form the resulting 403 occupancy grid. The numbers on the

bottom edges show the input sizes for each layer. All layers use ReLU activations except for the last

dense layer, which uses a sigmoid.

in the scene and the process does not utilize available depth information. Most create results with

resolutions too low for use with current grasp planners which require meshes. Our work creates

a new dataset specifically designed for completing objects useful for manipulation tasks using the

2.5-D range sensors prevalent in robotics, and provides a technique to integrate the high resolution

observed view of the object with our relatively high resolution CNN output, creating a completion

suitable for grasp planning.

Our work differs from [Mahler et al., 2016] and our own related work [Goldfeder et al., 2009a],

both of which require a complete mesh to query a model database and retrieve grasps used on

similar objects. These approaches could be used in tandem with our framework where the completed

model would act as the query mesh. While grasps can be planned using partial meshes where the

object is not completed (see [Varley et al., 2015]), they still have their limitations and issues. Shape

completion can be used to alleviate this problem.

While many mesh model datasets exist such as [Chang et al., 2015], [Wu et al., 2014], and

[Xiang et al., 2014], this framework makes heavy use of the YCB[Calli et al., 2015] and Grasp

Database[Kappler et al., 2015] mesh model datasets. We chose these two datasets as many robotics

labs all over the world have physical copies of the YCB objects, and the Grasp Database contains

objects specifically geared towards robotic manipulation. We augmented 18 of the YCB objects

whose provided meshes were of high quality with models from the Grasp Database which contains

590 mesh models.
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Figure 5.4: Jaccard similarity for three CNNs, one (shown in blue) trained with 14 mesh models, the

second (green) trained with 94 mesh models, and the third (red) trained with 486 mesh models. For

each plot, while training, the CNNs were evaluated on inputs they were being trained on (Training

Views, plot a), novel inputs from meshes they were trained on (Holdout Views, plot b) and novel

inputs from meshes they have never seen before (Holdout Models, plot c).
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5.2 Training

5.2.1 Data Generation

In order to train a network to reconstruct a diverse range of objects, meshes were collected from the

YCB and Grasp Database. The models were run through binvox[Min, 2004] in order to generate

2563 occupancy grids. In these occupancy grids, both the surface and interior of the meshes are

marked as occupied. In addition, all the meshes were placed in Gazebo[Koenig and Howard, 2004],

and 726 depth images were generated for each object subject to different rotations uniformly sampled

(in roll-pitch-yaw space, 11*6*11) around the mesh. The depth images are used to create occupancy

grids for the portions of the mesh visible to the simulated camera, and then all the occupancy grids

generated by binvox are transformed to correctly overlay the depth image occupancy grids. Both sets

of occupancy grids are then down-sampled to 403 to create a large number of training examples. The

input set (X) contains occupancy grids that are filled only with the regions of the object visible to the

camera, and the output set (Y) contains the ground truth occupancy grids for the space occupied by

the entire model. An illustration of this process is shown in Figure 5.2.

5.2.2 Model Architecture and Training

The architecture of the CNN is shown in Figure 5.3. The model was implemented using Keras[Chollet,

2015], a Theano[Bergstra et al., 2010][Bastien et al., 2012] based deep learning library. Each layer

used rectified linear units as nonlinearities except the final fully connected (output) layer which used

a sigmoid activation to restrict the output to the range [0, 1]. We used the cross-entropy error E(y, y′)

as the cost function with target y and output y′:

E(y, y′) = −
(
y log(y′) + (1− y) log(1− y′)

)
This cost function encourages each output to be close to either 0 for unoccupied target voxels

or 1 for occupied. The optimization algorithm Adam[Kingma and Ba, 2014], which computes

adaptive learning rates for each network parameter, was used with default hyperparameters (β1=0.9,

β2=0.999, ε=10−8) except for the learning rate, which was set to 0.0001. Weights were initialized

following the recommendations of [He et al., 2015] for rectified linear units and [Glorot and Bengio,

2010] for the logistic activation layer. The model was trained with a batch size of 32. Each of the 32

examples in a batch was randomly sampled from the full training set with replacement.
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We used the Jaccard similarity to evaluate the similarity between a generated voxel occupancy

grid and the ground truth. The Jaccard similarity between sets A and B is given by:

J(A,B) =
|A ∩B|
|A ∪B|

The Jaccard similarity has a minimum value of 0, where A and B have no intersection and a maximum

value of 1 where A and B are identical. During training, this similarity measure is computed for input

meshes that were in the training data (Training Views), meshes from objects within the training data

but from novel views (Holdout Views), and for meshes of objects not in the training data (Holdout

Models). The CNNs were trained with an NVIDIA Titan X GPU.

5.2.3 Training Results

Figure 6.7 shows how the Jaccard similarity measures vary as the networks’ training progresses. In

order to explore how the quality of the reconstruction changes as the number of models in the training

set is adjusted, we trained three networks with identical architectures using variable numbers of mesh

models. One was trained with partial views from 14 YCB models, another with 94 mesh models

(14 YCB + 80 Grasp Database), and the third with 486 mesh models (14 YCB models + 472 Grasp

Database). Each network was allowed to train until learning plateaued; for the CNN trained on 486

objects, this took over a week. The remaining 4 YCB and 118 Grasp Dataset models were kept as a

holdout set. Results are shown in Figure 6.7. We note that the networks trained with fewer models

perform better shape completion when they are tested on views of objects they have seen during

training than networks trained on a larger number of models. This suggests that the network is able

to completely learn the training data for the smaller number of models but struggles to do so when

trained on larger numbers. Conversely, the models trained on a larger number of objects perform

better than those trained on a smaller number when asked to complete novel objects. Because, as we

have seen, the networks trained on larger numbers of objects are unable to learn all of the models

seen in training, they may be forced to learn a more general completion strategy that will work for a

wider variety of objects, allowing them to better generalize to objects not seen in training.

Figure 5.4(a) shows the performance of the three CNNs on training views. In this case, the fewer

the mesh models used during training, the better the completion results. Figure 6.7(b) shows how the

CNNs performed on novel views of the mesh objects used during training. Here the CNNs all did
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(a) Image of Occluded

Side

(b) Point Cloud (c) Segment (d) CNN Input

(e) CNN Output (f) Fast Mesh (g) Detailed Mesh (h) Grasp Planning

Figure 5.5: Stages to the Runtime Pipeline. These images are not shown from the angle in which the

data was captured in order to visualize the occluded regions. (a): An object to be grasped is placed

in the scene. (b): A pointcloud is captured. (c): The pointcloud is segmented and meshed. (d): A

partial mesh is selected by the user and then voxelized and passed into the 3D shape completion

CNN. (e): The output of the CNN. (f): The resulting occupancy grid can be run through a marching

cubes algorithm to obtain a mesh quickly. (g): Or, for better results, the output of the CNN can

be combined with the observed pointcloud and preprocessed for smoothness before meshing. (h):

Grasps are planned on the smoothed completed mesh. Note: this is a novel object not seen by the

CNN during training.
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approximately the same. Figure 5.4(c) shows the completion quality of the CNNs on objects they

have not seen before. In this case, as the number of mesh models used during training increases,

performance improves as the system has learned to generalize to a wider variety of inputs.

5.3 Runtime

At runtime the pointcloud for the target object is acquired from a 3D sensor, scaled, voxelized and

then passed through the CNN. The output of the CNN, a completed voxel grid of the object, goes

through a post processing algorithm that returns a mesh model of the completed object. Finally, a

grasp can be planned and executed based on the completed mesh model. Figure 5.5 demonstrates the

full runtime pipeline on a novel object never seen before.

1) Acquire Target Pointcloud: First, a pointcloud is captured using a Microsoft Kinect, then

segmented using PCL’s[Rusu and Cousins, 2011] implementation of euclidean cluster extraction. A

segment corresponding to the object to be completed is selected either manually or automatically and

passed it to the shape completion module.

2) Complete via CNN: The selected pointcloud is then used to create an occupancy grid with

resolution 403. This occupancy grid is used as input to the CNN whose output is an equivalently

sized occupancy grid for the completed shape. In order to fit the pointcloud to the 403 grid, it is

scaled down uniformly so that the bounding box of the pointcloud fits in a 323 voxel cube, and then

centered in the 403 grid such that the center of the bounding box is at point (20, 20, 18) in the voxel

grid. Finally all voxels occupied by points from this scaled and transformed pointcloud are marked

as such. Placing the pointcloud slightly off-center in the z dimension leaves more space in the back

half of the grid for the network to fill.

3a) Create Fast Mesh: At this point, if the object being completed is not going to be grasped, then

the voxel grid output by the CNN is run through the marching cubes algorithm, and the resulting

mesh is added to the planning scene, filling in occluded regions of the scene.

3b) Create Detailed Mesh: Alternatively, if this object is going to be grasped, then post-processing

occurs. The purpose of this post-processing is to integrate the points from the visible portion of the

object with the output of the CNN. This partial view is of much higher density than the 403 grid and

captures significantly finer detail for the visible surface. This merge is made difficult by the large
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disparity in point densities between the captured cloud and 403 CNN output which can lead to holes

and discontinuities if the points are naively merged and run through marching cubes.

Algorithm 2 Shape Completion

1: procedure MESH(cnn_out, observed_pc)

2: //cnn_out: 403 voxel output from CNN

3: //observed_pc: captured pointcloud of object

4: if FAST then

5: mesh← marchingCubes(cnn_out)

6: else

7: d_ratio← densityRatio(observed_pc, cnn_out)

8: upsampled_cnn← upsample(cnn_out, d_ratio)

9: vox← merge(upsampled_cnn, observed_pc)

10: vox_no_gap← fillGaps(vox)

11: vox_weighted← CUDA_QP(vox_no_gap)

12: mesh← marchingCubes(vox_weighted)

13: return mesh

Alg. 2 shows how we integrated the dense partial view with our 403 voxel grid via the following

steps. (Alg.2:L7) In order to merge with the partial view, the output of the CNN is converted to a

point cloud and its density is compared to the density of the partial view point cloud. The densities

are computed by randomly sampling 1
10 of the points and averaging the distances to their nearest

neighbors. (Alg.2:L8) The CNN output is up-sampled by d_ratio to match the density of the partial

view. This is performed by examining each cube of 8 adjacent original low resolution voxels, with

the centers of the voxels as the corners. The new voxels are uniformly distributed inside the cube.

For each new voxel, the L1 distance to each original voxel is computed and the 8 distances are

summed, weighted by 1 if the original voxel is occupied and -1 otherwise. The new voxel is occupied

if its weighted sum is nonnegative. This has the effect of creating piecewise linear separating

surfaces similar to the marching cubes algorithm and mitigates up-sampling artifacts. (Alg.2:L9)

The upsampled output from the CNN is then merged with the point cloud of the partial view and

the combined cloud is voxelized at the new higher resolution of (40 ∗ d_ratio)3. For most objects
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d_ratio tends to be either 2 or 3, depending on the physical size of the object, resulting in a voxel

grid of either 803 or 1203. (Alg.2:L10) Any gaps in the voxel grid between the upsampled CNN

output and the partial view cloud are filled. This is done by finding the first occupied voxel in every

z-stack. If the distance to the next occupied voxel is less than d_ratio+1 the intermediate voxels are

filled. (Alg.2:L11) The voxel grid is smoothed using our own CUDA implementation of the convex

quadratic optimization problem from [Lempitsky, 2010]. This optimization re-weights the voxels,

minimizing the Laplacian on the boundary of the embedding function F , i.e.:∫ (
∂2F

∂x2

)2

+

(
∂2F

∂y2

)2

+

(
∂2F

∂z2

)2

dV → min.

subject to the hard constraint:

∀i, j, k vijk · fijk ≥ 0

The constraint means that for all input voxels v and output weighted voxels f all occupied voxels

prior to the optimization stays occupied or on the boundary, and all unoccupied voxels remain

unoccupied or on the boundary. Again, for further details see [Lempitsky, 2010]. (Alg.2:L12) The

weighted voxel grid is then run through marching cubes.

4) Grasp completed mesh: The reconstructed mesh is then loaded into GraspIt![Miller and Allen,

2004] where a grasp planner is run using a Barrett Hand model. The reachability of the planned

grasps are checked using MoveIt![Sucan and Chitta, 2013], and the highest quality reachable grasp is

then executed.

5.4 Experimental Results

We created a test dataset by randomly sampling 50 training views (Training Views), 50 holdout

views (Holdout Views), and 50 views of holdout models (Holdout Models). The Training Views

and Holdout Views were sampled from the 14 YCB training objects. The Holdout Models were

sampled from holdout YCB and Grasp Dataset objects. We used three metrics to compare the

accuracy of the different completion methods: Jaccard similarity, Hausdorff distance, and geodesic

divergence.
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5.4.1 General Completion Results

We first compared several general completion methods: passing the partial view through marching

cubes and then Meshlab’s Laplacian smoothing (Partial), mirroring completion[Bohg et al., 2011]

(Mirror), our method (Ours). Our CNN was trained on the 484 objects from the YCB + Grasp

Dataset and the weights come from the point of peak performance on holdout models (the peak of

the red line in Figure 6.7.(c)).

The Jaccard similarity was used to guide training, as shown in Figure 5.4. We also used this

metric to compare the final resulting meshes from several completion strategies. The completed

meshes were voxelized at 803, and compared with the ground truth mesh. The results are shown

in Table 5.1. Our proposed method results in higher similarity to the ground truth meshes than the

partial and mirroring approaches for all tested views.

The Hausdorff distance is a one-directional metric computed by sampling points on one mesh

and computing the distance of each sample point to its closest point on the other mesh. The mean

value of a completion is the average distance from the sample points on the completion to their

respective closest points on the ground truth mesh. The symmetric Hausdorff distance was computed

by running Meshlab’s[Cignoni et al., 2008] Hausdorff distance filter in both directions. Table 5.2

shows the mean values of the symmetric Hausdorff distance for each completion method. In this

metric, the CNN completions are significantly closer to the ground truth than are the partial and the

mirrored completions.

The completions are also compared using a measure of geodesic divergence[Hamza and Krim,

2003]. A geodesic shape descriptor is computed for each mesh. A probability density function

is then computed for each mesh by considering the shape descriptor as a random distribution and

approximating the distribution using a Gaussian mixture model. The probability density functions

for each completion are compared with that of the ground truth mesh using the Jenson-Shannon

divergence. Table 5.3 shows the mean of the divergences for each completion method. Here, our

method outperforms all other completion methods.

Across all metrics, our method results in more accurate completions than the other general

completion approaches.



CHAPTER 5. SHAPE COMPLETION ENABLED ROBOTIC GRASPING 55

View Type Partial Mirror Ours

Training Views 0.1182 0.2325 0.7771

Holdout Views 0.1307 0.2393 0.7486

Holdout Models 0.0931 0.1921 0.6496

Table 5.1: Jaccard Similarity Results (Larger is better). This measures the intersection over union of

two voxelized meshes as described in Section 5.4.1.

View Type Partial Mirror Ours

Training Views 11.4 7.5 3.6

Holdout Views 12.3 8.2 4.0

Holdout Models 13.6 10.7 5.9

Table 5.2: Hausdorff Distance Results (Smaller is better). This measures the mean distance in

millimeters from points on one mesh to another as described in Section 5.4.1.

View Type Partial Mirror Ours

Training Views 0.3770 0.2905 0.0867

Holdout Views 0.4944 0.3366 0.0934

Holdout Models 0.3407 0.2801 0.1412

Table 5.3: Geodesic Divergence Results (Smaller is better). This measures the Jenson-Shannon

probabilistic divergence between two meshes as described in Section 5.4.1.
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(a) Partial planned (b) Mirrored planned (c) Ours planned

(d) Partial executed (e) Mirrored executed (f) Ours executed

Figure 5.6: Top Row: Planned Grasps using variety of completions methods. Bottom Row: Grasps

from the top row executed on the Ground Truth object. Notice both the partial and mirrored

completions’ planned and executed grasps differ whereas our method shows fidelity between the

planned and executed grasps.

5.4.2 Comparison to Database Driven Methods

In addition, we evaluated a RANSAC-based approach[Papazov and Burschka, 2010] on the Training

Views of the YCB dataset using the same metrics. This corresponds to a highly constrained environ-

ment containing only a very small number of objects which are known ahead of time. It is not possible

to load 484 objects into the RANSAC framework, so a direct comparison to our method involving the

large number of objects we train on is not possible. In fact, the inability of RANSAC-based methods

to scale to large databases of objects is one of the motivations of our work. However, we compared

our method to a very small RANSAC using only 14 objects, and our method performs comparably

to the RANSAC approach even on objects in its database, while having the additional abilities to

train on far more objects and generalize to novel objects: Jaccard (Ours: 0.771, RANSAC: 0.8566),

Hausdorff (Ours: 3.6, RANSAC: 3.1), geodesic (Ours: 0.0867, RANSAC: 0.1245). Our approach

significantly outperforms the RANSAC approach when encountering an object that neither method
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View Error
Completion Type

Partial Mirror Ours RANSAC

Training Joint (◦) 6.09◦ 4.20◦ 1.75◦ 1.83◦

View Pose (mm) 16.0 11.5 4.3 7.3

Holdout Joint (◦) 6.27◦ 4.05◦ 1.80◦ 1.69◦

View Pose (mm) 20.8 15.6 6.7 7.4

Holdout Joint (◦) 7.59◦ 5.82◦ 4.56◦ 6.86◦

Model Pose (mm) 18.3 15.0 13.2 29.25

Table 5.4: Results from simulated grasping experiments. Joint Err. is the mean difference between

planned and realized grasps per joint in degrees. Pose Err. is the mean difference between planned

and realized grasp pose in millimeters. For both metrics smaller is better.

Completion
Method

Grasp Success
Rate (%)

Joint Error
(degrees)

Completion
Time (s)

Partial 71.43 9.156◦ 0.545
Mirror 73.33 8.067◦ 1.883
Ours 93.33 7.276◦ 2.426

Table 5.5: Grasp Success Rate shows the percentage of succesful grasp attempts. Joint Error shows
the mean difference in degrees between the planned and executed grasp joint values. Completion
Time shows how long specified metric took to create a mesh of the partial view.
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has seen before (Holdout Models): Jaccard (Ours: 0.6496, RANSAC: 0.4063), Hausdorff (Ours:

5.9, RANSAC: 20.4), geodesic (Ours: 0.1412, RANSAC: 0.4305). The RANSAC based approach’s

performance on the Holdout Models is also worse than that of the mirrored or partial completion

methods on both the geodesic and Hausdorff metrics.

5.4.3 Simulation Based Grasp Comparison

In order to evaluate our framework’s ability to enable grasp planning, the system was tested in

simulation using the same completions from Sec 5.4.1, allowing us to quickly plan and evaluate over

24,000 grasps. GraspIt! was used to plan grasps on all of the completions of the objects by uniformly

sampling different approach directions. These grasps were then executed, not on the completed

object, but on the ground truth meshes in GraspIt!. In order to simulate a real-world grasp execution,

the completion was removed from GraspIt! and the ground truth object was inserted in its place. Then

the hand was placed 20cm backed off from the ground truth object along the approach direction of the

grasp. The spread angle of the fingers was set, and the hand was moved along the approach direction

of the planned grasp either until contact was made or the grasp pose was reached. At this point, the

fingers closed to the planned joint values. Then each finger continued to close until either contact

was made with the object or the joint limits were reached. Figure 5.6 shows several grasps and their

realized executions for different completion methods. Visualizations of the simulation results for the

entire YCB and Grasp Datasets are available at http://shapecompletiongrasping.cs.columbia.edu

Table 6.3 shows the differences between the planned and realized joint states as well as the

difference in pose of the base of the end effector between the planned and realized grasps. Using our

method caused the end effector to end up closer to its intended location in terms of both joint space

and the palm’s cartesian position.

5.4.4 Performance on Real Hardware

In order to further evaluate our framework, the system was used in an end-to-end manner using

actual robotic hardware to execute grasps planned via the different completion methods described

above. The 15 objects used are shown in Figure 5.7. For each object, we ran the arm once using each

completion method. The results are shown in Table 6.4. Our method enabled a 20% improvement

over the general shape completion methods in terms of grasp success rate, and resulted in executed
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grasps closer to the planned grasps as shown by the lower joint error.

5.4.5 Crowded Scene Completion

A scene often contains objects that are not to be manipulated and only require completion in order to

be successfully avoided. In this case, the output of our CNN can be run directly through marching

cubes without post-processing to quickly create a mesh of the object. Figure 5.8(a) shows a grasp

planned using only the partial mesh for the object near the grasp target. Figure 5.8(b) and Figure

5.8(c) show the robotic hand crashing into one of the nearby objects when attempting to execute the

grasp. The failure is caused by an incomplete planning scene. Figure 5.8(d) shows the scene with the

nearby objects completed, though without smoothing. With this fuller picture, the planner accurately

flags this grasp as unreachable. The time requirement for the scene completion is:

Tcompletion = Tsegment + Ttarget + Tnon_target ∗ n

with Segmentation Time (Tsegment), Target Completion Time (Ttarget), Non Target Completion

Time(Tnon_target) and Number of Non Target Objects (n). Our system has the ability to quickly fill

in occluded regions of the scene, and selectively spend more time generating detailed completions

on specific objects to be manipulated. Average completion times in seconds from 15 runs are

Tsegment = 0.119, Ttarget = 2.136, and Tnon_target = 0.142.

5.5 Discussion

This chapter presents a framework to train and utilize a CNN to complete and mesh an object

observed from a single point of view, and then plan grasps on the completed object. The completion

system is fast, with completions available in a matter of milliseconds, and post processed completions

suitable for grasp planning available in several seconds. The dataset and code are open source

and available for other researchers to use. It has also been demonstrated that our completions are

better than more naive approaches in terms of a variety of metrics including those specific to grasp

planning. In addition, grasps planned on completions generated using our method are more often

successful and result in executed grasps closer to the intended hand configuration than grasps planned

on completions from the other methods.
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Figure 5.7: Barrett Hand(BH8-280), StaubliTX60 Arm, and experiment objects.

(a) Planned Grasp (b) Accidental Collision

(c) Unfilled Scene (d) Filled Planning Scene

Figure 5.8: The system can be used to quickly complete obstacles that are to be avoided. The

arm fails to execute the planned grasp (a), resulting in collision shown in (b). The collision with

the non-target object occurred due to a poor planning scene as shown in (c), but the CNN without

post-processing can be used to fill the planning scene allowing the configuration to be correctly

marked as invalid as shown in (d).
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The framework in this chapter allows robotic grasping systems to handle workspaces with

hundreds of different known object geometries, and to even reason about the geometry of novel

objects. Like the heatmap grasp planner from the previous chapter, the system in this chapter is also

powered by a CNN trained on simulated renderings. With this approach, we are able to do away with

another heuristic, the symmetry based completion methods. We can also improve on the performance

of previously cutting edge RANSAC based approaches for geometric reasoning.
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Chapter 6

Visual-Tactile Shape Completion

6.1 Introduction

Grasp planning based on raw sensory data is difficult due to occlusion and incomplete information

regarding scene geometry. Often one sensory modality does not provide enough context to enable

reliable planning. For example a single depth sensor image cannot provide information about

occluded regions of an object, and tactile information is incredibly sparse spatially. This work utilizes

a 3D convolutional neural network to enable stable robotic grasp planning by incorporating both

tactile and depth information to infer occluded geometries. This multi-modal system is able to utilize

both tactile and RGBD information to form a more complete model of the space the robot can interact

with and also to provide a complete object model for grasp planning.

At runtime, a point cloud of the visible portion of the object is captured, and multiple guarded

moves are executed where the hand is then moved towards the object, stopping when contact with

the object occurs. The newly acquired tactile information is combined with the original partial view,

voxelized, and sent through the CNN to create a hypothesis of the object’s geometry.

Depth information from a single point of view often does not provide enough information to

accurately predict object geometry. There is often unresolved uncertainty about the geometry of

the occluded regions of the object. To alleviate this uncertainty, we utilize tactile information to

generate a new more accurate hypothesis of the object’s 3D geometry incorporating both visual and

tactile information. Figure 6.1 demonstrates several real life example where the understanding of

the object’s 3D geometry is significantly improved by the additional sparse tactile data using our
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Ground TruthLive Depth and 
Tactile Clouds

Depth Only 
Completion

Depth and Tactile  
Completion

RGB

Figure 6.1: Completion examples from live tactile and depth data for YCB objects. These completions

demonstrate that small amounts of additional tactile sensory data can significantly improve the

systems ability to reason about 3D object geometry. The Depth Only completions for the mustard

bottle looks similar to a mesh of a banana used during training while the Depth Only completion

of the domino sugar box looks like a cell phone mesh from the training set. For these examples the

small amounts of additional tactile information allows the CNN to differentiate from these incorrect

training meshes.
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Figure 6.2: Both tactile and depth information are independently captured and voxelized into 403

grids. These are merged into a shared occupancy map which is fed into a CNN to produce a

hypothesis of the object’s geometry.

Figure 6.3: CNN Architecture. The CNN has three convolutional and two dense layers. The final

layer has 64000 nodes, and reshapes to form the resulting 403 occupancy grid. The numbers on the

bottom edges show the input sizes for each layer. All layers use ReLU activations except for the last

dense layer, which uses a sigmoid.

framework. An overview of our sensory fusion architecture is shown in Figure 6.2.

The contributions of this work include: 1) an open source dataset for training a shape completion

system using both tactile and depth sensory information, 2) a framework for integrating multi-modal

sensory data to reason about object geometry, 3) open source code for alternative visual-tactile

general completion methods, and 4) results comparing the completed object models using depth only,

the combined depth-tactile information, and other visual-tactile completion methods.

6.2 Prior Visual-Tactile Geometric Reasoning Approaches

The idea of incorporating sensory information from vision, tactile and force sensors is not new

[Miller and Leibowitz, 1999]. Despite the intuitiveness of using multi-modal data, there is still no
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agreed upon framework to best integrate multi-modal sensory information in a way that is useful for

robotic manipulation tasks. In this work, we are interested in reasoning about object geometry in

particular.

Several recent uses of tactile information to improve estimates of object geometry has focused

on the use of Gaussian Process Implicit Surfaces(GPIS) [Williams and Fitzgibbon, 2007]. Several

examples along this line of work include [Caccamo et al., 2016][Yi et al., 2016] [Bjorkman et al.,

2013][Dragiev et al., 2011][Jamali et al., 2016][Sommer et al., 2014][Mahler et al., 2015]. This

approach is able to quickly incorporate additional tactile information and improve the estimate of

the objects geometry local to the tactile contact or observed sensor readings. There has additionally

been several works that incorporate tactile information to better fit planes of symmetry and super

quadrics to observed point clouds [Ilonen et al., 2014][Ilonen et al., 2013][Bierbaum et al., 2008].

These approaches work well when interacting with objects that confirm to the heuristic of having

clear detectable planes of symmetry or are easily modeled as super quadrics.

There has been successful research in utilizing continuous streams of visual information similar

to Kinect Fusion[Newcombe et al., 2011] or SLAM[Thrun and Leonard, 2008] in order to improve

models of 3D objects for manipulation. One example being [Krainin et al., 2011b][Krainin et al.,

2011a] In this work, the authors develop an approach to building 3D models of unknown objects based

on a depth camera observing the robot’s hand while moving an object. The approach integrates both

shape and appearance information into an articulated ICP approach to track the robot’s manipulator

and the object while improving the 3D model of the object. Similarly [Hermann et al., 2016] attaches

a depth sensor to a robotic hand, and plans grasps directly in the sensed voxel grid. These approaches

improve their models of the object using only a single sensory modality, but from many time points.

In previous work, we created a shape completion method using single depth images . The work

provides an architecture to enable robotic grasp planning via shape completion. Shape completion is

accomplished through the use of a 3D convolutional neural network (CNN). The network is trained

on an open source dataset of over 440,000 3D exemplars captured from varying viewpoints. At

runtime, a 2.5D point cloud captured from a single point of view is fed into the CNN, which fills

in the occluded regions of the scene, allowing grasps to be planned and executed on the completed

object. Runtime shape completion is very rapid because most of the computational costs of shape

completion are borne during offline training. This prior work explored how the quality of completions
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vary based on several factors. These include whether or not the object being completed existed in

the training data and how many object models were used to train the network, and the ability of the

network to generalize to novel objects allowing the system to complete previously unseen objects at

runtime.

6.3 Visual-Tactile Geometric Reasoning

Our framework utilizes a trained CNN to produce a mesh of the target object incorporating both

depth and tactile information.

6.3.1 Training

The architecture of the CNN is shown in Figure 6.3. The model was implemented using Keras[Chollet,

2015], a Theano[Bergstra et al., 2010][Bastien et al., 2012] based deep learning library. Each layer

used rectified linear units as nonlinearities except the final fully connected (output) layer which used

a sigmoid activation to restrict the output to the range [0, 1]. We used the cross-entropy error E(y, y′)

as the cost function with target y and output y′:

E(y, y′) = −
(
y log(y′) + (1− y) log(1− y′)

)
This cost function encourages each output to be close to either 0 for unoccupied target voxels

or 1 for occupied. The optimization algorithm Adam[Kingma and Ba, 2014], which computes

adaptive learning rates for each network parameter, was used with default hyperparameters (β1=0.9,

β2=0.999, ε=10−8) except for the learning rate, which was set to 0.0001. Weights were initialized

following the recommendations of [He et al., 2015] for rectified linear units and [Glorot and Bengio,

2010] for the logistic activation layer. The model was trained with a batch size of 32.

We used the Jaccard similarity to evaluate the similarity between a generated voxel occupancy

grid and the ground truth. The Jaccard similarity between sets A and B is given by:

J(A,B) =
|A ∩B|
|A ∪B|

The Jaccard similarity has a minimum value of 0, where A and B have no intersection and a maximum

value of 1 where A and B are identical. During training, this similarity measure is computed for input
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Tactile Exploration Tactile Grasp

Figure 6.4: Red arrows show how the fingers approach the object for the tactile exploration case

and for the tactile grasp case. Blue dots show points in the depth image captured by the camera.

(a) (b) (c) (d)

Figure 6.5: Example training pairs from simple shape dataset. The red dots represent the tactile

readings from tactile exploration. The blue dots on (a) and (c) represent to occupancy map

gathered from the depth image. The blue points in (b) and (d) represent the ground truth 3d

geometry.
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Figure 6.6: Different runs of the shape completion system where input is provided from: Depth,

Depth and Tactile Exploration, Depth and Tactile from Grasp, and only from a Tactile Grasp.

When using both tactile and grasp information, the system is able to complete the object almost

100% of the time. While depth or tactile alone are not sufficient to successfully reason about

object geometry in all cases.
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meshes that were in the training data (Training Views), meshes from objects within the training data

but from novel views (Holdout Views), and for meshes of objects not in the training data (Holdout

Models). The CNNs were trained with an NVIDIA Titan X GPU.

6.4 Completion of Simulated Geometric Shapes Dataset Objects

6.4.1 Geometric Shape Dataset

In order to evaluate our system’s ability to utilize additional tactile sensory information to reason

about 3D geometry, initial experimentation was done on a geometric shape dataset. This dataset

consisted of conjoined half shapes. Both front and back halves of the objects were randomly chosen

to be either a sphere, cube, or diamond. The front and back halves do match in size. Several example

shapes are shown in Figure 6.5 (b) half cube half sphere and (d) half sphere half diamond. Next,

synthetic sensory data was generated for these example shapes. Depth information was captured

from a fixed camera location, and tactile information was collected using both a tactile exploration,

and a tactile grasp as shown in Figure 6.4. The sensory data for two shapes is shown in Figure 6.5 (a)

and (c).

6.4.2 Depth and Tactile Completion

Four networks with the exact same architecture from [Varley et al., 2016] as shown in Figure 6.3

were trained on this dataset using different sensory data as input. The results are shown in Figure 6.6.

One network was only provided the tactile grasp information during training, and performed poorly.

A second network was given only the depth information during training, and performed better than

the first network, but still encountered many situations where it did not have enough information to

accurately complete the back half of the object. The other two networks were given the depth and

tactile information. One in the form of a tactile grasp and the other from a tactile exploration. These

networks were able to learn the task to completion. They successfully utilized the tactile information

to differentiate between plausible geometries of occluded regions. This task demonstrated that a

CNN could be trained to leverage incredibly sparse tactile information in order to decide between

multiple object geometry hypothesis. For example, when the correct answer had sharp edges, the

system would use the tactile information to generate a completion with sharp edges, not simply a
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Figure 6.7: Jaccard similarity for two identical CNN models. Depth Only was trained using only

depth information, while Tactile and Depth was trained with both tactile and depth information. While

training, the two CNNs were evaluated on examples from the training data (Training Views), holdout

views of objects from the training data (Holdout Views), views of novel objects not used during

training (Holdout Models), and challenging views of of real objects where the depth information

was acquired head on (Holdout Live). This sequence of plots shows that as the completion problem

becomes more difficult from more challenging depth information, the tactile sensor data is able to

provide a larger performance benefit.

completion that is accurate near the sparse tactile observations.

6.5 Completion of YCB and Grasp Dataset Objects

After demonstrating on the geometric shape dataset, we trained two additional models using 486 of

the grasp and YCB dataset objects, the remaining models were kept for a holdout set. One model

was again trained using only the depth information, while a second model was trained using both

depth and tactile information provide from a tactile exploration performed in a similar manner as

with the simple shape dataset.
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Figure 6.8: As the difficulty of the datasets increases, the max Jaccard Similarity reached by a given

CNN decreases, but the difference between the results from the Depth Only CNN and the Tactile

and Depth CNN increases. The additional tactile information is more useful on more difficult

completion problems.
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Figure 6.9: As the difficulty of the datasets increases,the difference between the results from the

Depth Only CNN and the Tactile and Depth CNN increases. The additional tactile information is

more useful on more difficult completion problems.
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(a) Hand approach (b) Finger contact (c) Finger curl

Figure 6.10: Barrett hand showing contact with a fixed object. The hand is first brought manually

brought to an approach position shown in a), followed by and approach as shown in b) and then the

fingers are curled towards the object to collect tactile information in c). This process is repeated 6

times over the occluded surface of the object.

The dataset consists of approximately half a million pairs of oriented voxel grids. Where one

grid’s voxels are marked as occupied if visible to a camera, and the second grid’s voxels are marked

as occupied if the object intersects a given voxel, independent of perspective. This dataset was

augmented with tactile information. To generate tactile data, the high resolution model was reoriented

to align with the captured partial view, and then 40 rays randomly distributed within the bounding

box of the object were traced, and any collisions with the object were marked as tactile contact

locations.

Again, two identical CNNs were trained where one CNN was provided only the depth information

(Depth Only) and a second was provided both the tactile and depth information Tactile and Depth.

During training, performance was evaluated on views of meshes within the training data (Training

Views), novel views of meshes in the training data (Holdout Views), novel views of meshes not in

the training data (Holdout Models). Additionally performance was evaluated on a live dataset also

not used for training (Holdout Live) consisting of depth information captured from a real Kinect

and tactile information captured from a real Barrett Hand attached to a Staubli Arm. The object was

fixed in place during the tactile data collection process. While collecting the tactile data, the arm

was manually moved to place the end effector behind the object, and 6 exploratory guarded motions

were made where the fingers closed towards the object, and each finger stopped independently when

contact was made as shown in Fig. 6.10. Completions using various methods described below for

the entire Holdout Live dataset are shown in Figure 6.11.

Figure 6.7 shows the performance of the two CNNs on the different datasets. Notice the

performance of the Depth Only CNN nearly matches the performance of the Tactile and Depth
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View Type Convex Hull Partial Ours

Sim. Training Views 32.7 7.8 5.8

Sim. Holdout Views 45.1 7.0 5.8

Sim. Holdout Models 49.1 7.6 6.2

Live Holdout 11.6 11.9 7.4

Table 6.1: Hausdorff Distance Results (Smaller is better). This measures the mean distance in

millimeters from points on one mesh to another as described in Section 6.6.

View Type Convex Hull Partial Ours

Sim. Training Views .50 .01 .69

Sim. Holdout Views .51 .02 .66

Sim. Holdout Models .46 .01 .65

Live Holdout .43 .01 .64

Table 6.2: Jaccard Similarity Results (Larger is better). This measures the intersection over union of

two voxelized meshes as described in Section 6.6.

CNN on the training views. This is because these views are used during training, so at runtime in

both cases, the network is provided enough information to generate a reasonable completion. Moving

from Holdout Views to Holdout Models to Holdout Live, the completion problems move farther

away from the examples experienced during training. As the problems become harder, the Tactile

and Depth network begins outperforming the Depth Only network as it is able to utilize the sparse

tactile information to differentiate between various possible completions.

Figure 6.8 and Figure 6.9 show that as the CNNs are exposed to harder completion problems the

predicted completions have lower Jaccard Similarity scores. Figure 6.8 also demonstrates that the

difference between the Depth Only CNN completion and the Tactile and Depth CNN completion

becomes larger on more difficult completion problems. This shows that the network is able to make

more use of the tactile information when the depth information alone is insufficient.
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6.6 Comparison to Alternative Visual-Tactile Completion Methods

6.6.1 Alternative Visual-Tactile Completion Methods

In our prior work [Varley et al., 2016] we were able to compare our depth only completion method

with both a RANSAC based approach[Papazov and Burschka, 2010], and a mirroring approach

[Bohg et al., 2011], both of these approaches make assumptions about the visibility of observed

points, and do not directly work with data from tactile contacts that occur in unobserved regions of

the workspace.

In our current work we benchmark our framework against the following:

Partial Completion: the set of points captured from the Kinect is concatenated with the tactile data

points. The combined cloud is run through marching cubes, and the resulting mesh is then smoothed

using Meshlab’s[Cignoni et al., 2008] implementation of Laplacian smoothing. These completions

are incredibly accurate where the object is directly observed, but make no predictions in unobserved

areas of the scene.

Convex Hull Completion: The set of points captured from the Kinect is concatenated with the

tactile data points. The combined cloud is run through QHull to create a convex hull. The hull is

then run through Meshlab’s implementation of Laplacian smoothing as well. These completions are

reasonably accurate near observed regions, and fills regions of the unobserved space with the hull.

6.6.2 Comparison Metrics

The Jaccard similarity was used to guide training, as shown in Figure 6.7. We also used this metric

to compare the final resulting meshes from several completion strategies. The completed meshes

were voxelized at 803, and compared with the ground truth mesh. The results are shown in Table

6.2. Our proposed method results in higher similarity to the ground truth meshes than the Partial and

Convex Hull approaches for all tested views. In this case, the Partial Completion method performs

poorly as it’s completions are accurate near to observed regions of the surface, but poorly model the

unobserved regions of the object.

The Hausdorff distance is a one-directional metric computed by sampling points on one mesh

and computing the distance of each sample point to its closest point on the other mesh. The mean

value of a completion is the average distance from the sample points on the completion to their
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respective closest points on the ground truth mesh. The symmetric Hausdorff distance was computed

by running Meshlab’s Hausdorff distance filter in both directions. Table 6.1 shows the mean values of

the symmetric Hausdorff distance for each completion method. In this metric, the CNN completions

are significantly closer to the ground truth compared to the Partial and the Convex Hull completions.

Here the Partial Completion method outperforms the QHull approach as the Partial Completion

results are incredibly accurate near the observed surface, but still penalized by the bi-directional

nature of the Hausdorff distance, as any unobserved points on the ground truth mesh are far from the

surface of the Partial Completion.

6.6.3 Simulation Based Grasp Comparison

In order to evaluate our framework’s ability to enable grasp planning, the system was tested in

simulation using the same set of completions. The use of simulation allowed for the quick planning

and evaluation of over 12,000 grasps. GraspIt! was used to plan grasps on all of the completions of

the objects by uniformly sampling different approach directions. These grasps were then executed,

not on the completed object, but on the ground truth meshes in GraspIt!. In order to simulate a

real-world grasp execution, the completion was removed from GraspIt! and the ground truth object

was inserted in its place. Then the hand was placed 20cm backed off from the ground truth object

along the approach direction of the grasp. The spread angle of the fingers was set, and the hand

was moved along the approach direction of the planned grasp either until contact was made or a

maximum approach distance was traveled. At this point, the fingers closed to the planned joint values.

Then each finger continued to close until either contact was made with the object or the joint limits

were reached.

Table 6.3 shows the differences between the planned and realized joint states as well as the

difference in pose of the base of the end effector between the planned and realized grasps. Using our

method caused the end effector to end up closer to its intended location in terms of both joint space

and the palm’s cartesian position.

6.6.4 Performance on Real Hardware

In order to further evaluate our framework, the grasps were planned and executed on the Holdout

Live views using actual robotic hardware to execute grasps planned via the different completion
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View Error
Completion Type

Partial Convex Hull Ours

Training Joint (◦) 57.4◦ 24.7◦ 17.4◦

View Pose (mm) 19.9 13.9 7.7

Holdout Joint (◦) 47.0 ◦ 28.1 ◦ 23.8◦

View Pose (mm) 21.1 16.1 13.9

Holdout Joint (◦) 61.5◦ 32.1◦ 34.7◦

Model Pose (mm) 16.6 14.1 13.6

Holdout Joint (◦) 53.7◦ 26.4◦ 17.0◦

Live Pose (mm) 18.6 10.5 6.2

Table 6.3: Results from simulated grasping experiments. Joint Error is the mean L2 distance between

planned and realized grasps in degrees. Pose Error is the mean L2 distance between planned and

realized grasp pose in millimeters. For both metrics smaller is better.

Completion

Method

Grasp Success

Rate (%)

Joint Error

(degrees)

Partial 62.5% 44.6◦

Convex Hull 62.5% 42.4◦

Ours 87.5% 32.7◦

Table 6.4: Grasp Success Rate shows the percentage of successful grasp attempts. Joint Error shows

the mean difference in degrees between the planned and executed grasp joint values.
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methods described above. For each of the 8 objects, we ran the arm once using each completion

method. The results are shown in Table 6.4. Our method enabled a 25% improvement over the

general visual-tactile shape completion methods in terms of grasp success rate, and resulted in

executed grasps closer to the planned grasps as shown by the lower joint error.

6.7 Discussion

We have developed a framework for geometric reasoning utilizing a CNN trained from a large

simulated dataset of rendered depth and tactile data. The CNN uses both the dense depth information

and the sparse tactile information to fill in occluded regions of an object. Experimental results show

that using both tactile and visual data provides more accurate completion than using either vision

or tactile data alone. In addition, our approach outperforms other general visual-tactile completion

methods.
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Figure 6.11: The entire Holdout Live dataset. These completion were all created from data captured

from a real Kinect and a real Barrett Hand attached to a Staubli Arm. Notice many of the Depth

Only completions do not extend far enough back or look like other objects that were in the training

data (ex: cell phone, banana). Our method outperforms the Depth Only, Partial, and Convex Hull

methods in terms of Hausdorff Distance and Jaccard Similarity.
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Chapter 7

Workspace Aware Online Grasp

Planning

7.1 Faster Online Grasp Planning

With the shape completion approach from the previous chapter, our grasping system can now handle

novel objects, but using a database of precomputed grasps is not straightforward, as every mesh is

now new as shown in Figure 7.1. This means that we must rely upon an online grasps planner that

does not assume the object’s geometry is known ahead of time. Our current Simulated Annealing

based planner becomes a bottle neck in our grasp planning pipeline when the results cannot be cached

for later use. One approach for reducing the planning time has been to reduce the dimensionality

of the search space used in the annealing process. This was done both by [Ciocarlie et al., 2007]

where the concept of an Eigen Grasp was introduced, and the annealing could occur in a reduced

dimensionality subspace of the original hand-object configuration space. A similar approach was

taken in [Hang et al., 2014] where the annealing was accomplished in a hierarchical manner in order

to reduce the search space size. In this chapter we explore how the search space of the annealing

process can be reduced by incorporating prior information about what areas of the space the robot

can actually reach. There is no reason for the grasp planner to spend time annealing through portions

of the workspace for which no feasible IK solutions exist. Here we propose a method to quickly

move the annealing process out of these infeasible regions of the workspace.

Grasp planning and motion planning are two fundamental problems in the research of intelligent
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Figure 7.1: The use of general shape completion allows for planning on novel objects, but this makes

it impossible to use a precomputed database of grasps since every mesh given to our planner is new.

In fact every time the same object is completed the observed pointcloud changes slightly resulting in

a slightly different mesh.

robotic manipulation systems. These problems are not new, and many reasonable solutions have been

developed to approach them individually. Most of the research has treated these problems as distinct

research areas focusing either on: 1) how to get a set of high quality candidate grasps, ex: [Ciocarlie

et al., 2007][Hang et al., 2014] or 2) how to generate viable trajectories to bring the gripper to the

desired hand configuration, ex: [Sucan et al., 2012][Schulman et al., 2014][Diankov and Kuffner,

2008]. While it is often convenient to treat grasp and motion planning as distinct problems, in this

chapter we demonstrate that solving them jointly can improve performance and reduce computation

time. Online grasp planners unaware of the robot workspace and without a notion of reachability

often spend significant time and resources evaluating grasps that may simply be unreachable. For

example, a reachability unaware planner is equally likely to return impossible grasps that assume

the robot will approach the object from the object’s side furthest from the robot. Our planner avoids

unreachable areas of the workspace dramatically reducing the size of the search space. This lowers

online planning time, and improves the quality of the planned grasps as more time is spent refining

quality grasps in reachable portions of the workspace, rather than planning grasps that may be stable

but are unreachable.

In order to generate grasps which are stable and reachable, we propose a new energy function for

use with simulated annealing grasp planners [Ciocarlie et al., 2007][Hang et al., 2014]. This energy

function is a weighted combination of a grasp stability term, and a grasp reachability term. Our grasp
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Figure 7.2: Top Row: Visualization of cross sections of the precomputed reachable space for a

Fetch Robot and Staubli Arm with Barrett Hand. The green arrows represent reachable end-effector

poses, meaning that a, collision free, inverse kinematic solution exists placing the end-effector at

the specified pose. The red arrows are not reachable. This space is computed offline, once for a

given robot. Bottom Row: Signed Distance Field generated from the above reachability spaces. This

representation is incorporated into our grasp planning process.

reachability term is inspired by the idea of a precomputed reachability space which has demonstrated

utility in other robotics tasks [Porges et al., 2014][Vahrenkamp et al., 2009]. In our work, we generate

a densely sampled reachability space for our robot as shown in Fig. 7.2(Top Row). This offline

computation checks whether an Inverse Kinematic (IK) solution exists for a given pose. This database

in and of itself has utility for filtering lists of precomputed-grasps and quickly removing unreachable

grasps, leaving only reasonable grasps as possible results. We further postprocess our reachability

space and produce a compute a Signed Distance Field (SDF) representation Fig. 7.2(Bottom Row).

The SDF is used in our online grasp planning energy function to guide the hand towards reachable

regions of the robot’s workspace.



CHAPTER 7. WORKSPACE AWARE ONLINE GRASP PLANNING 81

1) Query Reachability Space 2) Create Reachability SDF
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Figure 7.3: Workspace Aware Online Grasping Framework - Offline: 1) the robot’s reachability

space is queried for IK solutions that are free of collisions with the robot itself and static objects such

as walls and tables. 2) An SDF is created from the reachability space. Online: 3) Grasp planning is

quickly accomplished utilizing the reachability space SDF. 4) A motion plan is found for one of the

planned grasps. 5) The trajectory is executed by the robot resulting a in a stable grasp.

Experiments in both simulation and physical environments have been performed to assess the

performance of our method on multiple objects and under various poses. We demonstrate that our

reachability aware grasp planner results in a higher fraction of reachable grasps, a higher fraction of

successful grasp executions, and a reduced planning time compared to other online grasp planning

methods.

Our method for workspace aware online grasp planning is overiewed in Fig. 7.3. This framework

has a number of advantages. First, it combines two closely coupled processes into one; rather than

going back and forth between grasp planning and trajectory planning until a feasible grasp is found,

we solve for a fully reachable grasp at once. It increases the probability of finding feasible grasps

quickly since the optimization process is guided by our energy function within reachable spaces.
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Also, our method is well suited for online planning which in general is more adaptable and robust

than the traditional offline grasp planning approach and works in the case of novel objects for which

precomputed grasps do not exist.

In summary, we take a closer look at the problem of grasp quality and reachability analysis of

grasps in an integrated and structured manner. The contributions of this work include: 1) A novel

representation of reachability space that uses signed-distance field (SDF) to provide a gradient field

during grasp planning; 2) An online grasp planning system with an integrated notion of reachability;

3) A formulation that ranks a list of grasps (e.g. from a database) based on their combined reachability

and grasp quality; 4) An embedding of obstacles into the reachability space during grasp planning;

5) An analysis of our framework compared to other grasp planning solutions evaluated in multiple

scenarios.

While our work is most similar to [Berenson et al., 2007] [Vahrenkamp et al., 2009] in being

workspace aware, ours differs in a number of ways: (1) we focus on solving online grasp planning,

(2) we compute the actual reachability map, not an approximation as in [Berenson et al., 2007] (3) we

use a novel representation of the reachability space and (4) we use a different optimization technique,

simulated annealing.

7.2 Offline Reachability Space Generation

A grasp is reachable if a motion plan can be found to move the arm from its current configuration to

a goal configuration that places the hand at desired grasp location. This is not always possible for a

number of reasons typically because no inverse kinematics(IK) solution exists to place the hand at

the desired grasp pose, self collision with other parts of the robot, or collision with obstacles in the

planning scene. Our method addresses these issues by incorporating the notion of reachability during

grasp planning.
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Algorithm 3 Reachability Space Generation

1: procedure GENERATEREACHABILITYSPACE

2: poses = uniformSampleWorkspace()

3: pose2Reachable = {}

4: for pose in poses do

5: reachable = hasCollisionFreeIK(pose)

6: pose2Reachable[pose] = reachable

7: SDF = computeSDF(pose2Reachable)

8: return SDF

7.2.1 Reachability Space Representation

We observe that this definition of the original reachability space is binary, either 1 (reachable), or

0 (not reachable), and has no gradient to indicating the direction from non-reachable regions to

reachable portions of the workspace. In the context of Simulated Annealing for grasp planning,

it is beneficial to provide a energy function that provides clear cues about how to move to more

desired regions of the annealing space. This observation informed a novel signed-distance-field

(SDF) representation of the reachability space that is amenable to optimization formulations. Our

SDF maps a pose to a value representing the distance to the manifold or boundary between the

unreachable poses and reachable poses and can be interpreted as follows dsdf = SDF (pose):

• dsdf = 0: pose lies exactly on boundary between reachable and unreachable grasp poses.

• dsdf < 0: pose lies withing the reachable region of the workspace, and is distance dsdf away

from the boundary.

• dsdf > 0: pose lies outside the reachable region of the workspace, and is distance dsdf away

from the boundary.

This field can then serve as criteria for classifying a grasps as either lying in a reachable space or not.

And two nearby hand configurations can be ordered based on dsdf , their distance from this boundary.
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Table 7.1: Discretization of robot workspace for SDF generation for the Fetch robot. Values are in

meters (x, y, z) and radians (roll, pitch, yaw). The origin of the space is centered at the robot base.

X Y Z Roll Pitch Yaw

min 0.0 -1.1 0.0 -PI -PI -PI

max 1.2 1.1 2.0 PI PI PI

step 0.1 0.1 0.1 PI PI/4.0 PI/4.0

7.2.2 Reachability Space Generation

Reachable-space generation is a one-time process for a given robot. Algorithm 3 details the process

for generating the Reachable Space. We search a discretization of the 6D pose space of the robot to

determine which configurations will be reachable by the hand. For the Fetch Robot, we sampled

the workspace using the values in meters centered at the robot’s base shown in Table 7.1. In total

675,840 unique poses where queried for reachability. 102,692 were reachable and 573,148 where

unreachable. This was computed using Moveit!’s IK solver which checks for a valid collision free

IK solution for a given pose. The poses and IK query results were used to generate an SDF using

sci-kit-fmm1. Once this computation is done, the SDF can be queried with any pose inside the space

to determine both its binary reachability and distance to the boundary separating reachable and non

reachable poses.

7.3 Online Reachability-Aware Grasp Planning

Grasp planning is the process of finding "good grasps" for an object that can be executed using

an articulated robotic end effector. A grasps is typically classified as "good" based on how well

it can resist internal and external forces which largely determines the success of the grasp. The

Ferrari-Canny method [Ferrari and Canny, 1992] is a common way to evaluate robot grasps. Other

techniques are typically built around this metric as shown in this review [Roa and Suárez, 2015].

Grasp planning frameworks such as GraspIt! use these grasp metrics of force and form closure as

objective functions for optimization. Since this formulation has no notion of reachability, the grasp

1https://github.com/scikit-fmm/scikit-fmm
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results, while stable, might require the end effector to be placed in a pose that is impossible to reach

given the robot’s current location.

7.3.1 Simulated Annealing for Grasp Planning

Grasp planning can be thought of as finding low energy configurations within the hand object space.

This search is done in a multidimensional space where grasps are sampled and evaluated. The 6

dimensional (x, y, z, roll, pitch, yaw) space we generated with our SDF is a subspace of the 6 + N

dimensional grasp search space. The additional N dimensions represent the EigenGrasps or eigen

vectors of the end effector Degree of Freedom (DOF) space as described in [Ciocarlie et al., 2007].

For the Fetch (1 DOF), N=1, and for the Barrett Hand (4 DOF), N=2. These 6 + N dimensions

describe both the pose and DOF values of the end effector. The goal of grasp planning is to find low

energy points in this 6 + N dimensional space. These points represent the pose and hand configuration

of "good grasps".

Simulated annealing (SA) [Ingber, 1989] – a probabilistic technique for approximating global

optimums for functions lends itself nicely for our formulation. SA presents a number of advantages

in grasp planning[Allen et al., 2014]. For example, it does not need an analytical gradient which

can be computationally infeasible; it handles the high nonlinearity of grasp quality functions; and it

is highly adaptable to constraints. Our approach implicitly guides the annealing process ensuring

that sampling is done in regions of reachable space which increases the probability of getting useful

grasp solutions. While online grasping is typically avoided due to time cost of exploring a larger

search space, this work makes online grasping more feasible since the majority of the space which

is unreachable need not be searched. With our new energy formulation, the annealing process will

quickly drive the hand towards reachable grasp locations. Section 7.4 below shows that this new

energy function increases the success probability of online grasping significantly.

7.3.2 Novel Grasp Energy Formulation

In our work, we augment the Contact and Potential grasp energy function from [Ciocarlie et al.,

2007]. The Contact and Potential energy function is described in Algorithm 4 and consists of a

potential energy term measuring the grasps potential to resist external forces and torques and a

contact energy term that brings the hand closer to the object. Our method (Reachability Aware)
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Algorithm 4 Contact And Potential Energy (SA-CP)

1: procedure CONTACTANDPOTENTIALENERGY

2: ep = potentialEnergy()

3: stable = ep < 0

4: if stable then

5: return ep

6: else

7: econtact = contactEnergy()

8: return econtact

Algorithm 5 Reachability-Aware Energy (SA-OURS)

1: procedure REACHABILITYAWAREENERGY

2: ep = potentialEnergy()

3: ereach = reachabilityEnergy()

4: stable = ep < 0

5: reachable = ereach < 0

6: if reachable && stable then

7: return ep + α1 · ereach
8: else if reachable && !stable then

9: econtact = contactEnergy()

10: return econtact + α2 ·(reachmax - ereach)

11: else //!reachable

12: econtact = contactEnergy()

13: return econtact + α3 · ereach
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energy augments the Contact and Potential with a Reachability term that encodes the kinematic

constraints of the robot. In this cost function for grasp planning optimization, we use the reachability

SDF described previously as a regularizing term for our search energy to drive the hand towards

reachable hand configurations. As shown in [Oleynikova et al., 2016] discretized SDFs still model

and behave like a continuous function so it can be used during the simulated annealing optimization

process to drive the search towards reachable hand configurations. In terms of implementation, we

build on the GraspIt! simulator and combine the existing energy metrics with the new reachable

energy term. The energy function E is

E = G+ αR (7.1)

where G is a metric of grasp quality (e.g. force closure). R is a measure of reachability of a given

grasp pose. To optimize the overall grasp energy, we use the simulated annealing search according to

[Ciocarlie and Allen, 2009].

The grasp quality term G contains two terms: contact energy (econtact) and potential energy (ep).

Contact Energy defines the proximity of the hand to the object being grasped while the potential

energy captures the quality of grasp in terms of force closure analysis. The reachability energy

(ereach) is the new term that we use to guide the optimization process to come up with grasps in

reachable regions. In order to sample points from our discrete reachability space, we use a multi-

linear extension of bilinear interpolation to get a continous reachability value for any point in space.

Each query pose during the optimization is situated in the robot’s reachable space and the reachability

value for that point is given as the multi-linear interpolation (weighted sum) of the values for the 2N

(N = 6) corners of the hypervoxel where the query point falls in the pre-computed SO(6) reachable

space. The 2N corner values are looked up in the pre-computed rechability space.

R[pquery] =
2N∑
i=1

wiR[pi] (7.2)

where pquery = [xq, yq, zq, rq, pq, yq] is the query pose, pi = [xi, yi, zi, ri, pi, yi] for i = 1...2N

correspond to the neighbouring corners in the reachability space grid and wi is the proportion of the

grid occupied by creating a volume from connecting the query point and the corner pi. See [Wagner,

2008] for more details.

The α value in equation 7.1 defines the tradeoff between the conventional grasp metric and the

reachability value. Algorithm. 5 shows specifically how these three energy terms are combined.
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Given the scale of the original grasp function, we chose the α that punishes non-reachable grasps in

a way that provides a gradient from bad to good quality (force-closure) grasps. α values were set

to α1 = −0.1, α2 = 1, α3 = −10 making a continuous function where negative low energy values

correspond to reachable stable grasps, and positive high energy values correspond to unreachable

and unstable grasps.

7.3.3 Embedding Obstacles in the Reachability Space

Obstacles whose poses are not expected to change in relation to the robot can be placed in the scene

while generating the initial reachability space. This approach is applicable to modeling tables, walls

and fixtures around fixed base robotic arms, or static room environments for mobile manipulators.

This is useful for the Staubli Arm and attached Barrett Hand as shown in Fig. 7.2. This robot is fixed

to the table, next to the walls, making it reasonable to incorporate these obstacles during the initial

reachability space creation.

In order to incorporate obstacles into our precomputed reachability space, we mask out regions in

the robot reachability space that overlap with an obstacle i.e. locations that were otherwise reachable

but now overlap with an obstacle are marked as unreachable. This corresponds to modifying the

reachable space in the first block of Fig. 7.3. Then we can then regenerate an SDF representation of

the resulting reachable space. The SDF generation is fast, taking 2-3 seconds on average, and this

step is only required when the workspace changes.

7.4 Experiments

We describe different experiments in both simulation and physical environments performed to assess

the performance of our method on multiple objects and under various poses. We use the Fetch mobile

manipulator from Fetch Robotics as our robot platform (both simulated and real experiments).

7.4.1 Grasp Planners

For experiments we compared the following grasp planning methods:

Sim. Ann. Contact and Potential(SA-C&P): Simulated Annealing in GraspIt! using the Contact

and Potential energy function from Algorithm 4.
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Sim. Ann. Reachability-Aware(SA-Ours): Simulated Annealing in GraspIt! using the newly

proposed energy function from Algorithm 5.

Uniform Sampling(Uniform): Uniformly sample 20 grasps around the z-axis of the object as shown

in Fig. 7.4

Grasp Database(Grasp DB): Retrieve 60 pre-computed grasps from a database for the given object

sorted by energy These grasps were computed by running the (SA-C&P) planner ahead of time, 3x

per object for 80,000 steps each run, this is significantly longer than what is done at runtime.

7.4.2 Evaluation Metrics

The metrics used for evaluating our methods include:

Percent Reachable Grasps: The number of reachable grasps divided by the total number of grasps

generated from a run of a given grasp planner.

Number Required Plan Attempts: The grasp planner returns a list of grasps ordered according to

quality. We record how many of these grasps we have to go through until a valid path can be planned.

Lift Success: Here we execute the first valid grasp from the set returned by the planner. A grasp is

successful if the gripper placed at the grasp pose can successful lift the object off the ground. We use

the Klamp’t simulator [Hauser, 2016] to test this in simulation. For the real world experiments, we

executed the grasps on the real robot and checked if the object was picked up.

7.4.3 Uniform-Sampled Grasp Ranking Experiment

Here we set-up a typical grasp planning pipeline; the Uniform planner is used to generate a set of

20 possible grasps, and the robot goes through the list of grasps attempting to create a valid motion

plan. The first grasp that a valid trajectory can be planned for is then executed. This experiment was

done for 13 unique objects as shown in Fig 7.4. Each object was run 24 times at different poses. This

resulted in 6240 unique grasps. These grasps were sorted using two energy functions Ours(Alg. 5)

and Contact and Potential(Alg. 4); We check the reachability of all grasps in the sorted lists and

evaluate the fraction of reachable grasps in each ranked position. In other words, what fraction of the

time is the first grasp in the list reachable when sorted by our Reachability Aware energy function,

what fraction of the time is the second grasp in the list reachable, and the third grasp, etc.

Figure 7.5 shows the mean fraction of reachable grasps at each position with grasps ranked using
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Figure 7.4: Reachability results for uniformly sampled grasps. Red arrows are reachable, blue are

unreachable. This visualization shows that even for objects well within the bounds of the robot

workspace, there are many invalid approach directions which are not easily modeled by simple

heuristics.

Figure 7.5: Mean fraction of reachable grasps at each position with grasps ranked using different

energy functions. X-axis is the index of the grasp in the list of 20, so 0 for the best grasp in the list,

19 for the worst. Y-axis is the percentage of reachable grasps with a given index. For our energy the

0th index or best grasp is reachable 95% of the time. Without reachability, a top ranked grasp has an

equal chances of being reachable as the 19th index grasp.
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different energy functions. Without the reachability term, a top ranked grasp has equal chances of

being reachable than a lowly ranked one. With reachability information, the probability distribution

is adjusted to make top-ranked grasp have a high chance of being reachable. In this test environment,

the first grasp returned by our method is reachable 95% of the time, while any grasp returned by the

Contact and Potential function is reachable less than 60% of the time.

7.4.4 Online Planning Challenge Scenes Experiment

Here, one of 4 target objects was placed on a table in a virtual scene in 9 very difficult to reach poses

that at were either at the extent of the robot’s workspace, or extremely close to the robot. Both of

these situations drastically limit the number of valid approach directions that the robot can use to

grasp the object. For each pose, GraspIt!’s Simulated Annealing planner was run for 40,000, 10,000

and 2,500 steps using both the SA-Ours and SA-C&P energies. The results are shown in Table 7.2.

The table shows that since the reachability term guides the sim-ann process to reachable regions, we

can run the SA-Ours for signicifantly fewer steps than SA-C&P. From the table, SA-Ours returns

double the percentage of reachable grasps compared to SA-C&P regardless of the number of steps

the planner is run for. The reachability term implicitly shrinks the search space and guides the

search to occur only in reachable regions. This improves the planner performance and allows for a

significant reduction in the number of search steps required.

7.4.5 Comparison to Grasp Database Approach

Using the same simulated challenge scenes setup as above, we compared our method to a Grasp

DB approach with the following result: % Reachable Grasps: (Ours: 86.23%, GraspDB: 19.95% ),

# Required Plan Attempts: (Ours: 0.08, GraspDB: 8.83), Lift Success: (Ours: 88.89%, GraspDB:

94.44%). The Grasp DB approach is excluded from the Table 7.2 because it is not an online grasp

planner, it requires knowledge of the object models ahead of time so that grasps can be precomputed.

Our method can be paired with geometric reasoning systems such as [Varley et al., 2016] and plan

for never before seen objects. Using only 10,000 annealing steps our method is able to come within

6% of the Lift Success performance of the Grasp DB that had a-priori information about the scene

objects.
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Table 7.2: Klampt Simulation Results: % Reachable Grasps: fraction of grasps returned by

GraspIt! that are reachable. Once GraspIt! returns a list of grasps, we iterate through the grasps and

attempt to plan a valid path for them in order of grasp quality. # Required Plan Attempts is how many

grasps we have to go through before finding a valid grasp that a path can be planned for. Lift Success:

percentage of the time that the valid grasp results in a successful 10 cm lift of the object.

Simulation Results on

Online Planning Challenge Scenes

% Reachable Grasps # Required Plan Attempts Lift Success

Simulated Annealing with 40,000 Planning Steps

SA-Ours 78.38 % 1.083 86.11 %

SA-C&P 34.53 % 3.639 69.44 %

Simulated Annealing with 10,000 Planning Steps

SA-Ours 86.23 % 0.08 88.89 %

SA-C&P 33.27 % 5.11 66.67 %

Simulated Annealing with 2,500 Planning Steps

SA-Ours 75.46 % 0.16 63.89 %

SA-C&P 36.51 % 4.17 41.67 %
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7.4.6 Grasp Planning with Dynamic Obstacles Experiment

The experimental setup as Sec. 7.4.4 is modified to include two additional distractor obstacles

representing new objects that have entered the workspace after the reachability space has already

been generated. The following different methods of handling new obstacles that are introduced at

runtime are evaluated below:

Unmodified SDF: Load target object and new obstacles into the grasp planner: This provides a hard

constraint that the hand cannot interpenetrate the objects during grasp planning. The full arm may

still interpenetrate the object as only the hand is modeled in the grasp planner. 75.8% percent of

grasp results by this method were reachable. (10% drop from 86.23% case in Table 7.2 with no

additional obstacles.)

Dynamic Obstacles Updated SDF: Load target object and obstacles into the grasp planning scene

and also embed the obstacles in the reachability space. The SDF can then be regenerated, a process

that takes 2-3 seconds on average. This updated SDF guides the annealing process both away from

the obstacles and towards reachable regions of the space increasing the % Reachable Grasps to

89.5%.

By embedding the new obstacles into the SDF, we are able to plan grasps that are 89.5% reachable

compared to 75.8% reachable when the SDF only avoids self collision and static objects such as

tables and walls.

7.4.7 Real Robot Crowded Scene Experiment

To verify our planner and demonstrate that it works outside of simulation, the simulated annealing

based grasp planner was run with a variable number of annealing steps and the success rate was

reported in Table 7.3. This experiment compares two grasp energy formulations: SA-Ours and

SA-C&P.

Multiple objects were placed in the planning scene as shown in Fig 7.6. The additional objects

reduce the range of possible grasps since as the obstacles make many grasp poses infeasible. Note

that both methods are aware of the obstacles during grasp planning and avoid grasps in collision

with obstacles. We are able to show that our method, SA-Ours, is able to achieve grasp success –

picking the object three times out of three within the limited planning time. Conversely, SA-C&P

fails to produce a reachable grasp 2/3 times when run for 10,000 steps, and fails once even when it is
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Figure 7.6: Crowded experiment scene for real world experiments. Our Reachability-Aware planner

(SA-Ours) was able to successfully grasp the shaving cream bottle 3/3 times, while annealing without

the reachability space (SA-C&P) failed 2/3 times.

Table 7.3: Grasp success results on real robot with a crowded scene. Each method was given 3

attempts to plan and execute a grasp on the shaving cream bottle.

Crowded Scene Grasp Planning

Search Energy # Planning Steps Success Rate Mean Grasp Planning Time (s)

SA-Ours 10K 100.0% 8.706

SA-C&P 10K 33.3% 8.360

SA-C&P 40K 66.6% 32.31
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allowed to run for 40,000 steps. Despite being allowed to run for this long duration, the naive planner

spends much of its time exploring the back half of the bottle which is completely unreachable to the

Fetch robot.

7.5 Discussion

Several future research directions include: utilizing our computed reachability workspace to help

mobile robots navigate to optimal locations for manipulating objects and improvements for speeding

up the process of incorporating dynamic objects into our notion of reachability to further assist the

grasp planner.

This work provides a framework for a workspace aware grasp planner. This planner has greatly

improved performance over standard online grasp planning algorithms because of its ability to

incorporate a notion of reachability into the online grasp planning process. This improvement is

accomplished by leveraging a large precomputed database of over 675,84 unique end-effector poses

which have been tested for reachability. At runtime, our grasp planner uses this database to bias the

hand towards reachable end effector configurations. This bias allows the grasp planner to generate

grasps where a significantly higher percentage of grasps are reachable, a higher percentage result in

successful grasp executions, and the planning time required is reduced.
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Chapter 8

Conclusion

In this thesis, a variety of algorithms and techniques were introduced to improve robotic grasping

systems. Chapters 4 and 7 overviewed how simulated data could be leveraged to improve grasp

planners. Chapter 5 looked at how a CNN can be used reason about object geometry, and produce

meshes useful for robotic grasp planning. In Chapter 6 a CNN was trained to provided an updated

understanding of object geometry using both depth and tactile information. All of these ideas are

overviewed in Figure 8.1 and were designed to address the problem statement of this thesis.

Providing robots with the ability to grasp objects has remained a challenging problem despite

decades of research. Historically, robotics has been made approachable by constraining the systems

environment and encoding ample prior knowledge about how to deal with the scene and objects that

will be manipulated in heuristics or hard-coded rules. The problem this thesis looks to address is

how can we replace these hard-coded heuristics and required constraints in order to build systems

that scale beyond specific situational instances and gracefully operate in a wide variety of novel

conditions. The heuristic rule based strategies of the past that were used to accomplish tasks such as

scene segmentation or reasoning about occlusion do not scale. These heuristic strategies only work

in constrained environments where a roboticist can make simplifying assumptions about everything

from the geometries of the objects to be interacted with, level of clutter, camera position, lighting,

and a myriad of other relevant variables.

This thesis provides a strategy to move robots into more general environments and move beyond

heuristic based strategies. We demonstrate how a grasping system can be built that is robust to

changes in environmental variables. This robustness is enabled by a new found ability to empower
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Execution:

Perception:

4) Visual-Tactile Geometric Reasoning 

Visual-Tactile 
Fusion CNN

Fused Depth + 
Tactile 

New Object Geometry 
Hypothesis

Planning:

2) Grasp Planning with 
Heatmaps 

1) Visual 3D Shape Completion

CNN

3) Reachability-Aware Grasp 
Planning 

Figure 8.1: Overview of contributions from this thesis and where they fit within a perception,

planning and execution breakdown of robotic grasping. The contributions include: The shape

completion work from Chapter 5. Novel approaches to grasp planning with heatmaps (Chapter 4),

and reachability aware planners (Chapter 7). We have also covered how visual and tactile information

can be combined to improve our understanding of object geometry (Chapter 6).
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novel machine learning techniques with massive amounts of synthetic training data. The ability

of simulators to create realistic sensory data enables the generation of massive corpora of labeled

training data for various grasping related tasks. We show that it is now possible to build data driven

systems that works in the real world trained on synthetic data. These datasets are embedded in

effective mediums such as neural networks or signed distance fields so that the information can be

leveraged at runtime. In addition, this ability to train and test on synthetic data allows for quick

iterative development of new perception, planning and grasp execution algorithms that work in a

large number of environments. In summary the purpose of these thesis has been to aggressively

avoid encoding assumptions about the environment and tasks to be accomplished within hand crafted

heuristics. Instead, we create a robust framework for robotic grasping that is data driven and made

effective by leveraging simulation to create massive datasets embedded in CNNs and other useful

representations that are efficiently used at runtime.

8.1 Thesis Summary

The initial work in this thesis towards accomplishing this goal have been the creation of a grasp

planner that has learned what stable grasps look like in RGBD images. The planner has distilled

a dataset of prior experience into a CNN that can be used at runtime to produce heatmaps useful

for annealing. This learned measure of grasp stability meant that the grasp planner could learn to

reproduce semantically meaningful grasps, or any other desired grasps by providing the system with

training data representative of the desired behavior.

Next we demonstrated a novel shape completion algorithm for enabling a robotic grasping system

to reason about occlusion. We showed that this skill improves the system’s ability to plan and execute

stable grasps compared to both heuristic and other data driven methods for reasoning about object

geometry. Again the data for this system was generated in simulation and embedded into a CNN

for easy use at runtime. New training data could be simulated to adjust the system’s behaviour

rather than writing additional code. This 3D CNN allowed are grasping system to cope with 100s of

meshes viewed from hundreds of angles and to handle novel objects gracefully. This offered a huge

improvement compared to the RANSAC based approach which could only handle tens of objects

or the symmetry based approaches which required strong assumptions to be satisfied about object
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geometry.

Additionally, we built upon the initial shape completion work, and built a system capable of

utilizing a large dataset of both tactile and depth data to improve a model of an object using multiple

sensory modalities. Again, the data used in this work was generated in simulation, and the architecture

used here allowed us to do away with heuristics and constraints related to symmetry and axes of

extrusion.

Finally, we showed how to leverage a large precomputed dataset of IK checks done in simulation.

The reachability results from the IK checks were embedded into a signed distance field, and algo-

rithms were developed in order to speed up a simulated annealing based grasp planner by using this

SDF. Not only did the use of the reachability space speed up grasp planning, it also improved the

resultant planned grasps as more time was spent in feasible regions of the workspace.

8.2 Current Limitations and Future Work

One of the many exciting things about robotics research is that there is always more to be done. One

avenue of future research is the further integration of several of the works within this thesis. Particu-

larly, the shape completion work with the Heatmaps for Grasp planning work and the reachability

space. It should be feasible to extend the 2D heatmaps into 3D heatmaps so that the locations of

the palm and fingers do not have to be projected back into an image plane. Then it will be possible

to run a simulated annealing planner while utilizing 3 sets of 3D grids, the reachability SDF, an

occupancy voxel grid from the shape completion work, and a grasp affordance voxel grid from an

extended version of the heatmap work. This should make an incredibly fast planner, and these maps

may also be interesting to use as a rich 3D internal representation of a workspace for the utilization

of a Reinforcement Learning agent. It would also be interesting to modify the heapmap CNN to

directly produce a grasp location and posture.

Several future avenues of research for the shape completion work include the use of Generative

Adversarial Networks (GANs)[Goodfellow et al., 2014] for training, migrating to a larger object

dataset such as ShapeNet[Chang et al., 2015], and using the completed object as a query to retrieve

grasps planned on similar objects as done with the Columbia Grasp Database[Goldfeder et al., 2009a]

and DexNet[Mahler et al., 2016]. It would also be exciting to more closely coupling the CNN trained
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to reason about object geometry with grasp planning, in similar spirit to the work done here [Yan et

al., 2017].

For the Depth and Tactile refinement work, the next generation of tactile sensors such as GelSight

will provide significantly more detailed information about the contacts occuring between the object

and hand compared to the built in capacitive sensors on the Barrett hand. This improved sensors

should continue to make research in tactile sensing more tractable as many current sensors are

incredibly noisy, expensive, and exhibit a large amount of hysteresis. We can also look forward to

the continued improvement of our ability to simulate contact sensor data in simulation so that we are

able to build larger and more accurate synthetic datasets.

From the Reachability work, It should be possible to extend the SDF to model both the arm and

the hand rather than just the arm. It would also be interesting to use the SDF annealing framework

that was setup with other information such as priors for how likely the current hand configuration is

to be stable.

8.3 Learning To Grasp: A Stepping Stone

Robotic grasping is a stepping stone in building functional robotic systems capable of operating

outside of constrained laboratory, factory, and warehouse conditions. Building systems capable of

interacting within our homes, work environments, outdoors, and other locations requires abilities

to; Perceive and organize the rich stream of sensory data these systems are exposed to. Plan how

to execute complicated motions that are motivated by and included the rich corpus of semantic

common sense knowledge that we posses. And an ability to realize a desired plan while incorporating

additional sensory feedback. These 3 problems can all be explored in the test bed of robotic grasping.

Grasping is a precursor to manipulating and interacting with our environment, and once we can pick

things up in a meaningful and robust way, I don’t think it will be much more difficult to figure out

how to reorient grasped objects, or use them as tools to further affect changes in the environment.

All of these tasks will tap into the same core skill set that is required to accomplish robotic grasping.

Once we can solve grasping, we will quickly soon after be able to build robotic systems that can do

many things.
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