
Improving Robotic Manipulation via Reachability, Tactile, and

Spatial Awareness

Iretiayo Adegbola Akinola

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2021

© 2021

Iretiayo Adegbola Akinola

All Rights Reserved

Abstract

Improving Robotic Manipulation via Reachability, Tactile, and Spatial Awareness

Iretiayo Adegbola Akinola

Robotic grasping and manipulation remains an active area of research despite significant

progress over the past decades. Many existing solutions still struggle to robustly handle

difficult situations that a robot might encounter even in non-contrived settings. For example,

grasping systems struggle when the object is not centrally located in the robot’s workspace.

Also, grasping in dynamic environments presents a unique set of challenges. A stable and

feasible grasp can become infeasible as the object moves; this problem becomes pronounced

when there are obstacles in the scene. This research is inspired by the observation that

object-manipulation tasks like grasping, pick-and-place or insertion require different forms

of awareness. These include reachability awareness– being aware of regions that can be

reached without self-collision or collision with surrounding objects; tactile awareness– ability

to feel and grasp objects just tight enough to prevent slippage or crushing the objects; and

3D awareness– ability to perceive size and depth in ways that makes object manipulation

possible. Humans use these capabilities to achieve a high level of coordination needed for

object manipulation. In this work, we develop techniques that equip robots with similar

sensitivities towards realizing a reliable and capable home-assistant robot.

In this thesis we demonstrate the importance of reasoning about the robot’s workspace

to enable grasping systems handle more difficult settings such as picking up moving ob-

jects while avoiding surrounding obstacles. Our method encodes the notion of reachability

and uses it to generate not just stable grasps but ones that are also achievable by the

robot. This reachability-aware formulation effectively expands the useable workspace of

the robot enabling the robot to pick up objects from difficult-to-reach locations. While

recent vision-based grasping systems work reliably well achieving pickup success rate higher

than 90% in cluttered scenes, failure cases due to calibration error, slippage and occlusion

were challenging. To address this, we develop a closed-loop tactile-based improvement that

uses additional tactile sensing to deal with self-occlusion (a limitation of vision-based sys-

tem) and adaptively tighten the robot’s grip on the object– making the grasping system

tactile-aware and more reliable. This can be used as an add-on to existing grasping sys-

tems. This adaptive tactile-based approach demonstrates the effectiveness of closed-loop

feedback in the final phase of the grasping process. To achieve closed-loop manipulation all

through the manipulation process, we study the value of multi-view camera systems to im-

prove learning-based manipulation systems. Using a multi-view Q-learning formulation, we

develop a learned closed-loop manipulation algorithm for precise manipulation tasks that

integrates inputs from multiple static RGB cameras to overcome self-occlusion and improve

3D understanding. To conclude, we discuss some opportunities and directions for future

work.

Table of Contents

List of Figures v

List of Tables xi

Acknowledgements xiii

Dedication xvi

1 Introduction 1

1.1 Spatial Awareness . 2

1.2 Sensor Awareness . 3

1.2.1 Tactile Awareness . 3

1.2.2 Visual 3D Awareness . 3

1.3 Contributions Per Chapter . 4

2 Workspace Aware Online Grasp Planning 7

2.1 Workspace-Awareness during Grasp Planning 7

2.2 Offline Reachability Space Generation . 10

2.3 Reachability Space Representation . 10

2.4 Online Reachability-Aware Grasp Planning 14

2.4.1 Simulated Annealing for Grasp Planning 14

2.4.2 Novel Grasp Energy Formulation . 15

2.4.3 Embedding Obstacles in the Reachability Space 17

i

2.5 Experiments . 18

2.5.1 Evaluation Metrics . 19

2.5.2 Grasp Planning with Runtime Obstacles Experiment 20

2.5.3 Real Robot Crowded Scene Experiment 24

2.6 Summary . 25

3 Motion-Aware Reaching and Grasping of Moving Objects in Cluttered

Environments 26

3.1 Introduction . 27

3.2 Related Works . 30

3.2.1 Grasping in Dynamic Environments 30

3.2.2 Database-based Robotic Grasping 31

3.2.3 Object Tracking . 31

3.2.4 Motion Generation . 32

3.3 Problem Definition . 33

3.4 Method . 33

3.4.1 Overview . 33

3.4.2 Object Motion Modelling . 34

3.4.3 Grasp Planning for Moving Objects 36

3.4.4 Motion Generation and Grasp Execution 39

3.5 Experiments . 40

3.5.1 Experimental Setup . 41

3.5.2 Experimental Results and Discussion 44

3.6 Conclusion . 48

4 Tactile-Aware Multi-fingered Grasping 49

4.1 Multi-Fingered Adaptive Tactile Grasping 50

4.2 Related Work . 53

4.2.1 Vision-Based Closed-Loop Grasping 53

ii

4.2.2 Robotic Grasping with Tactile Only (Blind Grasping without Vision) 53

4.2.3 Improving Vision-Based Grasping using Tactile or Other Contact

Force Modalities . 53

4.3 Preliminaries . 55

4.4 Multi-Fingered Adaptive Tactile Grasping 56

4.4.1 Observation Space . 58

4.4.2 Action Space . 59

4.4.3 Reward Structure . 62

4.4.4 Soft Proximal Policy Optimization 63

4.4.5 Curriculum Learning . 65

4.5 Experiments . 66

4.5.1 Results and Discussions . 67

4.5.2 Grasping under Calibration Noise . 68

4.5.3 Extensive Ablation Experiments . 69

4.6 Summary . 72

5 3D-Aware Closed-Loop Manipulation via Multiple Camera Views 73

5.1 Learning Precise 3D Manipulation from Multiple Uncalibrated Cameras . . 74

5.2 Related Work . 76

5.2.1 Precision Robotics Manipulation . 76

5.2.2 Vision-based Robot Manipulation . 78

5.3 Preliminaries . 81

5.3.1 RL Formulation for Task Learning 81

5.3.2 Q Target Optimization (QT-Opt) . 82

5.3.3 Robot Simulation Setup . 82

5.4 Multi-View Task Learning . 84

5.4.1 Single View . 85

5.4.2 Multi-Tower (MV Towers) . 85

iii

5.4.3 Siamese (MV Siamese) . 85

5.4.4 Sensor Dropout (MV Dropout) . 86

5.4.5 Q-Aggregate Network (MV Q AGG) 86

5.5 Experiments . 89

5.5.1 Single and Multi-View Insertion . 91

5.5.2 Varying Task Difficulty . 91

5.5.3 Camera Dropout Robustness Test 92

5.6 Summary . 92

6 Conclusion 94

6.1 Current Limitations and Future Work . 97

6.2 Closed-Loop Sensory Awareness: An important ingredient for Complex Robotic

Manipulation . 99

Bibliography 99

iv

List of Figures

2.1 Reachability results for uniformly sampled grasps (Red arrows reachable, blue un-

reachable). Even for objects well within the bounds of the robot workspace, there

are many invalid approach directions which are not easily modeled by simple heuristics. 9

2.2 Workspace Aware Online Grasping Framework - Offline: 1) the robot’s

reachability space is queried for IK solutions that are free of collisions with

the robot itself and fixtures such as walls and tables. 2) An SDF is created

from the reachability space. Online: 3) Grasp planning is quickly accom-

plished utilizing the reachability space SDF. 4) A motion plan for one of the

planned grasps. 5) Trajectory executed by the robot for a stable grasp. . . 10

2.3 Top Row: Visualization of cross sections of the precomputed reachable space for a

Fetch Robot and Staubli Arm with Barrett Hand. Green arrows represent reachable

poses, red arrows unreachable. This space is computed offline, once for a given robot.

Bottom Row: Signed Distance Field generated from the above reachability spaces. 12

v

2.4 Mean fraction of reachable grasps using different energy functions for varying plan-

ning duration. The red plot shows that using pure grasp planning with no notion of

reachability gives grasp results that have a low chance of being reachable (48.2% for

Fetch and 18.8% for the Staubli-Barrett). The blue plot shows that our reachability

aware grasp planner results in a higher fraction (> 25% increase) of reachable grasps

for both robots. The green plot shows the additional gain obtained when we embed

obstacles into the SDF reachability space. This results in reachable grasps that have

feasible IK results and do not collide with the obstacles hence an increase in the

overall fraction of reachable grasps. 21

2.5 Crowded scene for real world experiments. Top (Fetch Robot): Our Reachability-

Aware planner (SA-Ours) was able to successfully grasp the shaving cream bottle 3/3

times, while annealing without the reachability space (SA-C&P) failed 2/3 times.

Bottom (Staubli-Barrett Robot): SA-Ours successfully grasped the pringles bottle

5/5 times, while SA-C&P failed 3/5 times. 23

3.1 Dynamic Grasping Problem: A moving target object is to be grasped and lifted.

The object pose and motion is not known a priori and has to be estimated online.

Full degree-of-freedom grasps should be explored to come up with feasible grasps

that can pick-up the object before it escapes the robot’s workspace. 28

3.2 Dynamic Grasping Framework. a) Instantaneous pose estimation runs continuously

to keep track of the moving object and we use a recurrent neural network to model

the motion of the target object and predict its future pose. b) Full grasp database

are ranked and filtered based on reachability. c) Pick the grasp from filtered list

that is closest to the current arm configuration. Arm trajectory is generated based

on the future pose of the moving object. Arm trajectory from previous time step is

used to seed the planner in current step. d) Approach and grasp are executed when

CanGrasp condition is satisfied. 29

vi

3.3 Dynamic Grasping Tasks. Experimental scenarios for picking up objects on a con-

veyor belt. The red line shows the conveyor belt trajectory. (a), (b), (c) Linear,

circular and sinusoidal motion of target object with no surrounding obstacles. (d)

Linear motion with surrounding static obstacles. Green rectangles are the sub-

regions where we sample obstacle locations. (e) Linear motion with slab fixture

that limits feasible grasping directions. (f) Real Robot Demo: Linear motion of

target object moving at 4.46 cm/s. 39

3.4 A bird’s-eye view of randomized linear, circular and sinusoidal conveyor belt motion

generation process. A random experiment motion is parameterized by angle θ, dis-

tance r, direction d, and length l. The cross indicates the position of the robot base.

The red line shows the motion of the conveyor belt, with an arrow indicating the

direction. The horizontal dashed line indicates the x-axis of the world frame. Left:

linear motion. Middle: circular motion. Right: sinusoidal motion. 43

3.5 Seven objects from the YCB Object Database selected as the graspable objects in

our experiments. All seven are used for simulation experiments while the last three

are used for the real robot experimentation. 44

3.6 Success rate vs. distance. Improvement from reachability awareness becomes more

significant when the moving object is extremely close to or far from the robot. This

expands the effective workspace of the robot to better handle difficult-to-reach near

and far grasp poses. 47

4.1 Open-Loop Grasping. Open-loop grasping (a) planned from an initial image of

the scene fails to form a stable grasp (b). 51

vii

4.2 Multi-Fingered Adaptive Tactile Grasping. Behavior of our policy given (a)

a coarse initial grasp pose. (b) The robot begins by closing the fingers in small

increments to form a grasp adapting to tactile contacts as they occur. (c) Eventually,

unsatisfied with the tactile and proprioceptive observations, the policy decides to

reopen the hand and (d-e) adjust the end-effector position and orientation. (f-g)

The policy closes the fingers incrementally again. (h) Finally, the policy ends the

episode with a lift action and successfully picks the object up. 51

4.3 Setup. (a) A tactile-enabled Barrett Hand in PyBullet simulation for training. (b)

Real robot for evaluation. 57

4.4 Multi-Fingered Adaptive Tactile Grasping. Given an initial grasp pose ob-

tained from a vision-based system, for example, the architecture uses soft proximal

policy optimization to learn a grasping behavior. The state space consists of tactile

contact readings (s
(∆)contacts binary
t), contact Cartesian locations (s

(∆)contacts xyz
t)

and finger joint angles (s
(∆)joint angles
t). Using a few deep neural networks, features

are extracted from the six components of the state space, squashed to [−1, 1] using

tanh activations, and finally concatenated into an embedding. This latent embed-

ding is passed through another set of fully connected layers and then outputs a grasp

action that specifies how to incrementally close each finger (afinger1t , . . . afingernt),

whether to lift (aliftt), whether to reopen (areopent), and how to adjust the end-

effector in case of reopening (awrist rotation
t). The top portion of the figure shows

how the robot’s behavior is determined by at. First, it chooses to either continue

current grasp or reopen and adjust the grasp. If it continues current grasp, it checks

whether to lift, and if not, how to incrementally close the fingers. A binary reward is

obtained if lifting results in pick-up success. This reward, along with a small penalty

for frequent reopening (Section 4.4.3), is the signal used to train the network in a

deep RL manner. “FC m, ReLU” refers to a fully connected layer with output

dimension of m followed by a ReLU activation. 64

4.5 Real-World Grasping of Novel Objects with 5cm Y-Axis Calibration Noise 68

viii

4.6 Grasping in Simulation under Calibration Noise. MAT (blue) shows ro-

bustness under increasing calibration noise compared to a strong vision-only base-

line [114] (orange) which degrades significantly. 69

5.1 Multi-view Task Learning. An insertion task where a block is placed into

a fixture. This task requires 3D understanding and alignment. A single view

system that sees only one of the images would have a difficult time resolving

the alignment challenge. Our system combines information from multiple

views and achieves better performance on precision-based robotic tasks. . . 75

5.2 Multi-view Insertion Task Learning. A few key stages of the insertion

task shown above include; start, pick, align, and drop. A single-view system

that uses only the top image view struggles with stages that require 3D align-

ment. Our system combines information from multiple views and enhances

performance on precision-based robotics. These 3 camera viewpoints are used

for the Stacking I, Stacking II and Insertion tasks in the experimental section. 78

5.3 a) A multi-tower architecture for incorporating multiple views. Each view has

its own tower whose representations are then combined followed by additional

network layers to produce a single Q-value. b) An aggregate architecture has

a separate Q-network for each individual view, the final Q-value is the mean

of the per view Q-values. See Figure 13 of QT-Opt[53] for details of the

single-view architecture (with Conv and FC block definitions) from which

our multi-view architectures were adapted. We use their original single-view

network with modified input vectors shown above as a baseline. 79

ix

5.4 Tasks with Varying Difficulty The value of multi-view task learning de-

pends on the level of 3D understanding and precision required for the task.

The images above show sampled initial images and final images to illustrate

the desired outcomes. Left [a,d]: The Stacking I task requires a block from

the right side be placed on top of the block on the left side. The task has

a large margin of error since the blocks are big enough that perfect align-

ment isn’t required to succeed. Middle [b,e]: The blocks are smaller so

there is a need for more precise placement, hence the performance benefit of

having multiple views is potentially higher. Right, [c,f]: The insertion task

requires the block placed into the middle placement location (green hole) of

the fixture. This requires precise alignment which difficult from a single view,

hence there is significant benefit to using multiple views. 83

5.5 Insertion Task Training Curves. Running average comparison of SV

and MV architectures trained either 4 million (4M) or 8 million (8M) train-

ing iterations taking up to 40 hours. MV Dropout and MV Q Agg results

achieve the best and comparable performance on this task. Importantly, sen-

sor dropout during training leads to a huge difference in performance between

MV Towers and MV Dropout. 87

5.6 Comparison of best performing SV and MV models across different

tasks. The relative gains from a multi-view approach are dependent on task

with harder tasks gaining more. Switching from single to multi-view results

in the following absolute performance gains: Stacking I 8.97%; Stacking II

20.14%; and Insertion 23.43% . 88

x

List of Tables

2.1 Grasp success results on real robot (Fetch) with a crowded scene. Each

method was given 3 attempts to plan and execute a grasp on the shaving

cream bottle. 24

2.2 Grasp success results on real Staubli-Barrett robot with a crowded scene

(Figure 2.5). Each method is given 5 attempts to plan and execute a grasp

on the pringles bottle. 24

3.1 Simulation Experiments for the Kinova Mico (Top) and UR5 (Bottom) robot arms.

For each entry, run on 7 objects and 100 trials each. We report success rate, dynamic

grasping time (s) averaged over 700 trials. 45

4.1 Experimental Results (% Grasp Success ± Standard-Dev) 67

4.2 Ablation and Tactile Baseline Results (% Grasp Success ± Standard-Dev) . 70

xi

5.1 View Dropout Experiment (% Task Success on Insertion Task): This

table overviews how different trained policies perform as the number of views

available at runtime is reduced. The Multi-View and Multi-View (Dropout)

rows were all trained with observations from 3 views, but evaluated with

3, 2, and 1 view. The single view baselines were trained with 1 view and

evaluated with 1 view. Of note is the fact that the Multi-View (Dropout)

significantly outperforms the Single View baselines even when only provided

a single view at runtime. It also outperforms the Multi-View model trained

and evaluated with 3 views implying the dropout procedure has benefits even

when all views are available. All numbers in the table come from the average

of evaluating the final trained policy for 700 episodes. 89

xii

Acknowledgments

I am super grateful to God who has blessed me with an abundance of opportunities and

for the people he has strategically placed as help at various junctures in my journey.

My PhD years have been a time of growth research-wise and professionally, primarily

due to the conducive environment created by my advisor Peter Allen. I have enjoyed

his full support on all fronts – research direction and professional tutelage on how to be

an excellent multi-disciplinary researcher. He gave me the intellectual room to engage in

multiple research efforts and grow as a researcher. For all these and many more, I remain

grateful to Peter.

Jacob Varley, a senior PhD candidate at the time I joined, let me into the robotics lab

on my first day on Columbia campus in the middle of winter. He ensured that I had the

best possible transition from an Electrical Engineering background into the nitty-gritties

xiii

of robotics research. His counsel on all things including research, career, and others have

been super valuable. I am very glad to call him a friend. I also greatly benefitted from my

interactions with the Faculty of the department providing advisory and academic support

at every turn. Particularly, Paul Sadja, Matei Ciocarlie, Shuran Song, Carl Vondrick and

Augustine Chaintreau. Thanks for making yourself available at all time for both short and

long conversations. I am also grateful to Anne Flemming, Jessica Rosa, Maria Joanta,

Cindy Meekins, Ivy Elkins and the entire staff of the department for all their support in

navigating all the milestones of the program.

My time at Columbia has been enriching due to the excellent collaborators I have had

the privilege of interacting with. I was always mentally stimulated and challenged by my

interactions with Boyuan Chen, Bohan Wu, Zizhao Wang, Jingxi Xu, Jack Shi, Abhi Gupta,

David Watkins, Chad DeChant, Jonathan Koss, Carlos Martin, Aalhad Patankar, Xiaomin

He, Pawan Lapborisuth, Vaibhav Vavilala among others.

I would like to thank the sponsors of my PhD program: the Presidential Special Schol-

arship for Innovation and Development, Nigeria was vital in the early years of my program

and the Microsoft Research PhD Fellowship Program provided invaluable support over the

xiv

last few years of my PhD program. The awards relieved a lot of pressure and enabled me

to focus on my PhD research in a meaningful way.

My research internships at AutoDesk and Google gave me unique perspectives and

exposure to industry-level research and an opportunity to learn from excellent researchers

and good people. I benefitted greatly from my interactions with Heather Kerrick, Evan

Atherton, Nick Cote and the entire team at the Autodesk Applied Research Lab. At

Google, I had the honor of working closely with Jacob Varley, Dmitry Kalashnikov, Vikas

Sindhwani, Anelia Angelova, Micheal Ryoo, Yao Lu and the entire robotics research teams.

The various interactions facilitated my growth as a robotics researcher.

Last but not the least, I am deeply indebted to my family for all the support and

encouragement every step of the way. My wife, Simone Fobi, is the first filter that has

the challenge of listening to and refining my very raw ideas. My deepest gratitude to my

parents for giving me the foundation and the belief to even take on the daunting journey

of the PhD. I am so grateful for their counsel, encouragement and prayers. Finally, I would

like to thank my siblings, close family and friends for their love and support.

xv

To my family

xvi

Chapter 1

Introduction

Robotic manipulation research has made significant progress in developing high-performing

algorithms that work well in static well-structured environments. These largely open-

loop algorithms work well when the target objects are right in the middle of the robot’s

workspace, singulated without clutter, firmly affixed so as not to move on contact, and

generally grasped from a limited approach direction (e.g. overhead). However, robotic ma-

nipulation becomes much harder in cluttered, dynamic environments where the objects can

be static or moving, collision avoidance is harder, and the target object may be near the

reachable limits of the robot workspace. For example, picking up a moving object from a

conveyor belt or during a human-robot handover requires the robot to reason about which

part of the object is within reach, what the motion profile of the object is, what geometric

properties of the object would aid a successful grasp, how tight to hold the object once

picked etc.

Humans are able to reason about these elements to seamlessly manipulate objects;

getting robots to achieve a similar level of coordination remains a challenge. One main

difference between human and robotic grasping systems is situational awareness of the en-

1

vironment. Specifically, two of the main awarenesses possessed by humans to aid object

manipulation are spatial awareness and sensor awareness. Using our eyes and head mo-

tions, humans are generally aware of the spatial arrangement of objects and obstacles in a

grasping environment; and we also possess proprioceptive kinesthetic awareness of our own

grasping hardware (i.e. arm, hand and fingers). One aim of this thesis is to mimic these

sensibilities in robots.

1.1 Spatial Awareness

In this dissertation we present grasping and manipulation algorithms that equip robots with

reachability awareness - being aware of regions that can be reached without self-collision

or colliding with surrounding objects. Robotic grasping for static and moving objects in

the presence of clutter requires generating grasps that satisfy three requirements: 1) stable

grasps to enable pick up success; 2) feasible grasps that the robot can reach and 3) grasps

that can be achieved via collision free arm motion. Most grasping systems optimize for just

the first objective i.e. grasp stability. This assumes that the grasp generated can be reached

and achieved by the robot. However, the generated grasp solutions might be unusable for

the robot if they do not satisfy the other collision-free reachability requirement.

This challenge of generating stable infeasible grasps stems from the fact that grasp

planning and motion generation are decoupled in many systems. To address this, we use a

grasp planning formulation that incorporates information about the robot’s workspace used

for arm motion generation into the grasp planning objective. We explore the application

of this reformulation in different settings especially along two dimensions: first grasping a

target object in the presence of obstacles and second grasping static versus moving objects.

2

1.2 Sensor Awareness

Adding external sensory data is a hallmark of the prototypical sense-perceive-act robotic

cycle. It is especially important in grasping, where many DOF’s are in play in complex

spatial environments. Adding sensor awareness can create closed-loop algorithms that can

adjust to changing, dynamic conditions during grasping. The vision and tactile capabilities

of humans are amazing, and imbuing robots with some of these capabilities is a continuing

challenge.

1.2.1 Tactile Awareness

Even when the objects are well within the reachable region of the robot, high performing

grasping algorithms still suffer from common failure cases like poor calibration, object slip,

and collisions among others. These failure cases usually show up in the final moments of the

grasping process and require online adjustments which are difficult for the popular purely

vision-based open-loop systems. Typically, a vision system is occluded by the robotic hand

when these problems occur, rendering it useless. One solution is to enable tactile feedback

from finger/palm contacts to reason about the state of a grasp and also its potential recovery

if failing. We will present a closed-loop algorithm that uses tactile and proprioceptive

information to adaptively act through both fine finger motions and larger regrasp movements

to execute stable grasps.

1.2.2 Visual 3D Awareness

Beyond grasping, there are other manipulation tasks like stacking, insertion and precision

kitting, that require a higher level of manipulation precision. These sorts of tasks require

accurate 3D geometric knowledge of the task environment including object shape and pose,

3

relative distances and orientation between key locations in the scene among others. For

example, solving an insertion task requires picking up an object using the geometry and

pose of the object and sticking it in a hole using the pose of object relative to the hole.

Many of the existing vision-based robotic manipulation systems employ a single camera

to observe the task scene. However, the rich 3D information required for solving precision-

based tasks is usually limited from a single camera input. For example, it is usually hard

to resolve scale and alignment from a single view. Even for humans, navigating a room

or completing a task with one eye closed becomes more challenging from a lack of depth

perception. In addition, single view systems are very susceptible to occlusion during task

learning requiring the robot to actively move out of the way and reset during task execution.

To address these limitations, we propose using a multi-view camera setup to solve

precision-based object manipulation. Since cameras are cheap and ubiquitous, adding a

few more cameras to capture multiple views of the task scene is a practical and feasible

option. This research develops techniques for combining multiple camera views to improve

the state estimation and increase the robustness of robot action in learning-based robotic

manipulation systems. Our approach is a reinforcement learning based method that takes in

multiple color (RGB) images from different viewpoints as input and produces safe, collision-

free robot actions in a closed-loop fashion.

1.3 Contributions Per Chapter

Our contributions presented in the chapters of this dissertation are as follows:

• In Chapter 2, we present a workspace-aware grasping framework that incorporates a

notion of reachability into the online grasp planning process. This framework greatly

4

improves the performance of standard online grasp planning algorithms by biasing

the hand towards reachable end-effector configurations during grasp search effectively

reducing the search space. The bias keeps the grasp planner in accessible regions of the

planning scene so that the resulting grasps are tailored to the situation at hand. This

results in a higher percentage of reachable grasps, a higher percentage of successful

grasp executions, and a reduced planning time. We also present experimental results

using simulated and real environments.

• In Chapter 3, we show that we can extend the reachability-aware grasping approach to

improve grasping in dynamic environments, where objects might be moving on a con-

veyor belt or during handovers between humans and robots. In addition, we use object

motion prediction and trajectory seeding to continually generate arm motion till the

grasp is realized. Experiments on linear and smooth nonlinear motions demonstrate

that our method outperforms the baseline methods in picking fast moving targets

within static obstacles.

• In Chapter 4, we introduce Multi-Fingered Adaptive Tactile Grasping, or MAT– a

high-performance deep reinforcement learning (RL) algorithm that leverages tactile

and proprioceptive information for multi-fingered grasping in an adaptive, closed-loop

manner, improving state-of-the-art open-loop grasping systems. By smartly choos-

ing observation and action modalities that maintain small sim-to-real gaps, MAT is

trained in simulation and directly transfers to real in a high fidelity way (without ad-

ditional learning). Finally, MAT demonstrates substantially improved pick-up success

rates in real-robot experiments over a vision-based, open-loop grasping system.

• In Chapter 5, we present an effective multi-view approach to closed-loop end-to-end
5

learning of precise manipulation tasks that are 3D in nature. Our deep-RL algorithm

learns to accomplish these tasks using multiple statically placed but uncalibrated RGB

camera views without building an explicit 3D representation such as a pointcloud or

voxel grid. This multi-camera approach achieves superior task performance on difficult

stacking and insertion tasks compared to single-view baselines.

6

Chapter 2

Workspace Aware Online Grasp

Planning

In this chapter, we develop an approach that reasons about the robot arm kinematic struc-

ture and reachability during grasp generation1. Specifically, we encode a humanoid robot’s

reachable spots into a novel signed-distance-field representation in an offline stage. This

representation is then used to constrain grasp planning within accessible regions, enabling

it to generate not just stable grasps but ones that are also achievable by the robot. This

approach leads to increased grasp execution success and reduced planning time. We demon-

strate that our method enables to robot to reliably grasp objects near the limit of the robot’s

workspace, efffectively expanding the usable workspace of the robot.

2.1 Workspace-Awareness during Grasp Planning

Grasp planning and motion planning are two fundamental problems in the research of

intelligent robotic manipulation systems. Most of the research has treated these problems as

1 This work first appeared in IROS 2018: Workspace Aware Online Grasp Planning , by Iretiayo Akinola,
Jacob Varley, Boyuan Chen, and Peter Allen[3]

7

https://arxiv.org/abs/1806.11402

distinct research areas focusing either on: 1) how to get a set of high quality candidate grasps

[18][35] or 2) how to generate viable trajectories to bring the gripper to the desired hand

configuration [96][92][25]. While it is often convenient to treat grasp and motion planning

as distinct problems, we demonstrate that solving them jointly can improve performance

and reduce computation time. Grasp planners unaware of the robot workspace and without

a notion of reachability often spend significant time and resources evaluating grasps that

may simply be unreachable. For example, a reachability unaware planner is equally likely to

return impossible grasps that assume the robot will approach the object from the object’s

side furthest from the robot (see Figure 2.1). Our planner avoids unreachable areas of the

workspace dramatically reducing the size of the search space. This lowers online planning

time, and improves the quality of the planned grasps as more time is spent refining quality

grasps in reachable portions of the workspace, rather than planning grasps that may be

stable but are unreachable.

In order to generate grasps which are stable and reachable, we propose a new energy

function for use with simulated annealing grasp planners [18][35]. This energy function is a

weighted combination of a grasp stability term, and a grasp reachability term. Our grasp

reachability term is inspired by the idea of a precomputed reachability space which has

demonstrated utility in other robotics tasks [85][100]. In our work, we generate a densely

sampled reachability space for our robot as shown in Figure 2.3(Top Row). This offline

computation checks whether an inverse kinematic (IK) solution exists for a given pose.

This database in and of itself has utility for filtering lists of precomputed-grasps and quickly

removing unreachable grasps, leaving only reasonable grasps as possible results. We further

postprocess our reachability space and compute a signed distance field (SDF) representation

in Figure 2.3(Bottom Row). The SDF is used in our online grasp planning energy function
8

Figure 2.1: Reachability results for uniformly sampled grasps (Red arrows reachable, blue un-
reachable). Even for objects well within the bounds of the robot workspace, there are many invalid
approach directions which are not easily modeled by simple heuristics.

to guide the hand towards reachable regions of the robot’s workspace. Obstacles present in

the grasping scene can be embedded into the space prior to SDF generation which results

in a field that repels the grasp search away from poses that collide with the obstacles.

Experiments in both simulation and physical environments have been performed to

assess the performance of our method on multiple objects and under various poses. We

demonstrate that our reachability aware grasp planner results in a larger number of reach-

able grasps, a larger number of successful grasp executions, and a reduced planning time

compared to other online grasp planning methods.

Our method for workspace aware online grasp planning is overviewed in Figure 2.2. This

framework has a number of advantages. First, it combines two closely coupled processes

into one; rather than going back and forth between grasp planning and trajectory planning

9

1) Query Reachability Space 2) Create Reachability SDF 3) Reachability-Aware
Grasp Planning

4) Trajectory Planning 5) Grasp Execution

Offline Online

Figure 2.2: Workspace Aware Online Grasping Framework - Offline: 1) the robot’s reach-
ability space is queried for IK solutions that are free of collisions with the robot itself and
fixtures such as walls and tables. 2) An SDF is created from the reachability space. Online:
3) Grasp planning is quickly accomplished utilizing the reachability space SDF. 4) A motion
plan for one of the planned grasps. 5) Trajectory executed by the robot for a stable grasp.

until a feasible grasp is found, we solve for a fully reachable grasp at once. It increases the

probability of finding feasible grasps quickly since the optimization process is guided by our

energy function within reachable spaces. Also, our method is well suited for online planning

which in general is more adaptable and robust than the traditional offline grasp planning

approach and works in the case of novel objects for which precomputed grasps do not exist.

2.2 Offline Reachability Space Generation

A grasp is reachable if a motion plan can be found to move the arm from its current

configuration to a goal configuration that places the hand at desired grasp location. This

is not always possible for a number of reasons typically because no inverse kinematics(IK)

solution exists to place the hand at the desired grasp pose, self collision with other parts of

the robot, or collision with obstacles in the planning scene.

2.3 Reachability Space Representation

We observe that this definition of the original reachability space is binary, either 1 (reach-

able), or 0 (not reachable), and has no gradient that indicates the direction from non-
10

reachable regions to reachable portions of the workspace. In the context of simulated an-

nealing for grasp planning, it is beneficial to provide an energy function that has a landscape

that can guide solutions to more desired regions of the annealing space. This observation

informed a novel signed-distance-field (SDF) representation of the reachability space that is

amenable to optimization formulations. Our SDF maps a grasp pose to a value represent-

ing the distance to the manifold or boundary between the unreachable poses and reachable

poses and can be interpreted as follows dsdf = SDF (pose):

• dsdf = 0: pose lies exactly on boundary between reachable and unreachable grasp

poses.

• dsdf > 0: pose lies within the reachable region of the workspace, and is distance dsdf

away from the boundary.

• dsdf < 0: pose lies outside the reachable region of the workspace, and is distance dsdf

away from the boundary.

This field can then serve as a criteria for classifying a grasp as either lying in a reachable

space or not. And nearby hand configurations can be ordered based on dsdf , their distance

from this boundary.

Grid resolution and metric choices are two important parameters for the reachability

space and SDF generation. The 6D hand pose of a given grasp has the 3D translational

(linear) component and the 3D rotation (angular) component, two physically different quan-

tities with different units. We systematically determine good resolution levels and a good

ratio between unit linear measurements and unit angular measurements, to obtain a unified

11

Figure 2.3: Top Row: Visualization of cross sections of the precomputed reachable space for a
Fetch Robot and Staubli Arm with Barrett Hand. Green arrows represent reachable poses, red
arrows unreachable. This space is computed offline, once for a given robot. Bottom Row: Signed
Distance Field generated from the above reachability spaces.

12

6D metric space suitable for our purpose. Effectively, our metric can be defined as:

dsdf = ±
√
||∆xyz/reslin||2 + r||∆rpy/resrot||2 (2.1)

where ∆xyz and reslin (in centimeters) are the translational distance and resolution re-

spectively, ∆rpy and resrot (in radians) are the rotational distance and resolution, and r is

the relative metric ratio i.e. a distance of reslincm ≡ r ∗ resrotrad.

We vary translational resolution reslin = 5, 10, 20 cm, angular resolution resrot =

π/8, π/4, π/2 rad, and translational to rotational metric ratio r = 0.1, 1, 2, 5, 10; and checked

the performance of the SDF generated for each combination. To evaluate different reso-

lution combinations, we first randomly generate 10,000 grasp poses and checked for the

existence of an IK solution i.e. the grasp’s reachability. Then, for each of the resolution

levels, we evaluate the quality of the resulting SDF by checking what percentage of the

random grasp poses were correctly classified as reachable (or not) by the SDF manifold.

Reachable grasps evaluate to positive sdf values, unreachable grasps evaluate to negative

sdf values. The time to generate SDF from binary reachability space is recorded in each

case. From this parameter sweep, the densest resolution level reslin = 5cm, resrot = π/8rad

gives 0.992 & 0.973 as accuracy and precision respectively but takes 177secs to generate the

SDF. We observe that 10cm translational, π/4 rotational resolution levels and metric ratio

r = 1 still gives a high accuracy (0.979) and precision (0.92) with the sdf generation time

under 3secs. These choices define the metric space for the 6D hand pose reachability space:

a 10cm translation and a π/4rad rotation are equidistance in the reachability space. This

resolution analysis is done on the Fetch robot and the resolution choices is found to work

well for other robots as well. Note that we take into consideration the cyclical nature of the

13

rotational degrees of freedom during SDF generation as angles wrap around at 2π.

2.4 Online Reachability-Aware Grasp Planning

Grasp planning is the process of finding ”good grasps” for an object that can be executed

using an articulated robotic end effector. A grasp is typically classified as ”good” based

on how well it can withstand external disturbances without dropping the object. The

Ferrari-Canny method [30] is a common way to evaluate robot grasps; it defines how to

quantitatively measure the space of disturbance wrenches that can be resisted by a given

grasp. Other techniques are typically built around this metric as shown in this review [87].

Grasp planning frameworks such as GraspIt! use these grasp metrics of force and form

closure as objective functions for optimization. Since this formulation has no notion of

reachability, the grasp results, while stable, might require the end effector to be placed in a

pose that is impossible to reach given the robot’s current location.

2.4.1 Simulated Annealing for Grasp Planning

Grasp planning can be thought of as finding low energy configurations within the hand

object space. This search is done in a multidimensional space where grasps are sampled

and evaluated. The 6 dimensional (x, y, z, roll, pitch, yaw) space we generated with our SDF

is a subspace of the 6 + N dimensional grasp search space. The additional N dimensions

represent the EigenGrasps or eigen vectors of the end effector Degree of Freedom (DOF)

space as described in [18]. For the Fetch (1 DOF), N=1, and for the Barrett Hand (4 DOF),

N=2. These 6 + N dimensions describe both the pose and DOF values of the end effector.

The goal of grasp planning is to find low energy points in this 6 + N dimensional space.

These points represent the pose and hand configuration of ”good grasps”.

14

Simulated annealing (SA) [42] – a probabilistic technique for approximating global opti-

mums for functions lends itself nicely for our formulation. SA presents a number of advan-

tages in grasp planning[4]. For example, it does not need an analytical gradient which can

be computationally infeasible; it handles the high nonlinearity of grasp quality functions;

and it is highly adaptable to constraints. Our approach implicitly guides the annealing

process ensuring that sampling is done in regions of reachable space which increases the

probability of getting useful grasp solutions. While online grasping is typically avoided due

to time cost of exploring a larger search space, this work makes online grasping more fea-

sible since the majority of the space which is unreachable need not be searched. With our

new energy formulation, the annealing process will quickly drive the hand towards reachable

grasp locations. Section 2.5 below shows that this new energy function increases the success

probability of online grasping significantly.

Algorithm 1 Reachability-Aware Energy (SA-OURS)

1: procedure ReachabilityAwareEnergy
2: ep = potentialEnergy()
3: ereach = reachabilityEnergy()
4: stable = ep > 0
5: reachable = ereach < 0
6: if reachable && stable then
7: return ep + α1 · ereach
8: else if reachable && !stable then
9: econtact = contactEnergy()

10: return econtact + α2 · ereach
11: else //!reachable
12: econtact = contactEnergy()
13: return econtact + α3 · ereach

2.4.2 Novel Grasp Energy Formulation

In our work, we augment the Contact and Potential grasp energy function from [18]. The po-

tential energy term (ep) measures the grasp’s potential to resist external forces and torques

15

while the contact energy term (econtact) defines the proximity of the hand to the object

being grasped. These two terms define the grasp fitness function used by the optimization

algorithm (simulated annealing) to search for good grasp configurations. Our Reachability

Aware method augments the Contact and Potential energy function with a reachability

energy term (ereach) that encodes the kinematic constraints of the robot. We use the reach-

ability SDF (ereach := dsdf) described previously as a regularizing term to obtain a new cost

functions that drives the grasp planning optimization towards reachable hand configura-

tions. As shown in [80] discretized SDFs still model and behave like a continuous function

so it can be used during the simulated annealing optimization process to drive the search

towards reachable hand configurations. Our reachability-aware energy function E is given

as:

E = G+ αR (2.2)

where G is a metric of grasp quality (e.g. force closure), R is a measure of reachability of a

given grasp pose and α defines the tradeoff between the conventional grasp metric and the

reachability value. To optimize the overall grasp energy, we use the simulated annealing

search according to [19].

In terms of implementation, we build on the GraspIt! simulator and combine the existing

energy metrics with the new reachable energy term. The energy components have forms

that we exploit. The grasp energy term (as described in [18]) is negative when the grasp

has force closure and positive otherwise. The reachability energy has similar meaning which

gives four quadrants of possibilities. We chose the weights of each quadrants so the range

of values for the reachability term and grasp term are of the same order of magnitude.

This provides a gradient from bad to good quality (reachable and force-closure) grasps.

16

Algorithm. 1 shows specifically how the energy terms are combined. α values were set to

α1 = −0.1, α2 = −10, α3 = −10 to obtain a function where more negative energy values

correspond to more reachable stable grasps, and positive high energy values correspond to

unreachable and unstable grasps.

Since our reachability space is represented as a grid of discretized SDFs, we use multi-

linear interpolation to get (ereach := dsdf) for a given grasp pose from the reachability SDF

grid. Each query pose during the optimization is situated in the robot’s reachable space to

get the cell location and the reachability value is given as the weighted sum of the values for

the 2N (N = 6) corners of the hypervoxel where the query point falls in the pre-computed

SO(6) reachable space. The 2N corner values are looked up in the pre-computed reachability

space.

R[pquery] =
2N∑
i=1

wiR[pi] (2.3)

where pquery = [xq, yq, zq, rq, pq, yq] is the query pose, pi = [xi, yi, zi, ri, pi, yi] for i = 1...2N

correspond to the neighbouring corners in the reachability space grid and wi is the propor-

tion of the grid occupied by creating a volume from connecting the query point and the

corner pi. See [107] for more details on multilinear interpolation.

2.4.3 Embedding Obstacles in the Reachability Space

Obstacles whose poses are not expected to change in relation to the robot can be placed

in the scene while generating the initial reachability space. This approach is applicable to

modeling tables, walls and fixtures around fixed base robotic arms, or static room environ-

ments for mobile manipulators. This is useful for the Staubli Arm and attached Barrett

Hand as shown in Figure 2.3. This robot is fixed to the table, next to the walls, making it

reasonable to incorporate these obstacles during the initial reachability space creation.
17

In order to incorporate other static obstacles detected at runtime into our precomputed

reachability space, we mask out regions in the robot’s binary reachability space that overlap

with any detected obstacle prior to generating the SDF representation; this corresponds to

modifying the reachable space in the first block of Figure 2.2. Given the obstacles’ geome-

tries and poses, we first collate grid locations of the reachability space that overlap with

obstacle geometries. All grasp poses at these locations (including those that were other-

wise reachable) are marked as unreachable. Then, we regenerate an SDF representation

of the resulting binary reachable space. The SDF generation is fast, taking 2-3 seconds

on average, and this step is only required when the workspace changes. While this fast

obstacle-masking-procedure considers only the hand (not full arm configuration) and might

miss out on some other grasp poses that become infeasible due to obstacles far from the

end-effector, we’ve found that it is a reasonable approximation that works well in prac-

tice, especially when the obstacles affect arm links close to the end-effector. The masked

out obstacle locations imposes a negative field that pushes the SDF manifold further away

from the obstacles and our experiments show that this effect results in an improved grasp

planner.

2.5 Experiments

We describe different experiments in both simulation and physical environments to assess

the performance of our method on multiple objects and under various poses. All experiments

(simulated and real) are run on two robot platforms: the Fetch mobile manipulator and the

Barrett hand mounted on a Staubli Arm (Staubli-Barrett). The Staubli-Barrett set-up (see

Figure 2.3) has additional walls to limit the workspace of the robot as a safety precaution

to ensure the robot does not elbow objects outside of it’s workspace during grasping. This
18

safety box heavily constrains the range of grasping directions as many grasp poses will be

invalidated because of collision with the walls. Workspace fixtures such as the walls were

included in the scene when constructing the reachability space offline.

For each experiment, we compared a typical grasp planning method with our reachability-

aware method:

• Sim. Ann. Contact and Potential (SA-C&P): Simulated Annealing in GraspIt!

using the Contact and Potential energy function.

• Sim. Ann. Reachability-Aware (SA-Ours): Simulated Annealing in GraspIt!

using the newly proposed energy function from Algorithm 1.

2.5.1 Evaluation Metrics

The metrics used for evaluating our methods include:

• Percent Reachable Grasps: The number of reachable grasps divided by the total

number of grasps generated from a run of a given grasp planner.

• Number of Required Plan Attempts: The grasp planner returns a list of grasps

ordered according to quality. We record how many of these grasps we have to go

through until a valid arm trajectory can be planned.

• Lift Success: Here we execute the first valid grasp from the set returned by the

planner. A grasp is successful if the gripper placed at the grasp pose can successful

lift the object off the ground. We use the Klamp’t simulator [36] to test this in

simulation. For the real world experiments, we executed the grasps on the real robot

and checked if the object was picked up.

19

2.5.2 Grasp Planning with Runtime Obstacles Experiment

Here we set-up a typical grasp planning scenario: in a virtual scene, three objects are

placed on a table. One is the target object to be grasped while the other two are ”runtime

detected” obstacles that the robot must not collide with during grasping (Figure 2.5). We

use 4 different meshes as the target object. We place the target object in 9 difficult-to-reach

poses that are either at the extent of the robot’s workspace, or extremely close to the robot.

Both of these situations drastically limit the number of valid approach directions that the

robot can use to grasp the object. For each pose, GraspIt!’s Simulated Annealing planner is

run for varying number of planning steps using both the SA-C&P and SA-Ours energies.

We use two versions of our reachability-aware planner (SA-Ours), one with unmodified

SDF (Section 2.4.2) and the other with obstacles-embedded SDF (Section 2.4.3). For each

planner, we check the reachability of all planned grasps and evaluate the fraction of planned

grasps that are reachable after running the planner for a given number of steps.

The results (Figure 2.4) show the significance of our reachability-aware grasp planning

approach compared with a typical grasp planner on the same setup. Given the same amount

of time, the planners each return twenty grasp solutions and we check what fraction of them

are achievable by the robot and report the average over all 36 simulated object poses (4

objects, 9 poses). As expected, a typical grasp planner that has no notion of reachability

(shown in red) will yield a large percentage of grasps that are not feasible for the robot.

Even with additional planning time, there is no improvement in the odds of returning

reachable grasps. On the other hand, our method (shown in blue) yields significantly higher

fraction of reachable grasps (> 25% improvement). In addition, the fraction of reachable

grasps increases quickly with planning time as our method optimizes for both stability

20

Figure 2.4: Mean fraction of reachable grasps using different energy functions for varying planning
duration. The red plot shows that using pure grasp planning with no notion of reachability gives
grasp results that have a low chance of being reachable (48.2% for Fetch and 18.8% for the Staubli-
Barrett). The blue plot shows that our reachability aware grasp planner results in a higher fraction
(> 25% increase) of reachable grasps for both robots. The green plot shows the additional gain
obtained when we embed obstacles into the SDF reachability space. This results in reachable grasps
that have feasible IK results and do not collide with the obstacles hence an increase in the overall
fraction of reachable grasps.

21

and reachability of grasps. While the blue plot uses the original offline SDF, the green

plot shows that by embedding the runtime detected obstacles into the precomputed SDF,

we are able to increase the percentage of reachable grasps (Fetch: 95.7%, Staubli-Barrett:

86.1%) compared to (84.3%, 50.2%) respectively when the precomputed SDF only avoids

self collision and collision with workspace fixtures such as the walls.

After demonstrating that our method increases the feasibility of grasp planning results,

we also observe that this method also leads to a significant speedup of the grasp planning

process since the reachability energy term guides the annealing process quickly to reachable

regions hence reducing the search space. Once GraspIt! returns a list of grasps, we iterate

through the list in order of grasp quality and attempt to plan a valid path for each grasps.

When a valid grasp is found, we use the Klampt! simulator to get the lift success. For a

simple parallel jaw gripper like the Fetch gripper, there was no significant difference in the

percentage of lift success (SA-C&P: 0.95 and SA-Ours: 0.93) but our method requires

less number of motion planning attempts (SA-C&P: 2.75 and SA-Ours: 1.10) to find a

valid grasp in the list and overall returns a higher percentage of useful grasps (reachable

and lift success). Our grasp energy formulation ensures that a top ranked grasp has a

high chance of being reachable. The difference in grasp quality was more pronounced with

the 4 DOF Barrett hand. Our method not only requires less number of motion planning

attempts (SA-C&P: 6.2 and SA-Ours: 1.27), it also achieves 20% higher lift success rate

(SA-C&P: 0.75 and SA-Ours: 0.95). This is because our planner spends most of it’s

time refining grasps in the much-reduced reachable regions.

22

Figure 2.5: Crowded scene for real world experiments. Top (Fetch Robot): Our Reachability-
Aware planner (SA-Ours) was able to successfully grasp the shaving cream bottle 3/3 times, while
annealing without the reachability space (SA-C&P) failed 2/3 times. Bottom (Staubli-Barrett
Robot): SA-Ours successfully grasped the pringles bottle 5/5 times, while SA-C&P failed 3/5 times.

23

Table 2.1: Grasp success results on real robot (Fetch) with a crowded scene. Each method
was given 3 attempts to plan and execute a grasp on the shaving cream bottle.

Crowded Scene Grasp Planning (Fetch)

Search
Energy

steps
Success

Rate
Mean Grasp

Planning Time (s)

SA-Ours 10K 100.0% 8.706

SA-C&P 10K 33.3% 8.360

SA-C&P 40K 66.6% 32.31

Table 2.2: Grasp success results on real Staubli-Barrett robot with a crowded scene (Figure
2.5). Each method is given 5 attempts to plan and execute a grasp on the pringles bottle.

Crowded Scene Grasp Planning (Barrett)

Search
Energy

steps
Success

Rate
Mean Grasp

Planning Time (s)

SA-Ours 10K 100.0% 11.36

SA-C&P 10K 40% 9.53

SA-C&P 40K 60% 31.98

2.5.3 Real Robot Crowded Scene Experiment

To verify our planner and demonstrate that it works outside of simulation, the simulated

annealing based grasp planner is run with a variable number of annealing steps and the

success rate is reported in Table 2.1 and 2.2. This experiment compares two grasp energy

formulations: SA-Ours and SA-C&P.

Multiple objects are placed in the planning scene as shown in Figure 2.5. The additional

objects reduce the range of possible grasps since the obstacles make many grasp poses

infeasible. Note that both methods are aware of the obstacles during grasp planning and

avoid grasps that put the hand in collision with obstacles. Table 2.1 shows that our method,

SA-Ours, is able to achieve grasp success – with the Fetch robot picking the object three

times out of three within the limited planning time. Conversely, SA-C&P fails to produce

a reachable grasp 2/3 times when run for 10,000 steps, and fails once even when it is allowed

to run for 40,000 steps. Despite being allowed to run for a long duration, the naive planner

24

spends much of its time exploring the back half of the bottle which is completely unreachable

to the Fetch robot.

We repeat the same experiment with Staubli-Barrett robot (bottom of Figure 2.5).

Though the objects are placed roughly at the centre of the workspace, the presence of walls

and distractor objects significantly limit the range of feasible grasps for the target object.

Each method has 5 trials and we observe that the results follow the same pattern: SA-Ours

achieves grasp success all five times within the limited planning time (10,000 steps) while

SA-C&P fails 2/5 times even when run for 40,000 steps.

2.6 Summary

This chapter provides a framework for a workspace aware grasp planner. This planner

greatly improves performance over standard online grasp planning algorithms because of its

ability to incorporate a notion of reachability into the online grasp planning process. This

improvement is accomplished by leveraging a large precomputed database of over 675,840

unique end-effector poses which have been tested for reachability. At runtime, our grasp

planner uses this database to bias the hand towards reachable end effector configurations.

This bias allows the grasp planner to generate grasps where a significantly higher percentage

of grasps are reachable, a higher percentage result in successful grasp executions, and the

planning time required is reduced. It has been experimentally tested in both simulated and

physical environments with different arm/gripper combinations.

Several future research directions include: utilizing our computed reachability workspace

to help mobile robots navigate to optimal locations for manipulating objects and improve-

ments for speeding up the process of incorporating dynamic objects into our notion of

reachability to further assist the grasp planner.
25

Chapter 3

Motion-Aware Reaching and

Grasping of Moving Objects in

Cluttered Environments

In the previous chapter, we introduced a novel approach of reasoning about reachability

of robot arms and showed how reachability awareness can effectively expand the useful

workspace of robots. The experiments show that our approach enables robotic grasping in

difficult-to-reach regions in static settings.

In this chapter, we extend to notion of reachability awareness to grasping moving objects

and analyse other components required for dynamic grasping in a unified framework. 1

Our framework is aware of the arm’s reachability and the object’s motion. Specifically,

we model the reachability space of the robot using a signed distance field and quickly

screen unreachable grasps. Also, we train a neural network to predict the grasp quality

conditioned on the current motion of the target. Using these as ranking functions, we

1 This is based on joint work: Dynamic Grasping with Reachability and Motion Awareness, Iretiayo
Akinola∗, Jingxi Xu∗, Shuran Song, and Peter K. Allen[2]

26

https://arxiv.org/abs/2103.10562
https://arxiv.org/abs/2103.10562

quickly filter a large grasp database to a few grasps in real time. In addition, we present a

seeding approach for arm motion generation that utilizes solution from previous time step.

This quickly generates a new arm trajectory that is close to the previous plan and prevents

fluctuating arm motion. For modelling and predicting the object motion, we implement a

recurrent neural network (RNN). Our extensive experiments demonstrate the importance

of each of these components and we validate our pipeline on a real robot.

3.1 Introduction

Roboticists have made significant progress in developing algorithms and methods for robotic

manipulation in static environments. However, robotic manipulation becomes much harder

in dynamic environments which is often the case in the real world. For example, in dynamic

grasping, ball catching, human-robot handover, etc., the targets and obstacles to be inter-

acted with might be moving with an unknown motion. Providing robots with the ability to

manipulate objects in dynamic environments, despite being less explored, can be extremely

important in realizing automation in both industry and daily life. Figure 3.1 illustrates a

conveyor belt setting; an ability to pick up the target object without pausing the conveyor

belt or knowing the speed of the target object a priori can improve the overall efficiency of

the system.

There are many challenges brought by dynamic environments. First, continuous changes

in the environments require online and fast motion replanning. Sampling-based methods

(RRT, PRM, etc.) are not well-suited for this requirement because the randomness of solu-

tions leads to jerky and wavy motion due to the replanning at each time step. Optimization-

based methods (CHOMP, STOMP, etc.) can be time-consuming in highly cluttered scenes,

making fast replanning in dynamic environments extremely difficult. Second, most works
27

Moving Object

Dynamic Grasping

Figure 3.1: Dynamic Grasping Problem: A moving target object is to be grasped and lifted. The
object pose and motion is not known a priori and has to be estimated online. Full degree-of-freedom
grasps should be explored to come up with feasible grasps that can pick-up the object before it
escapes the robot’s workspace.

in the grasp planning literature rarely consider the approach and close motion of the grasp,

which makes a difference for a moving target. For example, a grasp facing the moving di-

rection of a target can have a higher success rate than a grasp catching the target from the

back. Third, we need to understand and predict the motion of the object because computed

plans are obsolete when executed.

Previous works have addressed dynamic grasping by introducing a number of assump-

tions such as prior knowledge of the object motion [5], waiting for the object to come to rest

before grasping, limiting the grasping directions to a single direction (e.g. only top-down

grasps [119]). In this work, we relax some of these assumptions and tackle the problem of

28

(a) Motion Prediction (b) Grasp Planning (c) Motion Generation (d) Grasp Execution

Figure 3.2: Dynamic Grasping Framework. a) Instantaneous pose estimation runs continuously
to keep track of the moving object and we use a recurrent neural network to model the motion of
the target object and predict its future pose. b) Full grasp database are ranked and filtered based
on reachability. c) Pick the grasp from filtered list that is closest to the current arm configuration.
Arm trajectory is generated based on the future pose of the moving object. Arm trajectory from
previous time step is used to seed the planner in current step. d) Approach and grasp are executed
when CanGrasp condition is satisfied.

robotic grasping for moving objects with no prior knowledge of the object’s motion pro-

file and no restrictions on the possible grasping directions of the object. The increase in

the range of possible grasping directions has the advantage of expanding the workspace of

the robot leading to more grasp options that can be very useful in the dynamic setting.

However, as the range of feasible grasp options grows, so does the range of infeasible ones.

Without a notion of reachability, it is usually preemptively time-consuming to compute IKs

for all the grasps in the database. Our method, illustrated in Figure 3.2, embraces the

advantage of an expanded workspace for full degree-of-freedom (DOF) grasps and mitigates

the reachability problem by constraining the grasp selection process to the more reachable

and manipulable regions of the workspace. In addition, we observe that the robustness of a

grasp may vary depending on the speed and direction of the moving object. To handle this,

we learn a function that predicts the robustness of grasps given the motion of the object.

This is used to rank and select a robust reachable grasp. To generate arm motion, rather

than planning from scratch each time, we seed the planning process by the solution from

the previous time step. This method allows the newly planned trajectory to be similar and

29

also speed up the computation. In summary, our main contributions are:

• Reachability and motion-aware grasp planning ranking functions that predict

the reachability and success probability for different grasps based on target pose and

motion of the target. These ranking functions are used for real-time grasp filtering.

• Adaptive motion generation an effective trajectory generation approach that in-

corporates the solution from previous timestep to seed the search process to achieve

quicker and smoother transition between different motion plans.

• Simulation and real robot evaluation procedure of systematically evaluating dy-

namic grasping performance in simulation with randomized linear / nonlinear motion

with different objects, and a real robot demonstration to pick up objects moving on

a conveyor belt.

3.2 Related Works

3.2.1 Grasping in Dynamic Environments

Grasping of static objects can be achieved via visual servoing [58] [102] [57] [38] [113] [101] [71] [117];

however, grasping in a changing environment presents a unique challenge. The robot not

only tracks the object but also has to reason about the geometry of the object to determine

how to pick it up. Some learning-based grasping systems [77] have been applied to slightly

moving scenes. Previous works demonstrate grasping of a static object in the midst of

moving obstacles [55]. Our work deals with picking a moving object while avoiding collision

with static obstacles.

30

3.2.2 Database-based Robotic Grasping

Previous works [32] [31] have looked at the idea of grasping using a precomputed database.

Most of these methods sample different grasps and evaluate them in simulation using a

geometry-based metric. These metrics use static analysis which does not account for the

dynamics of the approach and lift process. Some other methods [64] [83] generate grasp

database using a real robot which can be valuable but such data is very expensive to

collect. A recent concurrent work [26] used this technique to examine different approaches

for sampling grasps when generating a grasp database and evaluated their coverage of

possible grasping directions. They very densely sample “billions” of grasping direction and

measure the robustness of each grasp candidate using the success rate of it’s neighbours.

[112] collects grasps with randomly added perturbations on the object poses.

3.2.3 Object Tracking

Visual feedback is crucial to grasping and manipulation in dynamic environments. For

a position-based system like ours, the visual input from a camera (color and/or depth)

is continuously processed into the pose (position and orientation) of the objects in the

environment. Bayesian methods [44] [116] or deep learning techniques [99] [108] can be

applied to the input image stream to produce object poses in the camera’s frame of reference.

The noisy pose results from object pose detection systems can be filtered into more stable

values using methods such as Kalman filtering [54]. Since Kalman filtering builds a model

for the motion, this model serves as a good predictor for the future pose of the object being

tracked.

31

3.2.4 Motion Generation

When obstacles are present, reaching a moving target requires some trajectory planning

(such as RRT [60], PRM [56]) or trajectory optimization methods (such as CHOMP [86],

STOMP [52]) that are able to generate collision-free paths for the arm. Recent works

[90] [89] presented an approach to generate a sequence of constraint-based controllers to

reactively execute a plan while respecting specified constraints like collision avoidance. Our

work is more similar to works that generate arm motion from a library of stored arm motions

[8] [21] [43]. Building on these works, we propose an approach that only keeps the solution

from previous time step without a precomputed database of arm motions. This previous

solution is used to initialize tree/roadmap for sampling-based methods or as a seed for

trajectory optimization solver.

A recent work [119] presented an approach that uses motion prediction to grasp a moving

block using top-down grasps; they illustrated their approach using simulated experiments.

Our work differs from [119] in that we do not limit the grasp direction to only top-down

direction, we handle different objects and we incorporate a notion of reachability [3] to guide

the grasping process. In addition, we demonstrate our method on real hardware. Another

recent work [73] looked holistically at the problem of dynamic grasping especially during

handover between a human and a real robot. As the object moves, approximate inverse

kinematics (IK) are computed on a database of pre-computed grasps and the quality of the

IK solutions are computed and ranked. In our work, we compare the IK of filtered grasps

to the current robot joint values and pick the closest grasp.

32

3.3 Problem Definition

The task is for a robot to pick up a moving object whose motion is not known a priori and

avoid colliding with the surrounding obstacles. We assume that the models of the objects

and obstacles exist so the system can model the environment using object detection and

pose estimation. The task is successful if the robot is able to pick up and lift the correct

target object without knocking over the surrounding objects/obstacles. We also want target

object to be picked up as fast as possible. This task imitates many warehouse conveyor

belt scenarios when both the obstacle and target objects are fragile and moveable with

unplanned contact.

3.4 Method

In this section we describe the various components of our system (illustrated in Figure 3.2).

First, we describe the visual processing unit that detects object poses. We then discuss the

predictive component that estimates the future pose of the object. Next, we discuss the

online grasp planning component that produces motion-conditioned reachable and stable

grasps in real time. Finally, we present our arm motion generation method.

3.4.1 Overview

The overall algorithm is presented in Algorithm 2. Each grasp consists of a grasp pose

and a pregrasp pose generated by backing off the grasp pose for distance b. Our pipeline

takes in a known object O. It first retrieves a pre-computed database of grasps GDB for

the target object; grasps in GDB are all in object frame. In the dynamic grasping loop, it

estimates the current pose pc of the target and predicts a future pose pf with duration t.

33

t is defined as a step function of the euclidean distance d from the arm end-effector to the

planned pregrasp: t = 2s if d > 0.3m, t = 1s if 0.1m < d ≤ 0.3m, and t = 0s if d ≤ 0.1m.

We convert the grasps in GDB from object frame to robot frame according to predicted pose

pf and then filtered the grasps using the reachability and motion-aware ranking functions

described later in Section 3.4.3 and keep the shortlisted top 10 grasps GF . We pick the

grasp gc from GF that is closest to the current robot configuration and move the arm if pc

is reachable otherwise we continue to the next loop. We keep executing the algorithm until

the condition for executing the grasp is satisfied. Define the euclidean distance between the

end-effector position and the planned grasp position to be dp, and the absolute quaternion

distance between the end-effector orientation and planned grasp pose orientation to be dq,

then CanGrasp returns true if dp ≤ 1.1b and dq ≤ 20°, where b is the back-off distance.

After the condition is met, we get an updated estimate of the object pose, predict with

horizon t′ = 1s, and convert gc using the newly predicted pose p′f . The arm is then moved to

gc. The hand is closed while moving with the target for another t′′ = 0.1s. In our pipeline,

t, t′, and t′′ are configured experimentally but the optimal prediction horizon should be a

function of the end-effector speed, the distance between the end-effector and the planned

grasp pose, and the motion of the target. We leave this for future research. Finally, we

check if the object has been lifted to determine success.

3.4.2 Object Motion Modelling

Picking up moving objects requires instantaneously detecting the relevant objects in the

scene. We continuously track/model the motion of the object to be able to handle cases

where the motion profile changes with time.

34

Algorithm 2 Dynamic Grasping Pipeline

1: function DynamicGrasp(O)
2: GDB ← RetrieveGraspDatabase(O)
3: while True do
4: pc ← DetectPose(O)
5: pf ← Predict(pc, t)
6: GW ← ConvertGrasps(GDB , pf)
7: GF ← FilterGrasps(GW , pf)
8: gc ← PickGrasp(GF)
9: Continue to next iteration if gc is not reachable

10: Move arm to gc
11: if CanGrasp() then
12: p′c ← DetectPose(O)
13: p′f ← Predict(p′c, t

′)
14: gc ← ConvertGrasps(gc, p

′
f)

15: Move arm to gc
16: Close hand while moving with the target for t′′

17: Break loop

18: return CheckSuccess()

3.4.2.1 Object Detection and Tracking

In real-world experiments of this work, we use a recent learning-based method (DOPE [99])

to get instantaneous poses of moving objects in the scene. DOPE trains a neural network

model that takes an RGB image as input and outputs the pose of a target object relative

to the camera frame. A different model is trained for each object of interest and each

model can detect multiple instances of their target object. Images of the grasping scene

are captured using a kinect and passed through the DOPE models to detect objects and

obstacles in the scene. To achieve robustness, we use the published model [99] that was

trained on data collected in different lighting condition. In simulation, we directly access

the pose of the objects and obstacles in the grasping scene.

3.4.2.2 Recursive State Estimation / Object Pose Prediction

Grasp / motion planning has a time cost and a computed grasp / motion plan can become

obsolete very quickly as the object moves. As a result, an ability to predict the future pose

35

of the target object can improve the overall success of a dynamic grasping system. The

motion prediction ability is needed for both planning a grasp and executing a grasp (the

approach and close motion). While Kalman filtering (KF) [54] is a practical approach for

linear motion prediction, we adopt a recurrent neural network (RNN) approach to be able

to generalize to non-linear motions as well. The RNN continuously takes in a sequence of

instantaneous pose measurements (pt−n, · · · pt−1, pt) to update it’s internal state which is

used to predict future pose at different prediction horizon lengths (ptf1 , ptf2 , · · · , ptfm). To

train the RNN 2, we create a dataset contains planar linear, circular and sinusoidal sequence

of waypoints (2000 each) randomly generated along different directions with different start

points. To aid learning and generalization, each sequence data point is normalized to the

start of the sequence i.e. ((0, · · · , pt−1 − pt−n, pt − pt−n) → (ptf1 − pt−n, ptf2−pt−n)). This

RNN approach can also be used to model object motion during human-robot handovers.

3.4.3 Grasp Planning for Moving Objects

3.4.3.1 Grasp Database Generation

To generate grasps for moving objects, we pre-compute a database of grasps for all target

objects while they remain static. Similar to [26], this database was collected and evaluated

purely in simulation with dynamics turned on. First, we densely generate 5000 stable grasps

for each object using a simulated annealling approach [19], and we then evaluate all the

grasps in simulation; each grasp is executed to lift the object 50 times and each time we add

random noise to the object pose [112]. The success rate gives a measure of the robustness

of the grasp and we choose the top 100 robust grasps.

2RNN model: LSTM(100), 2× Dense(100), Dense(output shape).
output shape = num future × dim

36

3.4.3.2 Reachability-Aware Grasping

In the dynamic grasping setting, it is important to have a fast way to choose a feasible grasp

out of the list of stable and robust grasps. Generating collision-free IK for all the grasps

can be time-consuming; instead, we use our pre-computed reachability space to quickly

rank the grasps for the given object pose estimate (See [3] for more details). The larger

reachability value the grasp has, with higher probability a valid IK can be found for that

grasp. Reachability can also be an index of manipulability and it follows the intuition that

the most reachable grasp has higher probability to continue being reachable in the future,

reducing the number of grasp switches while the target moves around. The interpolation

and indexing of a pre-computed 6D space gives a fast way to reduce the grasp database to

a few more reachable grasps whose IK can then be found. This approach is much faster

that computing IK for the entire database and is important in dynamic settings. We can

use this reachability computation as a rank function for FilterGrasp in Algorithm 2. An

example using reachability is shown in Figure 3.2.

3.4.3.3 Motion-Aware Grasping

We observe that the success rate of a stable grasp varies depending on the motion of

the object. For example, picking up an object from behind as it moves away can result

in different success rate statistics compared to approaching in the direction opposite it’s

motion. To address this, we learn a neural network model M(g, pg, v, θ) that predicts the

success probability of a grasp g given the motion profile of the object (speed v and motion

direction θ). The input into the model includes:

• The 6D grasp pose (g ∈ R6) i.e. the {x, y, z} position and {roll, pitch, yaw} orientation

in the object’s frame of reference.
37

• The 6D pre-grasp pose (pg ∈ R6) which is the grasp pose backed off (5 cm for Mico

hand and 7.5cm for robotiq hand) along the approach direction (i.e. a vector pointing

from the end-effector towards the object).

• The speed v ∈ R of the object.

• The motion direction θ ∈ [0, 2π]. We assume a 2D planar motion parameterized by a

polar angle direction around the z-axis of the object frame.

The model has two hidden layers (512 each) and an output predicting the success probability.

We generated a dataset of 10000 grasp attempts each on 7 different objects in simulation

using the robot’s end-effector only. For each grasp attempt, the end-effector starts at the

pregrasp pose and moves towards the object while the object moves in a randomly sampled

planar direction, at a speed sampled uniformly between 0.5cm/s and 5cm/s. We record

the result of the grasp attempts and use this as supervision to train the models (one for

each object). We train 100 epochs for each object. The average training time is ∼ 5mins

and the average validation accuracy is 0.963 with False Positive Rate (FPR) 0.017 and

False Negative Rate (FNR) 0.117. Ultimately, the probability of success output by the

network can be used as a motion-aware quality conditioned on the object motion. We

can use this network to quickly filter grasps that has the highest motion-aware quality for

FilterGrasp in Algorithm 2. In general, the motion-aware model prefers grasps facing

the moving direction of the target.

3.4.3.4 Combining Reachability and Motion-aware

We want to include grasps in the shortlisted pool GF that are both reachable and are stable

conditioned on the object motion. There are many different ways to combine the reachability

38

(a) Linear (b) Circular (c) Sinusoidal (d) Obstacles (e) Slab Fixture

(f) Real Robot

Figure 3.3: Dynamic Grasping Tasks. Experimental scenarios for picking up objects on a conveyor
belt. The red line shows the conveyor belt trajectory. (a), (b), (c) Linear, circular and sinusoidal
motion of target object with no surrounding obstacles. (d) Linear motion with surrounding static
obstacles. Green rectangles are the sub-regions where we sample obstacle locations. (e) Linear
motion with slab fixture that limits feasible grasping directions. (f) Real Robot Demo: Linear
motion of target object moving at 4.46 cm/s.

and motion-aware quality for each grasp in the database. We empirically find that simply

including the top 5 grasps with highest reachability and the top 5 grasps with highest

motion-aware quality outperforms other ways of combination, including the weighted sum

of two values or filtering by reachability and then motion-aware quality, etc.

3.4.4 Motion Generation and Grasp Execution

There are three stages of motion generation when picking up an object: reaching, grasping

and lifting [74]. In our implementation, we transform the planned grasp to match the

predicted future pose of the object and generate arm motion for all three phases.

To be able to generate and update the reaching trajectories as the object moves, we

introduce the idea of trajectory seeding that uses the trajectory solution of a previous time

step as an initialization for finding a new trajectory at the current time-step. For sampling-

39

based methods like RRT or PRM, this entails initializing the sampling tree or roadmap

with the waypoints found from the previous time step. This seeds the search to be quite

close to the previous path and empirically helps find new solutions that are not drastically

different from the previous solution. An unconstrained sampling based approach can return

drastically different trajectories in subsequent trajectories which can be disadvantageous

in dynamic settings. Another benefit of our seeding approach is that a good initialization

from seeding can reduce the time used to find a valid solution. We implement our seeding

approach on CHOMP, RRT and PRM and find that PRM works best for our experimental

tasks.

Note that the motion plan is executed once generated interrupting the previous tra-

jectory that was being executed. To ensure that the arm does not slow down as new

trajectories are computed and updated, we retime the trajectory solution from the solver

so that it blends with the current arm velocities and it moves at fast as possible while also

respecting joint limits [10]. We use cartesian control to move the arm during the grasping

and lifting stages.

3.5 Experiments

We extensively evaluate the performance of our algorithm picking different target objects

in randomized linear / nonlinear motion with / without static obstacles in simulation. We

then demonstrate that our method works reliably on a real robot. Videos showing some

of the experiments can be found at our project website http://crlab.cs.columbia.edu/

dynamic_grasping.

40

http://crlab.cs.columbia.edu/dynamic_grasping
http://crlab.cs.columbia.edu/dynamic_grasping

3.5.1 Experimental Setup

We create different scenarios illustrated below using the Bullet simulator [22] to evaluate

the performance of our methods on two robot arms with parallel jaw grippers: the Kinova

Mico and the UR5-Robotiq robots. These two robots have different workspace dimensions,

manifolds, joint limits as well as different gripper spans / width. UR5 arm has a wider span

and moves quicker than Mico arm, so we intentionally make the tasks for UR5-Robotiq

harder. For each robot, we simulate the task of linear and non-linear conveyor belt pickup,

which plays a significant role in warehouse packaging and assembly lines. In these scenarios,

there is a target object moving on a belt, possibly among surrounding static obstacles. Both

the target and the obstacle objects can be fragile and and we cannot knock them over.

Linear Motion: The target object moves linearly at a constant speed (3cm/s for Mico and

5cm/s for UR5-Robotiq) as shown in Figure 3.3a. The conveyor trajectories are randomized

using 4 parameters as shown in Figure 3.4. θ specifies the counter clockwise angle of the

line perpendicular to the linear motion, connecting the middle point of the motion and the

base of the arm. r is the distance between the linear trajectory and the arm base. l is the

length of the linear trajectory. d ∈ {+1,−1} indicates the direction of the motion, where

+1 means moving counter clockwise and −1 means moving clockwise. We set 0 ≤ θ < 2π

(radians), 0.15m ≤ r ≤ 0.4m for Mico and 0.3m ≤ r ≤ 0.7m for UR5-Robotiq, and l = 1m.

Linear with Obstacles: We add 3 static obstacles to the linear motion in the grasping

scene. Specifically, we divide the near region (distance between 0.15m and 0.25m) surround-

ing the linear motion into 5 sub-regions, as shown in Figure 3.3d. For each obstacle, we

randomly pick a sub-region and uniformly sample a location in the sub-region. We make

41

sure there is no collision between obstacle and robot or between two obstacles. The arm

has to avoid hitting both obstacles and the target.

Linear with Top Slab: A 2cm-thick slab of width 10cm is placed 40cm directly on top

of the conveyor belt. This limits the grasping directions (e.g. top-down grasps) and makes

motion planning/grasping more challenging.

Linear with Z Motion: We relieve the constraint of the linear motion so that the object

can also move in the Z axis. The starting height and the end height is randomly sampled

between 0.01m and 0.4m.

Linear with Varying Speed: The target is accelerated from 1cm/s to 3cm/s and from

3cm/s to 5cm/s for Mico and UR5-Robotiq respectively.

Circular Motion: A smooth non-linear circular motion as shown in Figure 3.3b. The

speed of the conveyor belt is constant (2cm/s for Mico and 3cm/s for UR5-Robotiq). The

circular motion trajectory is also randomized by 4 parameters as shown in Figure 3.4. θ

controls the angle of the starting position on the circle. r is the radius of the circle. l specifies

the length of the motion. d ∈ {+1,−1} indicates the direction of the motion, where +1

means moving counter clockwise and −1 means moving clockwise. We set 0 ≤ θ < 2π

(radians), 0.15m ≤ r ≤ 0.4m for Mico and 0.3m ≤ r ≤ 0.7m for UR5-Robotiq, and l = 1m.

Sinusoidal Motion: This is a more challenging non-linear motion where the object moves

along a sinusoidal path as shown in Figure 3.3c. To do this, a sinusoid is super-imposed on

the randomly generated linear motion as shown in Figure 3.4. In addition to the parameters

42

of the linear motion (θ, r, l, d), we specify the amplitude A and frequency f of the sinusoid.

We set A = l/8m and f = 2π/(l/3)Hz.

Figure 3.4: A bird’s-eye view of randomized linear, circular and sinusoidal conveyor belt motion
generation process. A random experiment motion is parameterized by angle θ, distance r, direction
d, and length l. The cross indicates the position of the robot base. The red line shows the motion of
the conveyor belt, with an arrow indicating the direction. The horizontal dashed line indicates the
x-axis of the world frame. Left: linear motion. Middle: circular motion. Right: sinusoidal motion.

Each experiment in simulation is run on 7 different target objects shown in Figure 3.5

whose sizes can physically fit in the robots’ hands. The randomized process for generating

conveyor belt motion ensures that the results are not biased to a specific robot configuration.

For example, a particular starting pose might be close to the robot arm end-effector and

will have a higher success rate. For each object, we run each 100 times and report the

average success rate and grasping time across 700 trials. In each setting, we compare the

performance of the below methods.

• Ours (R+M). This is our proposed method that uses all the discussed modules

and filters grasp in the grasp database combining both reachability and motion-aware

quality as discussed in Section 3.4.3.4.

• Ours (Reachability). Same as Ours (R+M) except the grasps are filtered with only

reachability.

43

Figure 3.5: Seven objects from the YCB Object Database selected as the graspable objects in our
experiments. All seven are used for simulation experiments while the last three are used for the real
robot experimentation.

• Ours (Motion-aware). Same as Ours (R+M) except the grasps are filtered with

only motion-aware quality.

• Baseline. Using randomly sampled 10 grasps from the grasp database as the filterd

grasps. We need to use a subset because checking IK for all grasps from the database

during dynamic grasping is unfeasible with very low success rate that is not worth

comparing.

• No Traj. Seeding. This ablation study picks the model from above with best

performance and removes the trajectory seeding module to study its importance.

• No Prediction. Similar to No Traj. Seeding, this removes the prediction module to

study its importance.

We evaluate a subset of the experiments on a real robot hardware to validate our approach.

For this, we use the UR5 robot arm fitted with a Robotiq parallel jaw gripper to pick up

an object moving on a conveyor belt.

3.5.2 Experimental Results and Discussion

Shown in Table 3.1, our proposed methods with reachability and motion awarenesses or a

combination of both outperform the baseline in all cases. The ablation studies demonstrate

44

Table 3.1: Simulation Experiments for the Kinova Mico (Top) and UR5 (Bottom) robot arms. For
each entry, run on 7 objects and 100 trials each. We report success rate, dynamic grasping time (s)
averaged over 700 trials.

Methods Linear (3cm/s)
Linear (3cm/s)
with Obstacles

Linear (2cm/s)
with Top Slab

Linear (3cm/s)
with Z Motion

Linear (1-3cm/s)
Varying Speed

Circular
(2cm/s)

Sinusoidal
(1cm/s)

Ours (R + M) 0.799, 10.23s 0.796, 11.43s 0.781, 21.92s 0.814, 10.39s 0.869, 9.988s 0.875, 10.38s 0.895, 8.661s
Ours (Reachability) 0.802, 10.21s 0.795, 10.13s 0.759, 19.91s 0.806, 9.836s 0.836, 9.609s 0.861, 9.421s 0.867, 7.857s
Ours (Motion-aware) 0.722, 15.30s 0.780, 14.37s 0.697, 25.07s 0.710, 14.61s 0.819, 14.45s 0.857, 15.43s 0.827, 13.19s

Baseline 0.439, 23.85s 0.419, 24.15s 0.431, 38.12s 0.430, 23.19s 0.610, 25.72s 0.716, 24.89s 0.643, 20.22s

No Traj. seeding 0.769, 10.61s 0.777, 10.83s 0.706, 22.29s 0.800, 10.41s 0.827, 10.23s 0.857, 10.01s 0.827, 8.588s
No Prediction 0.610, 12.91s 0.614, 13.30s 0.609, 25.84s 0.737, 12.60s 0.761, 11.96s 0.767, 13.11s 0.807, 9.045s

Methods Linear (5cm/s)
Linear (5cm/s)
with Obstacles

Linear (3cm/s)
with Top Slab

Linear (5cm/s)
with Z Motion

Linear (3-5cm/s)
Varying Speed

Circular
(3cm/s)

Sinusoidal
(1cm/s)

Ours (R + M) 0.874, 8.134s 0.854, 9.104s 0.748, 19.86s 0.858, 8.166s 0.917, 7.895s 0.909, 8.311s 0.946, 9.243s
Ours (Reachability) 0.857, 8.730s 0.841, 9.646s 0.652, 18.52s 0.872, 8.864s 0.907, 8.748s 0.890, 9.512s 0.925, 8.608s
Ours (Motion-aware) 0.744, 9.976s 0.752, 9.896s 0.675, 19.86s 0.717, 10.47s 0.854, 8.935s 0.840, 10.68s 0.930, 9.645s

Baseline 0.676, 12.64s 0.576, 13.63s 0.606, 22.89s 0.659, 12.65s 0.788, 12.84s 0.810, 14.09s 0.716, 17.19s

No Traj. seeding 0.849, 9.107s 0.810, 10.22s 0.631, 20.01s 0.836, 9.047s 0.906, 8.859s 0.899, 9.610s 0.904, 11.17s
No Prediction 0.284, 10.31s 0.269, 11.41s 0.457, 20.04s 0.261, 10.89s 0.344, 10.44s 0.594, 9.891s 0.310, 11.96s

the importance of the trajectory seeding and motion prediction components.

3.5.2.1 Effect of Grasp Planning

The results show that reachability and motion awarenesses help extenssively in dynamic

grasping tasks. This is because our methods leverage these two ranking functions to quickly

filter grasps that are likely to be reachable or stable conditioned on the current motion of

the object. They help to focus on those grasps which are near-optimal given the object pose

and motion and reduce unnecessary IK calls. Without reachability or motion awareness,

even though all grasps in the grasp database are stable in static cases, the selected 10

grasps might not be as optimal given the current location where the object has moved or

the current motion the object is following.

We also notice that Ours (Reachability) almost always performs better than Ours

(Motion-aware). This shows that in dynamic grasping setting, reachability awareness can

be a slightly more important factor than motion-aware. Though being stable for the mo-

tion of the object, the selected grasps by motion-aware might still be unreachable and waste

45

some IK computing time. We further investigate the relationship between reachabiity per-

formance and the distance of the conveyor motion to the robot base, using linear motion

while varying r, as demonstrated in Figure 3.6. We find that reachability being especially

beneficial in difficult-to-reach near and far portions of the workspace.

Ours (R + M) outperforms Ours (Reachability) in all cases except linear motion for

Mico and linear with Z motion for UR5 arm. Combining reachbility and motion awareness

include grasps that are both reachable and robust for the current motion. This combines

the advantages of both methods and provides a pool of wider variety for PickGrasp to

choose from. For example, even though a grasp might not be the most reachable, but it

can also be included in the filtered grasps because of high motion-aware quality. For the

two cases where Ours (Reachability) outperforms Ours (R+M), we believe it is because

the most motion-aware grasps happen to have very low reachability but are closer to the

current robot configuration. They are picked but cannot remain reachable and result in

unnecessary grasp switches.

3.5.2.2 Effect of Seeding in Arm Trajectory Generation

We observe that the value of seeding during trajectory generation becomes significant for

tasks when slab fixture is above the conveyor belt limiting the range of motion of the arm

(column 3 of Table 3.1, Mico and UR5 show a performance drop of 7.5% and 11.7% re-

spectively), and when the motion is sinusoial and hard to model (column 7 of Table 3.1,

Mico and UR5 show a performance drop of 6.8% and 4.2% respectively). Without seeding,

computing arm trajectory from scratch at each time step is computationally expensive. Be-

sides, seeding makes the new trajectory solution similar to the previous one. Qualitatively,

we noticed that seeding makes the arm motion less wavy given that the arm trajectories

46

Figure 3.6: Success rate vs. distance. Improvement from reachability awareness becomes more
significant when the moving object is extremely close to or far from the robot. This expands the
effective workspace of the robot to better handle difficult-to-reach near and far grasp poses.

generated in subsequent time steps is seeded to be similar to the immediate previous one.

3.5.2.3 Effect of Object Motion Prediction

Our results also show that object motion prediction is an important component for dynamic

grasping and we see the biggest drop in performance without motion prediction. This is

expected as we can image without prediction in dynamic grasping, even with perfect grasp

planning and optimal motion generation, the gripper will never catch the target because

of the delay from computation. Its importance becomes more pronounced as the object’s

motion is hard to predict (non-linear / varying speed) and also when the gripper width is

smaller. We observe that there is a bigger drop in performance for the UR5-Robotiq robot,

compared to the Mico robot. Qualitatively, we observe that a lot of the failure cases occur

during the approach-and-grasp phase where the robot finger narrowly knocks off the object.

The wider span of the Mico gripper enables it to be more robust in this sense.

47

3.5.2.4 Real Robot Demonstration

We demonstrate our algorithm on the real robot by picking up objects 5, 6, 7 shown in

Figure 3.5 as each object moves on a conveyor belt with no surrounding obstacles. We

repeat this experiment 5 times and the success rates for objects 5, 6, 7 are 4/5, 5/5 and

3/5 respectively. Even though the object is moving relatively fast (4.46 cm/s), our method

is able to pick the objects 5 and 6 reliably well. The robot is able to align its gripper along

the narrow axis of the objects and pick them up while moving. The failure cases for object

7 is because the radius of the tomato can is slightly smaller than the gripper span with a

tight margin for error in the approach and grasp stage.

3.6 Conclusion

This chapter presents a novel framework for grasping moving objects using reachability and

motion awareness. The framework also includes an RNN-based motion predictive mod-

ule and an adaptive arm trajectory planner that uses seeding to quickly produce smooth

trajectories. We show in experiments with different settings that these elements are impor-

tant to grasping; grasping systems that do not have motion prediction elements and are

do not reason about grasp reachability perform worse in both experimental setups. This

work is a model-based visual-pose feedback system. A future work will be an end-to-end

image-based analogue where arm-hand trajectory commands are directly generated based

on image/depth image features using learning-based techniques.

48

Chapter 4

Tactile-Aware Multi-fingered

Grasping

In the previous two chapters, we showed that incorporating the notion of reachability during

grasp planning expands the effective and usable workspace of the robot and is valuable when

grasping in both static and dynamic settings. Despite improved grasping generation using

vision-based perception, a lot of failure cases in open-loop robotic grasping occur during the

grasp execution stage. Inspired by humans’ ability to feel and reliably grasp objects, in this

chapter, we develop an adaptive tactile grasping system that utilizes tactile sensor readings

on the robot’s hand to improve reliability of robotic grasping systems1. Using model-free

deep reinforcement learning, our method obtains a closed-loop grasping behavior that uses

additional tactile sensing to adaptively tighten grip on the object– making the grasping

system tactile-aware and more reliable.

1 This work first appeared in CoRL 2019. MAT - Multi-Fingered Adaptive Tactile Grasping via Deep
Reinforcement Learning , by Bohan Wu, Iretiayo Akinola, Jacob Varley, and Peter Allen[115]

49

https://arxiv.org/abs/1909.04787
https://arxiv.org/abs/1909.04787

4.1 Multi-Fingered Adaptive Tactile Grasping

As multi-fingered grasping becomes more tractable thanks to advances in vision and deep

reinforcement learning (RL), improving state-of-the-art methods that achieve 90%+ grasp

success rates becomes more difficult. Among the few percentages of failed grasps are those

caused by grasp slip, low friction, calibration error and adversarial object shapes. A promis-

ing direction for finishing the last mile of the race towards high-performance, high-success

autonomous grasping is the idea of closed-loop grasping: continuously adjusting the robot’s

DOFs to improve the quality of the current grasp based on sensory feedback. Closed-loop

grasping is attractive because it enables the robot to correct the initial grasp to achieve

even higher pick-up success rates, given an approximately correct initial grasp pose.

Performing high-quality closed-loop grasping requires a sensor modality that is both

free of external disturbances from the robot’s ongoing actions and accurate in providing

information about the state of the current grasp. Vision, RGB or RGB-D, becomes a

less favorable candidate in this case due to visual occlusion. As the robot’s end-effector

approaches the graspable object, camera vision will be blocked by either the end-effector

palm or fingers. Therefore, it is difficult to enable vision to provide undisturbed and accurate

information about the status of the current grasp.

Tactile, in this case, is one of the best candidate sensory modalities for closed-loop grasp-

ing. Tactile sensors are both rich in information with many sensor cells on each finger (and

palm in some cases) and free of external disturbances that visual systems usually face with

different levels of occlusion. Figure 4.1 shows a common failure case of an open-loop grasp-

ing system due to calibration error. Highlighted in Figure 4.2, this paper introduces Multi-

Fingered Adaptive Tactile Grasping, or MAT, a high-performance deep RL algorithm that

50

(a)

(b)

Figure 4.1: Open-
Loop Grasping.
Open-loop grasping
(a) planned from an
initial image of the
scene fails to form a
stable grasp (b).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.2: Multi-Fingered Adaptive Tactile Grasping. Behavior
of our policy given (a) a coarse initial grasp pose. (b) The robot begins by
closing the fingers in small increments to form a grasp adapting to tactile
contacts as they occur. (c) Eventually, unsatisfied with the tactile and
proprioceptive observations, the policy decides to reopen the hand and
(d-e) adjust the end-effector position and orientation. (f-g) The policy
closes the fingers incrementally again. (h) Finally, the policy ends the
episode with a lift action and successfully picks the object up.

leverages tactile and proprioceptive information for multi-fingered grasping in an adaptive,

closed-loop manner, with the ultimate purpose of substantially improving state-of-the-art

open-loop grasping systems. First, MAT allows the robot to learn grasp action primitives

in a generative manner via maximum entropy deep RL. These action primitives not only

include decisions of granular movements of each of the fingers, lifting the end-effector for

pick-up, but also reopening the fingers and adjusting the end-effector position and orien-

tation, thus forming a tight, closed-loop grasping system. Second, since maximum entropy

deep RL requires high sample complexity and training experiences that are diverse in terms

of object types, quantities, poses, and clutter levels, direct learning or transfer learning in

real-world environments becomes a challenge. MAT overcomes this challenge by training

in simulation and directly transferring to real without additional learning in a high fidelity

way: by choosing observation and action modalities that maintain small sim-to-real gaps

51

to the real world, such as joint angles, binary tactile contacts, tactile contact Cartesian

locations, etc. Finally, MAT demonstrates substantially improved pick-up success rates in

real-robot experiments over a vision-based, open-loop grasping system. Video of this paper

can be found at http://crlab.cs.columbia.edu/MAT/. In summary, our contributions

are:

1. An adaptive, closed-loop, tactile grasping method that significantly improves single-

object and cluttered scene grasp success rates over a strong vision-based open-loop

baseline

2. A tactile grasping method that pairs with and improves any open-loop grasping system

that generates initial grasp poses. This method a) vastly alleviates the need for a

perfectly calibrated robot-camera setup and b) is robust to severe visual occlusion

during grasping as its policy, which is active when the hand approaches the object,

does not use vision

3. A method of sim-to-real transfer where an end-to-end tactile grasping policy trained

in simulation transfers directly to the real world with high fidelity

4. A curriculum learning approach that learns a tightly closed-loop grasping policy from

an initial open-loop policy, by gradually increasing the granularity of finger-close move-

ments

52

http://crlab.cs.columbia.edu/MAT/

4.2 Related Work

4.2.1 Vision-Based Closed-Loop Grasping

Recent works have focused on closed-loop grasping using vision or other non-touch sensor

modalities. [53] provides a promising deep RL approach to learn closed-loop grasping using

vision. [77][106][65] use supervised learning approaches to combine visual learning with

closed-loop grasping. In some cases, the closed-loop mechanism in these works becomes less

effective as the robot approaches the object due to visual occlusion from the arm or the

end-effector.

4.2.2 Robotic Grasping with Tactile Only (Blind Grasping without Vi-

sion)

In this setting, tactile readings help design manipulation primitives [28][29] or estimate the

location and geometry of the objects [49][50]. In [78], the robot makes sweeping motions

around the scene to localize the object before attempting grasps roughly at the object

centroid. Subsequently, tactile can be used to iteratively adjust the grasp until object pick-

up. This approach depends heavily on obtaining a good object localization from touch

scanning, which can displace scene objects in ways not detected by the limited tactile

coverage, disturbing and negatively affecting the entire grasping process. Consequently,

visual-tactile multi-modal methods are becoming more popular.

4.2.3 Improving Vision-Based Grasping using Tactile or Other Contact

Force Modalities

Tactile sensors enhance vision-based grasping in a number of ways. Prior to grasping, tactile

measurements can help improve geometric knowledge of the grasping scene especially for

53

occluded regions. During grasping, they help evaluate the success likelihood of a grasp

being executed [66][23] and decide against lifting the object if the tactile readings indicate a

loose grip and an unsuccessful lift. Further, tactile can be used to predict a re-grasping plan

that adjusts the current grasp into a more stable grasp pose [66][23][37]. Finally, tactile

information can serve as feedback into a closed-loop grasping process that determines how

to close robot’s fingers given the tactile readings [75].

Leveraging Tactile Information for Shape-Completion Enabled Robotic Grasp-

ing. Recent research has focused on using tactile information to perform more accurate

shape modeling of target objects in a scene in order to improve grasp success rate using

traditional grasping planners [109][110][9][41]. However, these works are still open-loop.

Predicting Grasp Success and Stability from Tactile or Proprioceptive Infor-

mation. Learning methods can predict the grasp stability [39][40] or success probability

[66][23][24][95][120] [20][61][12][69][68] given tactile or proprioceptive data received from the

robot hand. These readings are recorded after grasping an object, then the object is lifted

to obtain a grasp success or stability label. The dataset obtained is used to train a grasp

critic. In contrast, MAT does not require a critic but learns a unified end-to-end grasping

policy.

Learning to Regrasp using Tactile Information. [15] successfully learns regrasp-

ing behaviors using a multi-fingered hand as well as a grasp success predictor for predicting

grasping outcomes. [11] uses Gelsight tactile sensors to learn a state-action value func-

tion to predict grasping success and selects relatively good grasping actions from a set of

randomly sampled candidates. In contrast to these approaches, our approach does not

trigger reopening behaviors using a grasp success predictor but instead learns the task of

tactile-enabled closed-loop grasping in a coherent framework, enabling the robot to reopen
54

fingers at any point during grasping. Our algorithm performs the grasping control at a more

granular resolution– moving each finger separately and in small increments. In addition,

while [15][11] require real-world data which can be expensive in time and effort, our tactile

grasping policy was trained purely in simulation and transfers directly to the real robot.

Reinforcement-Learning to Grasp Using Tactile and Contact Forces. In [75]

contact forces are leveraged to improve multi-fingered grasping success and stability. How-

ever, their work focuses on simulation results without extending into the real world. [15]

presented an RL approach to obtain reopening behaviors on a real robot for picking up

a cylindrical object. However, they used a linear function approximator to represent the

policy and noted that a more complex policy class can improve robustness especially when

dealing with a wider variety of objects. Like [15], MAT learns to iteratively generate im-

proved grasp poses when needed. In contrast to [15], MAT is active throughout the entire

finger closing process to quickly adapt the current grasp to tactile sensory data as contact

occurs, and handle various failure cases during grasping. Also, MAT was demonstrated in

both real-world single-object and cluttered scenes.

4.3 Preliminaries

RL Formulation for MAT. In MAT’s RL formulation, a tactile grasping robotic agent

interacts with an environment to maximize the expected reward [97]. The environment is

a Partially Observable Markov Decision Process (POMDP), since the agent cannot observe

any visual information. Even with vision, this environment is still a POMDP since the

agent can encounter visual occlusion and cannot observe the complete 3D geometry of

any object or the entire scene. To foster good generalization and transfer, MAT models

this environment as an MDP defined by 〈S, ρ0,A,R, T , γ,H〉 with an observation space
55

S, an initial state distribution ρ0 ∈ Π(S), an action space A, a reward function R : S ×

A → R, a dynamics model T : S × A → Π(S), a discount factor γ ∈ [0, 1), and a finite

horizon H. Π(·) defines a probability distribution over a set. The agent acts according to

stationary stochastic policy π : S → Π(A), which specifies action choice probabilities for

each observation. Each policy π has a corresponding Qπ : S × A → R state-action value

function that defines the expected discounted cumulative reward for taking an action a from

observation s and following π from that point onward.

Hardware and Simulation Setup. In both PyBullet (Figure 4.3a) [22] simulation

and real-world (Figure 4.3b), we use the Staubli-TX60 Arm and the Barrett Hand (BH-

282), which has 24 capacitive tactile cells on each of the three fingers and the palm, totaling

96 cells. Hereafter, we use n to refer to the number of fingers the robotic hand has, and

tfinal to denote the last timestep of the episode. The finger joint angles of the Barrett Hand

range from 0 rad (open) to 2.44 rad (close).

4.4 Multi-Fingered Adaptive Tactile Grasping

MAT models the task of closed-loop tactile grasping as a finite-horizon MDP. During each

episode, the robot makes a single pick-up attempt on the scene. To begin, we assume that

a grasping system of any kind generates an end-effector grasp pose for a cluttered scene,

after which visual information is assumed to be unavailable as the arm occludes the scene

while realizing the grasp. Next, the robot collects a set of observations, including tactile

contacts, finger joint angles, and Cartesian positions for all tactile contacts, as elaborated

in Section 4.4.1. Given such observations, the robot either 1) adjusts the joint angle of

one or more fingers; 2) issues a “reopen” maneuver by reopening all fingers and adjusting

the end-effector position and orientation; or 3) makes an attempt to lift the object, after
56

(a) Simulation Scene (Train)

(b) Real Scene (Test)

Figure 4.3: Setup. (a) A tactile-enabled Barrett Hand in PyBullet simulation for training. (b)
Real robot for evaluation.

57

which the episode terminates. In the case of 1) or 2), the episode moves forward to the

next time step, and a new set of tactile observations are collected. Details of these three

types of action primitives are elaborated in Section 4.4.2. Through a simple reward struc-

ture (Section 4.4.3), the robot receives a higher reward for successfully picking an object

up and a lower reward otherwise. Parameterized by a multi-modal network architecture

and optimized through a soft surrogate objective (Section 4.4.4) and curriculum learning

(Section 4.4.5), the robot gradually learns to perform a series of actions that ultimately

leads to a higher grasp success rate.

4.4.1 Observation Space

The robot’s observation includes recent history and delta values (∆) of tactile contacts,

finger joint angles, and Cartesian positions for all tactile contacts:

st = {scontacts binaryt , s∆contacts binary
t , sjoint anglest , s∆joint angles

t , scontacts xyzt , s∆contacts xyz
t }.

Tactile Contacts. The robot can observe the history of tactile contacts over the last

20 timesteps, which are binary indicators of whether each of the 96 tactile cells is activated

or not: scontacts binaryt ∈ {0, 1}20×96, as well as the delta in binary values between adjacent

timesteps (19 delta values for each cell): s∆contacts binary
t ∈ {−1, 0, 1}19×96.

Note that this binary contact aggregation is important for stabilizing real-world raw

tactile readings. Tactile sensors on the physical Barrett BH-282 Hand stream tactile read-

ings at a frequency of 246 Hz. These tactile readings provide the magnitude of force felt by

each of the 96 tactile cells, which range from 0 to 20. To generate stable tactile readings

for each cell, we calculate the running mean of the last 50 readings for each cell. Tactile

readings in PyBullet simulation are stable so no averaging is required. To obtain binary

tactile contacts (scontacts binaryt ∈ {0, 1}20×96) from the raw running average of the tactile

58

readings, we use a threshold of 0.8 for both the physical and the simulated hand. Values

above this threshold indicate contact.

Finger Joint Angles. The robot can observe the history of all joint angles of the hand

over the last 20 timesteps, as well as whether the delta in values between adjacent timesteps

exceeds a small threshold δjoint angle threshold = 0.05 rad. Since there are 8 joints for the

Barrett Hand: sjoint anglest ∈ R20×8, s∆joint angles
t ∈ {0, 1}19×8.

Tactile Contact Cartesian Positions. The robot can also observe the history of

the [x, y, z] Cartesian positions of all positive tactile contacts of the hand over the last 20

timesteps: scontacts xyzt ∈ R20×96×3, as well as the delta in values between adjacent timesteps:

s∆contacts xyz
t ∈ R19×96×3. The Cartesian positions are obtained via forward kinematics and

expressed in the end-effector frame. If the tactile contact is not positive, the Cartesian

position will be [0, 0, 0] by default.

4.4.2 Action Space

Given the observations elaborated in Section 4.4.1, the robot learns a function approximator

f that generates an action comprising of 1) movement of each of the n fingers, 2) decision

to reopen all fingers or not, 3) the position and orientation adjustments of the end-effector

pose in the case of reopening, and 4) decision to lift the hand for a pick-up attempt or not:

at = {afinger1t , afinger2t , ..., afingernt , areopent , awrist rotationt , aliftt }.

Finger Movements. The robot can decide whether to close each finger further or

not: afingerit ∈ {0, 1},where i ∈ [1, n]. If afingerit = 1, the ith finger will close by a small

joint angle delta of δfinger angle (explained in Section 4.4.5). The robot samples each finger

movement from an independent Bernoulli distribution given a learned sigmoid-activated

59

parameter:

afingerit ∼ Bern(sigmoid(ffingeri(st))) ∈ {0, 1} (4.1)

.

Finger Reopening and End-Effector Pose Adjustment. The robot’s action can

control whether to reopen or not: areopent ∈ {0, 1}. The robot samples areopent from a

Bernoulli distribution given a sigmoid-activated parameter:

areopent ∼ Bern(sigmoid(f reopen(st))) ∈ {0, 1} (4.2)

areopent is 1 also when no joints moved above δjoint angle threshold = 0.05 rad over the past 5

timesteps. If the robot decides to reopen, each finger movement action afingerit is disabled

for this timestep.

During a reopen maneuver, all fingers reopen to the pre-grasp joint angles, and the

position and orientation of the end-effector adjusts. During position adjustment, the hand’s

[x, y] coordinates re-locate to above the most recent center of all active finger-palm tactile

centers. Each active finger-palm tactile center is the center of all Cartesian locations of the

finger-palm’s active tactile cells.Concretely, let M be the number of links equipped with

tactile cells for a multi-fingered hand. For the BH-282 Barrett Hand, M = 4 since all three

fingers and the palm have tactile cells. Let C be the total number of tactile cells on each

finger or the palm. For the BH-282 Barrett Hand, C = 24. Let Tm,c denote the binary

tactile contact for the cth cell on the mth tactile link, where m ∈ [1,M], c ∈ [1, C]. Similarly,

let Pm,c = [xm,c, ym,c, zm,c] be the Cartesian location of the tactile cell expressed in the world

frame. Let M̄ = {m ∈ [1,M] :
∑C

c=1 Tm,c > 0} be the set of tactile links that have at least

one active tactile cell. Let C̄m = {c ∈ [1, C] : Tm,c = 1} be the set of active tactile cells on

60

an active tactile link m, where m ∈ M̄ . Let Pold = [xold, yold, zold] be the Cartesian location

of the end-effector palm after reopening but before position adjustment, expressed in the

world frame. During position adjustment, the robot examines the most recent timestep

during which at least one tactile cell of the hand was activated. The end-effector palm’s

new Cartesian location is then calculated as:

Pnew = [xnew, ynew, znew] (4.3)

where

xnew =
1

|M̄ |
∑
m∈M̄

1

|C̄m|
∑
c∈C̄m

xm,c (4.4)

ynew =
1

|M̄ |
∑
m∈M̄

1

|C̄m|
∑
c∈C̄m

ym,c (4.5)

znew = zold (4.6)

Intuitively, the hand’s [x, y] coordinates re-locate to the [x, y] coordinates of the center of

all active finger-palm tactile centers. Each active finger-palm tactile center is the center of

all Cartesian locations of the finger or palm’s active tactile cells. On the other hand, the

z coordinate of the hand stays unchanged. In the case where no tactile cell was activated

throughout history: Pnew = Pold.

During orientation adjustment, the robot’s wrist is rotated by a learned angle to generate

a better grasp. This learned angle ranges from −180◦ to 180◦: awrist rotationt ∈ [−π, π]. To

generate this angle, the robot samples from a Gaussian distribution whose mean is a learned,

61

tanh-activated parameter and then scales the sampled value by factor π:

awrist rotationt ∼ N (tanh(fwrist rotation(st)), σ)× π (4.7)

∈ [−π, π] (4.8)

. Here, the Gaussian distribution’s standard deviation σrotation is also a learned parameter.

Lifting. The robot’s action can control whether to lift the hand for a pick-up attempt

or not:

aliftt ∈ {0, 1}. The robot samples aliftt from a Bernoulli distribution given a sigmoid-

activated parameter:

aliftt ∼ Bern(sigmoid(f lift(st))) (4.9)

∈ {0, 1} (4.10)

. During a lift maneuver, the arm is lifted up vertically by 25cm, and each finger movement

action afingerit is disabled. If the robot decides to both reopen and lift, the reopen maneuver

takes higher priority and is performed instead of the lift maneuver. If the last timestep of

the episode is reached: tfinal = H, lifting automatically occurs.

4.4.3 Reward Structure

After a lift maneuver, the current episode is terminated because the robot has decided

to attempt to pick-up an object. At this last timestep tfinal of the episode, a binary

success reward is collected, indicating whether the robot successfully picked an object

up: rtfinal = 1{pick-up is successful}. In all timesteps earlier than the last timestep,

the reward is zero if the robot decides not to reopen. If the robot decides to reopen, a

62

penalty of −0.05 is given if no fingers closed beyond 0.2 rad: rt = −0.05 × areopent × (1 −

1{maxi∈grip joint indices[s
joint angles
t]i > 0.2 rad}), where t ∈ [1, tfinal − 1], which penalizes

the robot against reopening fingers too frequently.

4.4.4 Soft Proximal Policy Optimization

Let θ be the parameter weights of the policy network and πθ be the policy the robot is

trying to learn: πθ : S → Π(A). Shown in Figure 4.4, θ is a multi-input-branch deep neural

network, where multiple observation modalities are handled by individual tanh-activated

neural networks for feature extraction. The robot’s goal is to maximize the cumulative

discounted sum of rewards: maximize
θ

Eπθ [
∑

t γ
t−1rt]. To begin, we follow the standard

policy (SP) optimization objective:

maximize
θ

LSP = Eρ0,πθ [πθ(at | st)Qπθ(st, at)] (4.11)

Next, we introduce a baseline (BL) estimator parameterized by ψ for state-value pre-

diction and variance reduction, after which objective (4.11) turns into [91]:

maximize
θ

LPG = Eρ0,πθ [πθ(at | st)Ât] (4.12)

where Ât is an estimator of the advantage function [7]. We optimize ψ with the following

loss:

minimize
ψ

LBL = E
[
‖Vψ − Vπθ‖

2
]

(4.13)

Next, we substitute the action probability πθ(at | st) with the Clipped Surrogate Objec-

tive [93] and apply a soft advantage target to balance between exploration and exploita-

63

Figure 4.4: Multi-Fingered Adaptive Tactile Grasping. Given an initial grasp pose obtained
from a vision-based system, for example, the architecture uses soft proximal policy optimization to

learn a grasping behavior. The state space consists of tactile contact readings (s
(∆)contacts binary
t),

contact Cartesian locations (s
(∆)contacts xyz
t) and finger joint angles (s

(∆)joint angles
t). Using a few

deep neural networks, features are extracted from the six components of the state space, squashed to
[−1, 1] using tanh activations, and finally concatenated into an embedding. This latent embedding
is passed through another set of fully connected layers and then outputs a grasp action that specifies
how to incrementally close each finger (afinger1t , . . . afingernt), whether to lift (aliftt), whether to
reopen (areopent), and how to adjust the end-effector in case of reopening (awrist rotation

t). The top
portion of the figure shows how the robot’s behavior is determined by at. First, it chooses to either
continue current grasp or reopen and adjust the grasp. If it continues current grasp, it checks
whether to lift, and if not, how to incrementally close the fingers. A binary reward is obtained if
lifting results in pick-up success. This reward, along with a small penalty for frequent reopening
(Section 4.4.3), is the signal used to train the network in a deep RL manner. “FC m, ReLU” refers
to a fully connected layer with output dimension of m followed by a ReLU activation.

64

tion [34]:

maximize
θ

LPG = Eρ0,πθ [min(λt(θ), clip(λt(θ), 1− ε, 1 + ε))(Ât − α log πθ(at | st))] (4.14)

where λt(θ) = πθ(at|st)
πθold (at|st) . Hyperparameters are detailed in the Appendix section of [115].

As shown in Figure 4.4, at every timestep, the robot decides whether to reopen fingers

via areopent . If it does not reopen, aliftt decides if it is safe to lift the object. If the robot

does not reopen or lift, it decides how to close each finger afingerit . If the current timestep

reaches the finite horizon, lifting automatically occurs and no action component is effective.

Therefore, the log action probability is:

log πθ(at | st) = [log πθ(a
reopen
t | st) + (1− areopent)× log πθ(a

lift
t | st)

+ (1− areopent)× (1− aliftt)×
n∑
i=1

log πθ(a
fingeri
t | st)]× 1{tfinal < H}

(4.15)

4.4.5 Curriculum Learning

The finger-closing component of MAT is curriculum-learned. Compared to an open-loop

approach that uniformly closes all fingers on the object and lifts after a preset time, MAT

incrementally adjusts each finger and decides to lift when certain the object is in hand. An

important parameter is the resolution or delta of the finger joint movement δfinger angle.

In the extreme, closing all fingers by a large δfinger angle reduces to the open-loop policy,

however we desire a small δfinger angle decoupled for each finger to achieve smooth grasping.

The challenge is that no reward is received until a lift is attempted and for small δfinger angle

the reward signal will be too sparse. Initially during training, the policy decides to lift almost

randomly: E[πθ(a
lift
t | st)] = 0.5. Since picking an object up requires closing the fingers

65

for many consecutive timesteps before lifting, the initial reward signal is extremely sparse

under small δfinger angle. Empirically, learning becomes difficult when δfinger angle < 0.4 rad

for the Barrett hand. Conversely, under large δfinger angle, the policy cannot control finer

finger motions and becomes prone to failure.

To get benefits of both fine finger motions and short episode horizons, training in sim-

ulation is conducted using curriculum learning around δfinger angle. Initially, δfinger angle =

0.4 rad. Subsequently, the joint angle delta is given by

δfinger angle = δmin + (δmax − δmin)× (1− current max success rate) (4.16)

, where current max success rate is the highest pick-up success rate that the robot has

achieved thus far during training. This curriculum learning procedure allows the finger

movements to become more and more granular and sophisticated as grasp success rate

improves, effectively “closing a tight loop” for tactile grasping.

4.5 Experiments

We train MAT entirely in simulation and test in both simulation and real-world. During

training, a single-object or multi-object cluttered scene is loaded with equal probability.

We place one object in a single-object scene, a random number of objects from 2 to 30 for

a simulated cluttered scene (Figure 4.3a), and 10 objects for a real-world cluttered scene.

Leveraging the ShapeNet Repository [13] in simulation, we use 200+ seen objects from

the YCB and KIT datasets and 100+ novel objects (not seen during training) from the

BigBIRD dataset. We train and test 500 grasp attempts per experiment in simulation. We

evaluate real-world single-object performance across 10 trials for each of the 15 seen and

66

novel objects, and real-world cluttered scene performance across 15 scenes.

4.5.1 Results and Discussions

Table 4.1: Experimental Results (% Grasp Success ± Standard-Dev)

Single Object Cluttered Scene
Objects Seen Novel Seen Novel

Simulation

MAT 98.2 ± 2.1 97.4 ± 1.6 97.7 ± 2.9 95.9 ± 3.9
Open-Loop Baseline [114] 93.8 ± 2.6 94.9 ± 1.4 92.5 ± 1.8 91.1 ± 3.7

Real

MAT 98.7 ± 3.5 98.0 ± 4.1 96.4 ± 4.6 95.8 ± 4.7
Open-Loop Baseline [114] 96.7 ± 6.2 93.3 ± 8.1 92.9 ± 5.8 91.9 ± 6.7

Table 4.1 compares 1) a high success rate (above 90%) baseline open-loop vision-based ap-

proach [114] with 2) MAT using initial 6-DOF grasp pose provided by [114], and reports the

percentage of grasp success and standard deviation across scenes. We fairly evaluate MAT

against [114] using the same robot setup, objects, and cluttered scenes. The simulation

results show that MAT gives a statistically significant improvement in grasp success rates

in all cases: 4.4%, 2.5%, 5.2%, 4.8% for single-seen, single-novel, cluttered-seen, cluttered-

novel respectively. On the other hand, the real-world results reveal statistically similar grasp

success rates compared to simulation, showing high-fidelity sim-to-real transfer. While the

vision-only grasping system already gives high success rates, MAT gives further improve-

ment and is able to avoid or recover from failure cases that the vision-only system cannot

handle. For example, MAT uses the tactile readings to finely control how the robot incre-

mentally closes each finger and ensure that it does not lift the object until it is sure it has a

firm grip. Also, MAT is able to re-generate a new grasp pose if the tactile readings suggest

that the current grasp being executed would not result in a successful pick-up.

67

4.5.2 Grasping under Calibration Noise

Figure 4.5: Real-World Grasping of
Novel Objects with 5cm Y-Axis Calibra-
tion Noise

We observe robustness properties of MAT that are

valuable if there is calibration error in the grasping

setup– a common occurrence in robotics. To show

this, we introduce varying levels of calibration noise

to the grasping setup and measure how this affects

the pick-up success rate. Calibration noise is added

as an offset of δcm to the generated 6-DOF grasp

pose (obtained from [114]) before grasp execution. On the real robot, we set the calibration

noise to be δ = 5cm and run the grasping experiments for the novel objects in both single-

object and cluttered scene settings; the results are presented in Figure 4.5. In simulation,

we repeat the experiments with δ = 2.5, 5, 7.5cm to analyze the performance across different

noise levels as well as to compare between seen and novel objects. Figure 4.6 shows the

simulation results.

The results show that the tactile policy is significantly more robust to calibration error

compared to the vision-only system. On the real robot, the grasp success rate of the vision-

only baseline [114] degrades under calibration noise to 20.0% & 25.6% (single-object &

cluttered scenes), while our tactile-based policy still achieves 90%+ success in both cases

(Figure 4.5). Note that repeated trials do not increase the ability of the vision-only system

to recover as the calibration stays an issue for such systems; as a result we terminate each

run after 3 consecutive failed attempts per object or scene. For the novel cluttered scenes,

the vision-only method picks up only a quarter of the objects present in the scenes and is

unable to fully clear any of the scenes. In simulation on the other hand, results in Figure 4.6

68

(a) Calibration Noise: 2.5 cm (b) Calibration Noise: 5.0 cm (c) Calibration Noise: 7.5 cm

Figure 4.6: Grasping in Simulation under Calibration Noise. MAT (blue) shows robustness
under increasing calibration noise compared to a strong vision-only baseline [114] (orange) which
degrades significantly.

reveal a degradation in performance for the vision-based system [114] as calibration noise

increases; conversely, the performance of MAT stays robustly high.

4.5.3 Extensive Ablation Experiments

Table 4.2 shows comparison of our MAT algorithm with a tactile baseline and also details

extensive ablation studies that measures the value of each component of our MAT algorithm.

To the best of our knowledge, MAT is among the first tactile methods that are multi-

fingered, free of force-torque usage and compliance, and experimentally tested on cluttered

scenes. Although a previous tactile work [48] requires compliance, we re-implemented the

non-compliant version of [48] as a tactile baseline comparison, in which each finger stops

upon detecting initial contact and then all fingers close in unison after all are in contact.

Lifting is subsequently performed after a certain period of time.

69

Table 4.2: Ablation and Tactile Baseline Results (% Grasp Success ± Standard-Dev)

Single Object Cluttered Scene
Objects Noise Seen Novel Seen Novel

Simulation

MAT
0cm

98.2 ± 2.1 97.4 ± 1.6 97.7 ± 2.9 95.9 ± 3.9
Tactile Baseline [48] 94.4 ± 2.3 95.0 ± 1.9 93.3 ± 1.0 91.3 ± 3.1

Ablation (Simulation)

Finger-Closing Only

0cm

96.6 ± 2.9 96.2 ± 2.6 95.3 ± 1.1 94.7 ± 3.6
Regrasping Only 96.2 ± 1.8 96.0 ± 1.8 94.4 ± 1.8 93.5 ± 1.6

Position Adjustment Only 96.9 ± 3.8 96.4 ± 4.6 96.2 ± 4.0 94.8 ± 3.5
Orientation Adjustment Only 96.7 ± 3.4 96.4 ± 2.8 95.7 ± 4.6 94.8 ± 1.3

Simulation

MAT
2.5cm

92.5 ± 8.1 93.3 ± 7.2 94.6 ± 5.8 93.7 ± 4.2
Tactile Baseline [48] 64.1 ± 5.9 68.2 ± 5.6 66.1 ± 5.9 66.8 ± 4.6

Ablation (Simulation)

Finger Closing Only

2.5cm

75.2 ± 6.0 73.1 ± 5.3 73.6 ± 5.2 73.9 ± 4.8
Regrasping Only 75.9 ± 2.6 78.5 ± 3.7 76.0 ± 2.0 74.4 ± 2.0

Position Adjustment Only 76.9 ± 5.5 78.5 ± 7.2 80.4 ± 3.5 75.8 ± 7.5
Orientation Adjustment Only 81.2 ± 6.4 81.6 ± 6.4 83.1 ± 4.3 77.8 ± 6.0

Here are some important observations from the Table 4.2:

• By comparing Row “MAT” to Row “Tactile Baseline [48]” for 0cm calibration noise

in Table 4.2, we observed statistically significant improvement of MAT’s performance

over the tactile baseline.

• By comparing Row “MAT” to Row “Tactile Baseline [48]” for 2.5cm calibration noise

in Table 4.2, we observed a substantially more significant improvement of MAT’s

performance over the tactile baseline, mainly due to MAT’s ability to adjust the

robot’s end-effector pose.

• By comparing Row “MAT” to Row “Finger Closing Only” for 0cm calibration noise

in Table 4.2, we observe that only using finger closing degrades MAT success rate

in simulation by 1.6%, 1.2%, 2.4%, 1.2% for single-seen, single-novel, cluttered-seen,

cluttered-novel.
70

By comparing Row “MAT” to Row “Finger Closing Only” for 2.5cm calibration noise

in Table 4.2, we see that the performance degradations are much higher: 17.3%, 20.2%,

21.0%, 19.8% respectively.

• By comparing Row “MAT” to Row “Regrasping Only” for 0cm calibration noise

in Table 4.2, we observe that only using regrasping degrades MAT success rate in

simulation by 2.0%, 1.4%, 3.3%, 2.4% for single-seen, single-novel, cluttered-seen,

cluttered-novel.

By comparing Row “MAT” to Row “Regrasping Only” for 2.5cm calibration noise in

Table 4.2, we see that the performance degradations are much higher: 16.6%, 14.8%,

18.6%, 19.3% respectively.

• By comparing Row “MAT” to Row “Position Adjustment Only” for 0cm calibration

noise in Table 4.2, we observe that disabling orientation adjustment degrades MAT

success rate in simulation by 1.3%, 1.0%, 1.5%, 1.1% for single-seen, single-novel,

cluttered-seen, cluttered-novel.

By comparing Row “MAT” to Row “Position Adjustment Only” for 2.5cm calibration

noise in Table 4.2, we see that the performance degradations are much higher: 15.6%,

14.8%, 14.2%, 17.9% respectively.

• By comparing Row “MAT” to Row “Orientation Adjustment Only” for 0cm calibra-

tion noise in Table 4.2, we observe that disabling position adjustment degrades MAT

success rate in simulation by 1.5%, 1.0%, 2.0%, 1.1% for single-seen, single-novel,

cluttered-seen, cluttered-novel.

By comparing Row “MAT” to Row “Orientation Adjustment Only” for 2.5cm cali-

71

bration noise in Table 4.2, we see that the performance degradations are much higher:

11.3%, 11.7%, 11.5%, 15.9% respectively.

4.6 Summary

In this chapter, we develop MAT, an adaptive, closed-loop tactile algorithm to reinforcement-

learn dexterous robotic grasping for multi-fingered hands with noisy tactile readings and no

visual information. Entirely trained in simulation, MAT achieves mid-to-high 90% success

rates and significantly improves upon open-loop grasping under calibration error. As many

vision-based grasping systems assume and require efforts to achieve near-perfect calibra-

tion, the robustness of MAT even under considerable calibration error reduces the need for

a perfectly calibrated grasping setup. MAT can be easily added to any existing open-loop

grasp planner to close the final gap between failed grasps and success.

72

Chapter 5

3D-Aware Closed-Loop

Manipulation via Multiple Camera

Views

In the previous chapter, we showed how tactile awareness can effectively address some failure

cases during robotic grasping due to calibration error, slippage and occlusion. Using tactile

sensing, we obtained a closed loop system that for the final phase of the grasping process.

In this chapter, we develop a vision-based closed-loop approach that is applicable to

all stages of robotic manipulation1. To achieve this, we develop an end-to-end multi-view

approach that learns a closed-loop manipulation algorithm for precise manipulation tasks

that integrates inputs from multiple static RGB cameras to overcome self-occlusion and

improve three dimensional (3D) spatial understanding.

1 This work first appeared in ICRA 2020. Learning Precise 3D Manipulation from Multiple Uncalibrated
Cameras, Iretiayo Akinola, Jacob Varley, and Dmitry Kalashnikov[1]

73

https://arxiv.org/abs/2002.09107
https://arxiv.org/abs/2002.09107

5.1 Learning Precise 3D Manipulation from Multiple Uncal-

ibrated Cameras

Precise object manipulation remains an active area of robotics research; it finds applications

in diverse domains such as manufacturing robotics, warehouse packaging and home-assistant

robotics. Until recently, most automated solutions are designed for and deployed to highly

instrumented settings where scripted robot actions are repeated to move through predefined

set of positions. This approach often requires a highly calibrated setup which can be

expensive and time-consuming. Also, they lack robustness needed to handle changes in

environment, and configuring such methods for new settings requires significant engineering

efforts. Advancements in computer vision have led to superior performances in robotic

grasping in dense clutter [53][77][114][122][121] by allowing robotic systems to make use of

vision systems for various manipulation tasks in less structured settings.

While there has been recent progress in vision-based robot manipulation such as grasp-

ing, other tasks like stacking, insertion and precision kitting, that require precise object

manipulation, remain challenging for robotic systems[59]. These sorts of tasks require ac-

curate 3D geometric knowledge of the task environment including object shape and pose,

relative distances and orientation between key locations in the scene among others. For

example, solving an insertion task requires picking an object using the geometry and pose

of the object and sticking it in a hole using the pose of object relative to the hole.

We observe that the majority of the existing reinforcement-learned vision-based robotic

manipulation systems employ a single camera to observe the task scene. However, the

rich 3D information required for solving precision-based tasks are usually limited from a

single camera input. For example, it is usually hard to resolve scale and alignment from a

74

Figure 5.1: Multi-view Task Learning. An insertion task where a block is placed into
a fixture. This task requires 3D understanding and alignment. A single view system that
sees only one of the images would have a difficult time resolving the alignment challenge.
Our system combines information from multiple views and achieves better performance on
precision-based robotic tasks.

single view. Even for humans, navigating a room or completing a task with one eye closed

becomes more challenging from a lack of depth perception. In addition, single view systems

are very susceptible to occlusion during task learning requiring the robot to actively move

out of the way and reset during task execution. To address these limitations, we propose

using multi-view camera setup such as that shown in Figure 5.1 to solve precision-based

object manipulation. Since cameras are cheap and ubiquitous, adding a few more cameras

to capture multiple views of the task scene is a practical and feasible option.

This research develops techniques for combining multiple camera views to improve the
75

state estimation and increase the robustness of robot action in learning-based robotic ma-

nipulation systems. Our approach is a reinforcement learning based method that takes in

multiple color (RGB) images from different viewpoints as input and produces robot actions

in a closed-loop fashion. The system is trained end-to-end.

Our key contributions include:

• A novel camera calibration free, multi-view, approach to precise 3D robotic manipu-

lation

• An RL model architecture featuring a sensor dropout training regime that achieves

large reductions to error rates on precision-based tasks (Stacking I: 49.18%, Stacking

II: 56.84%, Insertion: 64.1%)

• Analysis of a number of model-free RL architectures for efficiently learning precision

based robotics from individual, depth, and multiple views

A video summarizing our approach can be found at https://www.youtube.com/watch?

v=02dhUfTJNK4.

5.2 Related Work

5.2.1 Precision Robotics Manipulation

Previous works have considered robotic manipulations besides grasping such as stacking

[84][79], insertion [98][105][104], screwing and kitting. These tasks require higher levels of

precision with a slimmer margin for error, often necessitating extra algorithmic or sensory

innovations. Some works focused on developing algorithms, in simulation [79] for precise

robot manipulation tasks. Many of these methods leverage important state information

76

https://www.youtube.com/watch?v=02dhUfTJNK4
https://www.youtube.com/watch?v=02dhUfTJNK4

such as accurate object poses that are available in simulation but difficult to obtain in the

real world. While this approach of using ground truth pose information of relevant entities is

useful for developing algorithms for low-dimensional input space, generalizing such systems

to the real world requires accurate pose estimation and a well calibrated system. Our

approach learns directly from images and does not depend on such calibrated conditions.

In order to use algorithms for low-dimensional input space, some methods use fiducial

markers to obtain pose information about objects in the scene [98]. Other methods can be

utilized to reason about object geometry [118][103], detect object pose [16][81][67][99][88][6],

key points [72] and grasping points [82] from pointcloud and RGB observations after which

robot actions are planned and executed to accomplish tasks. The approaches require an

estimate of both where a point in the world is relative to a camera, and where the camera

is in relation to the robot. Objects that are small, articulated, reflective, or transparent

can complicate these methods. In contrast, our method learns precision tasks in an end-to-

end fashion without any intermediate pose estimation or camera calibration. Our approach

learns hand-eye coordination across multi cameras, without requiring explicit pose infor-

mation. With objects and the target goal visible from RGB view(s), the robot coordinates

relative displacements from its current pose rather than commanding the arm to absolute

coordinates in a fixed reference frame.

Use of extra non-visual sensor modalities such as force-torque and tactile sensors is

a common approach to enabling precision-based robotic tasks [51][62][70][45][111]. These

methods leverage contact-rich interactions with the environment to reactively achieve the

desired manipulation. Our vision-based approach is orthogonal and complementary to the

use of non-visual inputs as demonstrated by hybrid methods that combine visual and non-

visual sensing [104][63][46].
77

t=0 t=k t=T-1 t=TTime

Right
View

Left
View

Shoulder
View

Figure 5.2: Multi-view Insertion Task Learning. A few key stages of the insertion
task shown above include; start, pick, align, and drop. A single-view system that uses only
the top image view struggles with stages that require 3D alignment. Our system combines
information from multiple views and enhances performance on precision-based robotics.
These 3 camera viewpoints are used for the Stacking I, Stacking II and Insertion tasks in
the experimental section.

5.2.2 Vision-based Robot Manipulation

Many learning-based methods can now perform robot manipulation such as grasping di-

rectly from high-dimensional input such as images. For example, deep reinforcement learn-

ing (Deep-RL) algorithms can learn highly expressive neural networks by trial and error,

that map image inputs to robot action. One important consideration in learning-based sys-

tems like Deep-RL is the choice of environmental state observation; usually only a partial

observation of the state is possible. Color (RGB) image, depth image, 3D voxelized scene

are all possible observation choices each with trade offs. For example, voxel representations

give rich 3D information to a particular resolution level but it are difficult to obtain di-

rectly from existing sensors, it is very high dimensional and can be inefficient and limiting

when used in learning. Depth image gives 2.5D information which is more efficient but

depth cameras still struggle to handle textureless, dark-colored, transparent or reflective

78

(a) Multi-view Multi-Tower Q-Network Architecture

(b) Multi-view Aggregate Q-Network Architecture

Figure 5.3: a) A multi-tower architecture for incorporating multiple views. Each view has its
own tower whose representations are then combined followed by additional network layers
to produce a single Q-value. b) An aggregate architecture has a separate Q-network for each
individual view, the final Q-value is the mean of the per view Q-values. See Figure 13 of
QT-Opt[53] for details of the single-view architecture (with Conv and FC block definitions)
from which our multi-view architectures were adapted. We use their original single-view
network with modified input vectors shown above as a baseline.

79

materials depending on the technology used. RGB images give full color information useful

for semantic understanding but lack depth information. RGBD combines the advantage of

the previous two, but the 3D understanding is partial (i.e. 2D) and is still susceptible to

occlusion.

Generative Query Network (GQN) [27] shows that a full scene can be represented using a

vector encoding of multi-view images. Time Contrastive Networks (TCN) [94] demonstrate

that multiple views can be utilized to learn rich viewpoint invariant representations. Both

GQN and TCN representations can be utilized to learn robotic manipulation. While these

works are similar to ours in the use of multi-view capture of the scene, our approach does

not use auxiliary loss functions. Rather, we allow the neural network to focus on extracting

features relevant solely to the task at hand, rather than reconstructing the scene, or pro-

ducing viewpoint invariant representations in a way that may hurt asymptotic performance

on the task[27].

Some recent works [33][17] use active sensing to determine successive sensor placements

to improve state estimation for a task. In contrast, we use passive sensing via multiple

cameras in a way that enables closed-loop reactive policy without adding intermediate

camera-placement decision point into the sense-think-act loop. A previous work [76] used

multiple static 3D cameras to capture and reconstruct the robot’s environment in a non-

learning based work. Our work differs in that we learn end-to-end directly from RGB images

to robot action without any intermediate scene registration or reconstruction.

In summary, our approach addresses many limitations of these existing approaches to

vision-based robot learning. Using an uncalibrated multi-camera system to capture RGB

images from multiple viewpoints, we make the underlying state more observable and less

susceptible to occlusion without suffering the computational and memory cost of an explicit
80

3D scene representation. Similar to [53][65], our method achieves closed-loop hand-eye

coordination by learning the spatial relationship between the gripper and objects in the

workspace, with reactive behaviors that ensure task success. While our experimental section

is simulation only, there are variety of works that demonstrate how our multi-view system

could be deployed on real hardware [53][6][47][14].

5.3 Preliminaries

While our method would work with most existing imitation learning and reinforcement

learning approaches, we adopt QT-Opt [53]– a recent reinforcement learning algorithm that

achieved state-of-the-art performance on a closed-loop vision-based robotic grasping task–

as the foundation for our approach. Here, we briefly summarize the RL markov decision

process (MDP) and QT-Opt formulation, for additional details please see [53].

5.3.1 RL Formulation for Task Learning

We use the standard RL MDP where the state of the task environment be given as st ∈ S,

the robot agent can make observation ot ∈ O and can take action at ∈ A such that the

transition dynamics is given as st+1 = T (st, at). For notational convenience, state and

observation are used interchangeably in the MDP. Given a reward function R(st, at) that

captures the desired behavior and a discount factor γ ∈ [0, 1), the goal of RL is to maximize

the expected discounted cumulative reward across the episode. Similar to QT-Opt, we use

the sparse binary reward signal in our setup which indicates task success at the end of the

episode and zero otherwise. In addition, we have a small constant negative reward at each

time step to incentivise the agent to solve the task faster. The action space includes 3D

gripper displacement ∈ R3 and three binary commands (each ∈ {0, 1}) for gripper-open,

81

gripper-close commands and a termination command to end the episode. Different from

QT-Opt and most existing RL works, our observation space consists solely of multiple image

views from uncalibrated statically-placed cameras and the gripper aperture (an ”Opened

vs Closed” boolean).

5.3.2 Q Target Optimization (QT-Opt)

QT-Opt[53] is a continuous Q-Learning approach that learns a Q-value function which is

then optimized, in a model predictive control fashion, to choose optimal actions that maxi-

mize the learned Q-function. QT-Opt achieves this by learning a Q-function, represented by

a neural network, that captures the expected discounted cumulative sum of reward starting

from a given state and taking the action.

Qθ(s, a) = r(s, a) + γmax
a′
Qθ(s′, a′) (5.1)

The policy is recovered from a learned Q-function via:

π(s) = arg max
a
Qθ(s, a) (5.2)

The Q-function maximization is done with a cross-entropy method (CEM)– a derivative-free

optimization algorithm.

5.3.3 Robot Simulation Setup

We use the Kuka IIWA arm with a parallel jaw gripper as the robot platform in our

experiments, although our method is independent of the specific robot hardware. Using the

Bullet Physics simulator [22], we create a simulation environment (Figure 5.2) where two

bins are placed in front of the robot and based on the task at hand, objects are placed in
82

(a) Stacking I: Start (b) Stacking II: Start (c) Insertion: Start

(d) Stacking I: Goal (e) Stacking II: Goal (f) Insertion: Goal

Figure 5.4: Tasks with Varying Difficulty The value of multi-view task learning depends
on the level of 3D understanding and precision required for the task. The images above
show sampled initial images and final images to illustrate the desired outcomes. Left [a,d]:
The Stacking I task requires a block from the right side be placed on top of the block on the
left side. The task has a large margin of error since the blocks are big enough that perfect
alignment isn’t required to succeed. Middle [b,e]: The blocks are smaller so there is a
need for more precise placement, hence the performance benefit of having multiple views
is potentially higher. Right, [c,f]: The insertion task requires the block placed into the
middle placement location (green hole) of the fixture. This requires precise alignment which
difficult from a single view, hence there is significant benefit to using multiple views.

83

the bins at random locations. Three cameras were mounted to overlook the bins where the

task is being performed; with respect to the robot, one camera is over-the-shoulder, one is

to the left and one is to the right.

5.4 Multi-View Task Learning

Most vision-based learning algorithms take a single camera image input as an observation

of the state of the environment. This may be reasonably sufficient for tasks requiring more

coarse manipulation, but for tasks that require high-level of precision such as the insertion

task in Figure 5.2, a single view usually cannot capture enough of the state information to

achieve superior performance.

For single-view task learning, we take a closer look at the Q-function expressed as a

deep neural network and observe that it can be factorized given that the state input has

visual and non-visual components i.e. s = (svisual, snon visual). The visual component is the

image observation while the non-visual component is the gripper ”Opened/Closed” status.

As a result, the Q-function can be decomposed as:

Qθ(s, a) = Qθ(svisual, snon visual, a)

= Q(f(svisual), g(snon visual), h(a))

(5.3)

where f , g and h are vector valued functions with f being a sequence of 2D convolutional

layers while g and h are a sequence of dense layers.

For a single view system, f(svisual) is a function over the input image while in the multi-

view setting, there can be different functions f1, f2, ..., fn that process image observations

from viewpoints 1 through n. Below, we present different ways of expressing and composing

84

the functions for both single and multiple views systems.

5.4.1 Single View

We evaluate against several single view architectures. Single View RGB from the shoulder

(SV Shoulder). We additionally explore the use of depth images from the shoulder view.

We look at (SV RGBD) where the RGB and Depth are fed into separate CNN towers of

the network.

5.4.2 Multi-Tower (MV Towers)

Shown in Figure 5.3a, each image observation oi is passed through a separate vision pro-

cessing module fi which is a sequence of convolution layers to produce visual embeddings

fi(oi) from each viewpoint. These embeddings are averaged across views and combined

with action proposals before going through more convolution and dense layers to produce

the Q-value Q(s, a). Note that even though the function for each viewpoint have the same

form, each function is different with a separate set of weights i.e. fi 6= fj , ∀i 6= j. The

overall vision module is given as:

f =
1

n

n∑
i=1

fi(oi)

5.4.3 Siamese (MV Siamese)

MV Siamese is a modification of MV Towers such that the convolutional weights across the

multi-views are shared i.e. fi = fj , ∀i, j. This reduces the total number of weights to be

trained, shares the data from multiple views to train the same set of weights, imposes a

constraint that visual data from all views should be processed similarly.

85

5.4.4 Sensor Dropout (MV Dropout)

MV Dropout is a modification of MV Towers. The data from one or more of the cameras

is randomly masked out during training. This aims to improve robustness to the absence

of camera views.

f =
1

C

n∑
i=1

δifi(oi)

where δi ∼ Bernoulli(p) and C =
∑n

i=1 δi is the normalizing constant that ensures the scale

of the output does not vary with the number of camera viewpoints selected. Note that

with this formulation it is possible to have no camera selected which is undesirable and

a waste of training cycle even if happens less frequently. An implementation detail is to

list out all possible combination where one or more of the camera view-points are selected

and put a uniform distribution to randomly select one of these possible options. A similar

sensor-dropout idea was shown to improve multi-sensory fusion for autonomous navigation

task [70].

5.4.5 Q-Aggregate Network (MV Q AGG)

Shown in Figure 5.3b this multi-view approach creates a separate Q-function per input

viewpoint and all Q outputs are aggregated into a single Q-value. This is a consensus action

approach where each view predicts the Q-value of each proposed action given the current

state. The action with the highest Q-value (aggregated across views) is selected. During

training, the mean aggregate is preferred so that gradient flows through the entire network

for all views; min/max operations would only allow gradient flow through a single branch

of the network for each training datapoint. A drawback of the Q-Aggregate approach,

regardless of the aggregate function, is that there are more parameters to train.

86

Figure 5.5: Insertion Task Training Curves. Running average comparison of SV and
MV architectures trained either 4 million (4M) or 8 million (8M) training iterations taking
up to 40 hours. MV Dropout and MV Q Agg results achieve the best and comparable
performance on this task. Importantly, sensor dropout during training leads to a huge
difference in performance between MV Towers and MV Dropout.

87

Figure 5.6: Comparison of best performing SV and MV models across different
tasks. The relative gains from a multi-view approach are dependent on task with harder
tasks gaining more. Switching from single to multi-view results in the following absolute
performance gains: Stacking I 8.97%; Stacking II 20.14%; and Insertion 23.43%

88

Table 5.1: View Dropout Experiment (% Task Success on Insertion Task): This table
overviews how different trained policies perform as the number of views available at runtime
is reduced. The Multi-View and Multi-View (Dropout) rows were all trained with obser-
vations from 3 views, but evaluated with 3, 2, and 1 view. The single view baselines were
trained with 1 view and evaluated with 1 view. Of note is the fact that the Multi-View
(Dropout) significantly outperforms the Single View baselines even when only provided a
single view at runtime. It also outperforms the Multi-View model trained and evaluated
with 3 views implying the dropout procedure has benefits even when all views are available.
All numbers in the table come from the average of evaluating the final trained policy for
700 episodes.

of Views at Runtime: 3 Views 2 Views 1 View

All Views
Shoulder

+
Left

Shoulder
+

Right

Left
+

Right
Shoulder Left Right

MV Towers 4M
[trained w/ 3 views]

58.0 0.43 3.86 0 0 0 0

MV Dropout 4M
[trained w/ 3 views]

86.86 68.0 83.0 70.0 32.14 34.29 14.57

SV Shoulder 8M
[trained w/ 1 view]

N/A N/A N/A N/A 63.43 N/A N/A

5.5 Experiments

For our experiments, three cameras were placed pointed at the robot’s workspace. With

respect to the robot, one camera is roughly over the shoulder, one to the left and one to

the right. For each episode, 0.01 std-dev uniform noise is added to the camera position,

look and up vectors used to define the camera pose, for each camera, to simulate imperfect

camera calibration and improve generalization. The bin locations are randomized with x,

y, z position noise sampled uniformly from the ranges (±0.025, ±0.05, ±0.05). To compare

various multi-view and single-view approaches, three simulated robotic tasks were used as

test-beds:

Stacking I (Figure 5.4a, 5.4d): The right bin starts with a single block (5cm edge length)

either blue or orange in a random position. The left bin also starts with a single block either

blue or orange. An episode of the task is counted as a success if at the end of the episode
89

there are two blocks in the left bin with one on top of the other.

Stacking II (Figure 5.4b, 5.4e): The right bin starts with 6 small blocks (3.8cm edge

length) in random positions, while the left bin starts with a single small cube in a random

position. An episode of the task is a success if at the end of the episode there are two blocks

in the left bin with one on top of the other. In contrast to Stacking I, the blocks here are

smaller which lowers the margin for error.

Insertion (Figure 5.4c, 5.4f): The right bin starts with 3 blocks (5cm edge length) either

blue or orange in random positions. The left bin starts with a fixture at a random position,

but fixed orientation. An episode of the task is a success if at the end the fixture is in

the left bin, and has a block firmly inserted into the middle fixture position. The fixture

location has 9mm of clearance for the cube.

Poor exploration is a known issue in sparse-reward settings and previous works [53][123]

have shown the importance of providing some demonstration data to aid exploration and

bootstrap the reinforcement learning. Similarly, we bootstrap off a simple scripted sub-

optimal policy (yielding about 20% for the Insertion task) to collect demonstration data

which is included in the replay buffer to address the exploration issue.

Model performance is affected both by the number of training iterations and by the

duration of time that training is run for. 180 data collection jobs are run for all training

workflows producing ∼5000 episodes per hour for the insertion task with some variabil-

ity across model performance and task. The 50,000 most recent episodes are kept in an

experience replay buffer which takes ∼10 hours to initially reach capacity. Over time,

the distribution of episodes in the buffer will shift as the policy learns the task and older

episodes are evicted. We used 4 million gradient updates for the multi-view and RGBD

architectures, but provided the SV Shoulder 8 million gradient steps in order to give it a
90

comparable wall clock time and comparable amount of collected data. The models were

trained following the QT-Opt setup with 1000 bellman update workers and 10 GPUs.

5.5.1 Single and Multi-View Insertion

Figures 5.4c and 5.4f shows the insertion task. As shown in Figure 5.5, single view ap-

proaches to task learning struggle to learn this task where the margin for error in aligning

the block to the fixture is very low. This is true even when the single view approaches are

provided depth information in the form of a depth image channel (SV RGBD). Conversely,

we see the value of using multiple camera-view as input into the system. In addition, we see

that using sensor dropout gives further improvement on the multi-view performance. This

boost might be because dropping out camera views during training forces the network to

squeeze out as much information from each camera. Note that at inference time, we use all

three cameras. The Q-Agg network also achieves comparable high performance although it

contains more parameters.

5.5.2 Varying Task Difficulty

From Figure 5.6, notice that the relative performance of the multi-view system compared

to single-view varies by task. For tasks that can accommodate a high margin of precision

error (such as Stacking I where the blocks are large enough to overlap with little precision),

the performance gap between single versus multiple view systems is small. As tasks require

more and more precise manipulation, the benefit of multiple views becomes more apparent.

By switching from SV Shoulder to MV Dropout, task failure rate on Stacking I dropped

from 17.14% to 8.71%- a 49.18% reduction in failure rate i.e. (17.14% - 8.71%) / 17.14%.

Higher performance gains were seen on relatively harder tasks: Stacking II failure rate

91

dropped from 35.43% to 15.29% a 56.84% reduction in failure rate and Insertion dropped

from 36.57% to 13.14% a 64.1% reduction in failure rate.

5.5.3 Camera Dropout Robustness Test

We experimentally demonstrate the robustness that result from the use of sensor dropout

during training by randomly taking out one or two of the cameras during evaluation and

measure the task performance. As show in Table 5.1, while both multi-view approaches

perform better that the single-view baseline, using sensor dropout during training makes

a multi-view system robust to loss of camera after deployment; it leverages the inherent

redundancy of the multi-view architecture to achieve a more reliable system. Compared

to MV Towers where loss of camera view after training is catastrophic, the performance of

MV Dropout drops 4% to 19% when one view is taken out and 53% to 73% when two

viewpoints are taken out depending on which views are removed. The Shoulder and Left

views are positioned close to each other so the Shoulder + Right performs much better than

Shoulder + Left. From the right view alone it can be difficult to see the fixture so it is the

worst performing single view. The MV Dropout model is able to work half as well as the

SV Shoulder model, when operating off only a Shoulder view, this model is not specialized

to that specific image and also has had to learn to operate off other view combinations.

5.6 Summary

This chapter introduces a multi-view approach to robotic learning for precision-based tasks.

Our approach directly learns the task without going through an intermediate step of recon-

structing the scene. The effective use of multiple views enables a richer observation of the

underlying state relevant to the task. Experiments on precision-based stacking and insertion

92

tasks show that our sensor-dropout approach to multi-view task learning achieves superior

performance compared to the common single view approach. This improvement can be seen

in the asymptotic performance as well as robustness to occlusion and loss of camera views.

Our multi-view approach enables 3D tasks from RGB cameras without the need for explicit

3D representations and without camera-camera and camera-robot calibration.

93

Chapter 6

Conclusion

The journey towards making robots that can handle fast changing, less-structured human-

centered environments, and are more amenable to different tasks is still in its early stages.

Some of the key challenges we face include: (i) limited use of the workspace where robots

are not able to fully utilize 6DOF grasps to pick-up objects in difficult-to-reach regions, (ii)

difficulty in picking up moving objects in cluttered scenes, (iii) lack of robustness during

the final grasping phase due to the open-loop nature of most algorithms, (iv) difficulty

in achieving closed-loop manipulation from vision using the common single-view camera

settings.

In this thesis, we draw inspiration from the human ability to seamlessly manipulate

objects to address these challenges of robot manipulation. To achieve this, we develop dif-

ferent sensibilities that improve robots’ performance and reliability in manipulation tasks.

In Chapter 2, we developed a novel representation for reachability awareness that enables

robotic grasping of static objects in difficult-to-reach regions around the robot. The reach-

ability space, computed offline, is used at runtime to bias the grasp planner towards ac-

cessible regions of the grasping scene. This results in a higher percentage of reachable

94

grasps, a higher percentage of successful grasp executions, and a reduced planning time.

Based on the robot’s morphology, this ability to reason about regions that can be reached

is valuable in both static and dynamic scenarios. In Chapter 3, we showed that reach-

ability awareness is also valuable in dynamic settings where the target object is moving

within static obstacles. To achieve reliable dynamic grasping, we also developed a neural

network for motion-awareness that predicts and selects robust grasps based on the motion

of the object. Our notion of reachability-awareness and motion-awareness help to identify

reachable and robust grasps. To smoothly move the arm to the planned reachable grasp,

we developed a seeding approach for generating arm motion trajectory that enables fast

computation and smooth arm motion. Our extensive experiments demonstrate the impor-

tance of each of these components. In Chapter 4, we developed an adaptive tactile-aware

grasping algorithm that uses tactile sensing to close the loop during the last phase of grasp-

ing. This closed-loop behavior was obtained using policy-gradient reinforcement learning,

learned purely in simulation and transferred to the real robot in a high-fidelity manner.

The resulting algorithm helps turn common failure cases into successes and make grasp-

ing systems significantly more robust to camera-robot calibration errors. Our work can be

used as an add-on to existing open-loop grasp planners to improve their robustness. In

Chapter 5, we presented a multi-view continuous q-learning approach that uses reinforce-

ment learning to learn object manipulation tasks like insertion that requires a level of 3D

understanding. Our use of static but uncalibrated cameras does not require camera-robot

or camera-camera calibration making the proposed approach easy to setup, and our use of

sensor dropout during training makes it resilient to the loss of camera-views after deploy-

ment. The obtained end-to-end policy is reactive– directly mapping from high-dimensional

multi-view image observation to robot action – enabling failure recovery behaviors.
95

System Implementation Details: In this thesis, we reasoned about robotic manip-

ulation along different philosophical themes which manifest themselves in different system

implementation details. Following are a summary of some system considerations and deci-

sions made to realize the ideas introduced in this work:

• model-based grasping: This entails an initial step of parsing the image of the grasping

scene into object models, using object recognition and pose detection modules. The

grasping algorithms are then developed and applied to the pre-processed grasping

scene to generate pick-up actions for specific target objects while avoiding collision

with other distractor objects. Chapters 2 and 3 take this approach to develop a

reachability-aware grasping algorithm for static and moving objects.

• model-free grasping: This approach directly generates grasp poses and actions from

raw sensory inputs (images or tactile readings) without recreating the models of the

objects in the scene. This approach has no notion of objectness but, as shown in

Chapter 4, it is able to generalize well across different scenes with novel objects.

• End-to-End manipulation: The inputs and outputs of manipulation algorithms can

occur at different levels. For example, the inputs can be raw images or preprocessed

object models and poses, while the output can vary from high-level action spaces such

as a grasp pose, to a lower-level space such as end-effector displacement, or a much

lower-level space such as joint-torques. To execute high-level actions like moving to a

grasp pose, the action output still requires further processing such as motion planning.

An end-to-end manipulation systems strives to go directly from raw sensor inputs to

low-level action-spaces that would require less post-processing of the action which can

be executed in a tighter loop. Chapter 5 presents an end-to-end manipulation system
96

that directly predicts end-effector displacement from raw multi-view camera inputs.

• Closed-loop manipulation: An open-loop system predicts a final high-level robot action

(e.g. a grasp) that is post-processed and realized by another module. On the other

hand, a closed-loop system has a feedback component that continuously observes the

current robot state and environment and uses the observation to predict a lower level

action. This enables robust and reactive behaviors as shown in Chapters 4 and 5.

6.1 Current Limitations and Future Work

There are several avenues for future work that build on the works in this thesis. As a first

step, a tighter unification of the methods developed would be very valuable. For example,

while reachability and motion awareness was shown to improve dynamic grasping, it would

be interesting to investigate the importance of tactile awareness during dynamic grasping.

As was demonstrated with static multifingered grasping, tactile sensing is likely to show

performance benefits when picking up moving objects especially during the approach-and-

grasp phase. This tight integration would bring to the fore how to best combine model-based

and model-free methods. While Chapters 2 and 3 are model-based in that object models are

first extracted from the camera sensors before passing the models through other modules

of the algorithm, Chapter 4 and 5 introduce more model-free approaches that directly map

sensor observations such as camera images and tactile sensor readings into robot actions

such as grasp types/arm joint motions. Unification of these techniques into one would be

valuable in better understanding the boundary between model-based and model-free; while

yielding a strong manipulation system.

Other future avenues for research are highlighted as follows:

97

Sensor Integration for Complex Manipulation: Chapter 4 presents an approach

to achieve closed-loop behavior using tactile sensor readings in the final phase of grasp-

ing while Chapter 5 derives a closed-loop policy using multiple camera-views for different

manipulation tasks. Since these different modalities (vision and tactile) have their advan-

tages, it would be interesting to develop approaches that better integrate these and other

sensor measurements to achieve more complex tasks like tool-use e.g. using the hammer

or a screwdriver. Tighter integration of multi-modal sensing is important to the future of

robotic manipulation.

Stronger Visual Priors from Multi-view Robotic Systems: In Chapter 5, we

present an end-to-end multi-view vision-based manipulation policy that directly maps im-

ages from multiple views to robot actions. We introduced a sensor dropout approach that

improves the training behavior and overall performance on multi-stage precision tasks like

stacking and insertion. This direct mapping from pixels to robot joint actions makes this

approach run in closed-loop and can be more amenable to dynamic applications. There are

a few directions to take this further. By learning from multiple views, strong visual priors

can be leveraged to improve training speed, policy performance and task generalization.

For example, scene consistency in regions where some camera views overlap can provide

strong training signals. In addition, improved quality of encoding representation can aid

transferability to new tasks and potentially sim-to-real transfer. For our multi-view work,

we arbitrarily placed the cameras at poses that roughly overlook the robot’s workspace. An

important question is to determine the optimal camera placements. In addition, it would

interesting determine how the number of cameras affect task performance and speed and if

there is a minimum number of cameras required for different tasks.

98

6.2 Closed-Loop Sensory Awareness: An important ingredi-

ent for Complex Robotic Manipulation

Current robotic manipulation skills remain far from human-level versatility and there are

a number of algorithmic and technological ingredients required to get there. These include

sensor design, sensor fusion, transfer learning, planning algorithms, feedback control among

others. Using robotic grasping, stacking and insertion tasks as test-beds, we have demon-

strated in this thesis how advancement in each of these themes can take us closer to achieving

human-level robotic manipulation. To improve static grasping and achieve dynamic grasp-

ing, we showed the importance of fast planning algorithms. Our reachability-aware grasping

approach enables fast grasp planning and grasp selection while our trajectory seeding ap-

proach achieves fast generation of smooth arm trajectory in dynamic settings. The advan-

tage of feedback-based/closed-loop engineering systems over open-loop alternatives is well

established, although achieving feedback in robotic manipulation is not straight-forward.

We demonstrated that a closed-loop grasping behavior can be learned in simulation us-

ing reinforcement learning. Using careful choices of observation and action spaces, this

reinforcement-learned policy can be transferred from simulation to the real robot in a high

fidelity manner. We also demonstrated that a closed-loop vision-based policy from multiple

camera views can be learned using continuous q-learning. Our sensor-dropout mechanism

makes this multi-view policy robust to loss of camera views.

Extending the ideas of fast, closed-loop manipulation developed in this work to more

complex tasks such as manipulating deformable objects and longer-horizon tasks would be

an important next step towards more versatile robotic manipulation.

99

Bibliography

[1] Iretiayo Akinola, Jacob Varley, and Dmitry Kalashnikov. “Learning precise 3D ma-
nipulation from multiple uncalibrated cameras”. In: 2020 IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE. 2020, pp. 4616–4622.

[2] Iretiayo Akinola et al. “Dynamic Grasping with Reachability and Motion Aware-
ness”. In: arXiv preprint arXiv:2103.10562 (2021).

[3] Iretiayo Akinola et al. “Workspace Aware Online Grasp Planning”. In: 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE. 2018,
pp. 2917–2924.

[4] Peter K Allen, Matei Ciocarlie, and Corey Goldfeder. “Grasp planning using low
dimensional subspaces”. In: The Human Hand as an Inspiration for Robot Hand
Development. Springer, 2014, pp. 531–563.

[5] Peter K Allen et al. “Automated tracking and grasping of a moving object with a
robotic hand-eye system”. In: IEEE Transactions on Robotics and Automation 9.2
(1993), pp. 152–165.

[6] Marcin Andrychowicz et al. “Learning dexterous in-hand manipulation”. In: arXiv
preprint arXiv:1808.00177 (2018).

[7] L C Baird. “Reinforcement Learning in Continuous Time: Advantage Updating”.
In: IEEE International Conference on Neural Networks (ICNN). Vol. 4. June 1994,
pp. 2448–2453.

[8] Dmitry Berenson, Pieter Abbeel, and Ken Goldberg. “A robot path planning frame-
work that learns from experience”. In: 2012 IEEE International Conference on
Robotics and Automation. IEEE. 2012, pp. 3671–3678.

[9] Marten Björkman et al. “Enhancing visual perception of shape through tactile
glances”. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE. 2013, pp. 3180–3186.

100

[10] James E Bobrow, Steven Dubowsky, and John S Gibson. “Time-optimal control of
robotic manipulators along specified paths”. In: The international journal of robotics
research 4.3 (1985), pp. 3–17.

[11] Roberto Calandra et al. “More Than a Feeling: Learning to Grasp and Regrasp using
Vision and Touch”. In: arXiv preprint arXiv:1805.11085 (2018).

[12] Roberto Calandra et al. “The feeling of success: Does touch sensing help predict
grasp outcomes?” In: arXiv preprint arXiv:1710.05512 (2017).

[13] Angel X Chang et al. “Shapenet: An information-rich 3d model repository”. In: arXiv
preprint arXiv:1512.03012 (2015).

[14] Yevgen Chebotar et al. “Closing the sim-to-real loop: Adapting simulation random-
ization with real world experience”. In: 2019 International Conference on Robotics
and Automation (ICRA). IEEE. 2019, pp. 8973–8979.

[15] Yevgen Chebotar et al. “Self-supervised regrasping using spatio-temporal tactile fea-
tures and reinforcement learning”. In: 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE. 2016, pp. 1960–1966.

[16] Xiaotong Chen et al. “GRIP: Generative Robust Inference and Perception for Seman-
tic Robot Manipulation in Adversarial Environments”. In: arXiv preprint arXiv:1903.08352
(2019).

[17] Ricson Cheng, Arpit Agarwal, and Katerina Fragkiadaki. “Reinforcement Learn-
ing of Active Vision forManipulating Objects under Occlusions”. In: arXiv preprint
arXiv:1811.08067 (2018).

[18] Matei Ciocarlie, Corey Goldfeder, and Peter Allen. “Dimensionality reduction for
hand-independent dexterous robotic grasping”. In: Intelligent Robots & Systems.
IROS. 2007, pp. 3270–3275.

[19] Matei T Ciocarlie and Peter K Allen. “Hand posture subspaces for dexterous robotic
grasping”. In: IJRR 28.7 (2009).

[20] Deen Cockbum et al. “Grasp stability assessment through unsupervised feature learn-
ing of tactile images”. In: 2017 IEEE International Conference on Robotics and Au-
tomation (ICRA). IEEE. 2017, pp. 2238–2244.

[21] David Coleman et al. “Experience-based planning with sparse roadmap spanners”.
In: 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE.
2015, pp. 900–905.

101

[22] E Coumans and Y Bai. “Pybullet, a python module for physics simulation for games,
robotics and machine learning”. In: GitHub (2016).

[23] Hao Dang and Peter K Allen. “Stable grasping under pose uncertainty using tactile
feedback”. In: Autonomous Robots 36.4 (2014), pp. 309–330.

[24] Hao Dang, Jonathan Weisz, and Peter K Allen. “Blind grasping: Stable robotic
grasping using tactile feedback and hand kinematics.” In: ICRA. 2011, pp. 5917–
5922.

[25] Rosen Diankov and James Kuffner. “Openrave: A planning architecture for au-
tonomous robotics”. In: Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-
TR-08-34 79 (2008).

[26] Clemens Eppner, Arsalan Mousavian, and Dieter Fox. “A Billion Ways to Grasp: An
Evaluation of Grasp Sampling Schemes on a Dense, Physics-based Grasp Data Set”.
In: arXiv preprint arXiv:1912.05604 (2019).

[27] SM Ali Eslami et al. “Neural scene representation and rendering”. In: Science 360.6394
(2018), pp. 1204–1210.

[28] Javier Felip, Jose Bernabé, and Antonio Morales. “Contact-based blind grasping of
unknown objects”. In: 2012 12th IEEE-RAS International Conference on Humanoid
Robots (Humanoids 2012). IEEE. 2012, pp. 396–401.

[29] Javier Felip et al. “Manipulation primitives: A paradigm for abstraction and exe-
cution of grasping and manipulation tasks”. In: Robotics and Autonomous Systems
61.3 (2013), pp. 283–296.

[30] Carlo Ferrari and John Canny. “Planning optimal grasps”. In: Robotics and Au-
tomation, 1992. Proceedings., 1992 IEEE International Conference on. IEEE. 1992,
pp. 2290–2295.

[31] Corey Goldfeder and Peter K Allen. “Data-driven grasping”. In: Autonomous Robots
31.1 (2011), pp. 1–20.

[32] Corey Goldfeder et al. “The columbia grasp database”. In: 2009 IEEE international
conference on robotics and automation. IEEE. 2009, pp. 1710–1716.

[33] Marcus Gualtieri and Robert Platt. “Viewpoint selection for grasp detection”. In:
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE. 2017, pp. 258–264.

[34] Tuomas Haarnoja et al. “Soft actor-critic algorithms and applications”. In: arXiv
preprint arXiv:1812.05905 (2018).

102

[35] Kaiyu Hang, Johannes A Stork, and Danica Kragic. “Hierarchical fingertip space
for multi-fingered precision grasping”. In: Intelligent Robots and Systems (IROS).
IEEE. 2014, pp. 1641–1648.

[36] Kris Hauser. “Robust contact generation for robot simulation with unstructured
meshes”. In: Robotics Research. Springer, 2016, pp. 357–373.

[37] Francois R Hogan et al. “Tactile regrasp: Grasp adjustments via simulated tactile
transformations”. In: 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE. 2018, pp. 2963–2970.

[38] Nasser Houshangi. “Control of a robotic manipulator to grasp a moving target using
vision”. In: Proceedings., IEEE International Conference on Robotics and Automa-
tion. IEEE. 1990, pp. 604–609.

[39] Emil Hyttinen, Danica Kragic, and Renaud Detry. “Estimating tactile data for adap-
tive grasping of novel objects”. In: 2017 IEEE-RAS 17th International Conference
on Humanoid Robotics (Humanoids). IEEE. 2017, pp. 643–648.

[40] Emil Hyttinen, Danica Kragic, and Renaud Detry. “Learning the tactile signatures of
prototypical object parts for robust part-based grasping of novel objects”. In: 2015
IEEE international conference on Robotics and Automation (ICRA). IEEE. 2015,
pp. 4927–4932.

[41] Jarmo Ilonen, Jeannette Bohg, and Ville Kyrki. “Fusing visual and tactile sensing for
3-d object reconstruction while grasping”. In: 2013 IEEE International Conference
on Robotics and Automation. IEEE. 2013, pp. 3547–3554.

[42] Lester Ingber. “Very fast simulated re-annealing”. In: Mathematical and computer
modelling 12.8 (1989), pp. 967–973.

[43] Fahad Islam et al. “Provably Constant-time Planning and Replanning for Real-time
Grasping Objects off a Conveyor Belt”. In: arXiv preprint arXiv:2101.07148 (2021).

[44] Jan Issac et al. “Depth-based object tracking using a robust gaussian filter”. In:
Robotics and Automation (ICRA), 2016 IEEE International Conference on. IEEE.
2016, pp. 608–615.

[45] Gregory Izatt et al. “Tracking objects with point clouds from vision and touch”. In:
2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE.
2017, pp. 4000–4007.

[46] Divye Jain et al. “Learning Deep Visuomotor Policies for Dexterous Hand Manip-
ulation”. In: 2019 International Conference on Robotics and Automation (ICRA).
IEEE. 2019, pp. 3636–3643.

103

[47] Stephen James et al. “Sim-to-real via sim-to-sim: Data-efficient robotic grasping via
randomized-to-canonical adaptation networks”. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition. 2019, pp. 12627–12637.

[48] Leif P Jentoft, Qian Wan, and Robert D Howe. “Limits to compliance and the role
of tactile sensing in grasping”. In: 2014 IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2014, pp. 6394–6399.

[49] Mohsen Kaboli et al. “A tactile-based framework for active object learning and
discrimination using multimodal robotic skin”. In: IEEE Robotics and Automation
Letters 2.4 (2017), pp. 2143–2150.

[50] Mohsen Kaboli et al. “Tactile-based active object discrimination and target object
search in an unknown workspace”. In: Autonomous Robots 43.1 (2019), pp. 123–152.

[51] Mrinal Kalakrishnan et al. “Learning force control policies for compliant manip-
ulation”. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE. 2011, pp. 4639–4644.

[52] Mrinal Kalakrishnan et al. “STOMP: Stochastic trajectory optimization for mo-
tion planning”. In: 2011 IEEE international conference on robotics and automation.
IEEE. 2011, pp. 4569–4574.

[53] Dmitry Kalashnikov et al. “Qt-opt: Scalable deep reinforcement learning for vision-
based robotic manipulation”. In: arXiv preprint arXiv:1806.10293 (2018).

[54] R.E. Kalman. “A new approach to linear filtering and prediction problems”. In:
Journal of Basic Engineering 82.1 (1960), pp. 35–45.

[55] Daniel Kappler et al. “Real-time perception meets reactive motion generation”. In:
IEEE Robotics and Automation Letters 3.3 (2018), pp. 1864–1871.

[56] Lydia E Kavraki et al. “Probabilistic roadmaps for path planning in high-dimensional
configuration spaces”. In: IEEE transactions on Robotics and Automation 12.4 (1996),
pp. 566–580.

[57] Danica Kragic and Henrik I Christensen. “A framework for visual servoing”. In:
International Conference on Computer Vision Systems. Springer. 2003, pp. 345–354.

[58] Danica Kragic, Henrik I Christensen, et al. “Survey on visual servoing for manipula-
tion”. In: Computational Vision and Active Perception Laboratory, Fiskartorpsv 15
(2002), p. 2002.

104

[59] Oliver Kroemer, Scott Niekum, and George Konidaris. “A Review of Robot Learning
for Manipulation: Challenges, Representations, and Algorithms”. In: arXiv preprint
arXiv:1907.03146 (2019).

[60] James J Kuffner and Steven M LaValle. “RRT-connect: An efficient approach to
single-query path planning”. In: Robotics and Automation, 2000. Proceedings. ICRA’00.
IEEE International Conference on. Vol. 2. IEEE. 2000, pp. 995–1001.

[61] Jennifer Kwiatkowski, Deen Cockburn, and Vincent Duchaine. “Grasp stability as-
sessment through the fusion of proprioception and tactile signals using convolutional
neural networks”. In: 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE. 2017, pp. 286–292.

[62] Friedrich Lange, Michael Suppa, and Gerd Hirzinger. “Control with a compliant
force-torque sensor”. In: ROBOTIK 2012; 7th German Conference on Robotics.
VDE. 2012, pp. 1–6.

[63] Michelle A Lee et al. “Making Sense of Vision and Touch: Learning Multimodal Rep-
resentations for Contact-Rich Tasks”. In: arXiv preprint arXiv:1907.13098 (2019).

[64] Ian Lenz, Honglak Lee, and Ashutosh Saxena. “Deep learning for detecting robotic
grasps”. In: The International Journal of Robotics Research 34.4-5 (2015), pp. 705–
724.

[65] Sergey Levine et al. “Learning hand-eye coordination for robotic grasping with deep
learning and large-scale data collection”. In: The International Journal of Robotics
Research 37.4-5 (2018), pp. 421–436.

[66] Miao Li et al. “Learning of grasp adaptation through experience and tactile sensing”.
In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.
Ieee. 2014, pp. 3339–3346.

[67] Y Litvak, A Biess, and A Bar-Hillel. “Learning Pose Estimation for High-Precision
Robotic Assembly Using Simulated Depth Images”. In: 2019 International Confer-
ence on Robotics and Automation (ICRA). IEEE. 2019, pp. 3521–3527.

[68] Qingkai Lu and Tucker Hermans. “Modeling grasp type improves learning-based
grasp planning”. In: IEEE Robotics and Automation Letters 4.2 (2019), pp. 784–
791.

[69] Qingkai Lu et al. “Planning multi-fingered grasps as probabilistic inference in a
learned deep network”. In: arXiv preprint arXiv:1804.03289 (2018).

[70] Jianlan Luo et al. “Reinforcement Learning on Variable Impedance Controller for
High-Precision Robotic Assembly”. In: arXiv preprint arXiv:1903.01066 (2019).

105

[71] Robert Mahony, Peter Corke, and Tarek Hamel. “Dynamic image-based visual servo
control using centroid and optic flow features”. In: Journal of Dynamic Systems,
Measurement, and Control 130.1 (2008), p. 011005.

[72] Lucas Manuelli et al. “kPAM: KeyPoint Affordances for Category-Level Robotic
Manipulation”. In: arXiv preprint arXiv:1903.06684 (2019).

[73] Naresh Marturi et al. “Dynamic grasp and trajectory planning for moving objects”.
In: Autonomous Robots 43.5 (2019), pp. 1241–1256.

[74] Arjun Menon, Benjamin Cohen, and Maxim Likhachev. “Motion planning for smooth
pickup of moving objects”. In: 2014 IEEE International Conference on Robotics and
Automation (ICRA). IEEE. 2014, pp. 453–460.

[75] Hamza Merzić et al. “Leveraging Contact Forces for Learning to Grasp”. In: 2019 In-
ternational Conference on Robotics and Automation (ICRA). IEEE. 2019, pp. 3615–
3621.

[76] Justinas Mǐseikis et al. “Multi 3D camera mapping for predictive and reflexive robot
manipulator trajectory estimation”. In: 2016 IEEE Symposium Series on Computa-
tional Intelligence (SSCI). IEEE. 2016, pp. 1–8.

[77] Douglas Morrison, Peter Corke, and Jürgen Leitner. “Closing the Loop for Robotic
Grasping: A Real-time, Generative Grasp Synthesis Approach”. In: Robotics: Science
and Systems (RSS) (2018).

[78] Adithyavairavan Murali et al. “Learning to grasp without seeing”. In: arXiv preprint
arXiv:1805.04201 (2018).

[79] Ashvin Nair et al. “Overcoming exploration in reinforcement learning with demon-
strations”. In: 2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2018, pp. 6292–6299.

[80] Helen Oleynikova et al. “Signed distance fields: A natural representation for both
mapping and planning”. In: RSS 2016 Workshop: Geometry and Beyond-Representations,
Physics, and Scene Understanding for Robotics. University of Michigan. 2016.

[81] Chavdar Papazov and Darius Burschka. “An efficient ransac for 3d object recognition
in noisy and occluded scenes”. In: Asian Conference on Computer Vision. Springer.
2010, pp. 135–148.

[82] Andreas ten Pas et al. “Grasp pose detection in point clouds”. In: The International
Journal of Robotics Research 36.13-14 (2017), pp. 1455–1473.

106

[83] Lerrel Pinto and Abhinav Gupta. “Supersizing self-supervision: Learning to grasp
from 50k tries and 700 robot hours”. In: 2016 IEEE international conference on
robotics and automation (ICRA). IEEE. 2016, pp. 3406–3413.

[84] Ivaylo Popov et al. “Data-efficient deep reinforcement learning for dexterous manip-
ulation”. In: arXiv preprint arXiv:1704.03073 (2017).

[85] Oliver Porges et al. “Reachability and capability analysis for manipulation tasks”.
In: ROBOT2013: First Iberian Robotics Conference. Springer. 2014, pp. 703–718.

[86] Nathan Ratliff et al. “CHOMP: Gradient optimization techniques for efficient motion
planning”. In: 2009 IEEE International Conference on Robotics and Automation.
IEEE. 2009, pp. 489–494.

[87] Máximo A Roa and Raúl Suárez. “Grasp quality measures: review and performance”.
In: Autonomous Robots 38.1 (2015), pp. 65–88.

[88] Tanner Schmidt, Richard A Newcombe, and Dieter Fox. “DART: Dense Articulated
Real-Time Tracking.” In: Robotics: Science and Systems. Vol. 2. Berkeley, CA. 2014.

[89] Philipp S Schmitt et al. “Modeling and planning manipulation in dynamic envi-
ronments”. In: 2019 International Conference on Robotics and Automation (ICRA).
IEEE. 2019, pp. 176–182.

[90] Philipp S Schmitt et al. “Planning Reactive Manipulation in Dynamic Environ-
ments”. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). IEEE. 2019, pp. 136–143.

[91] John Schulman et al. “High-dimensional Continuous Control Using Generalized Ad-
vantage Estimation”. In: CoRR abs/1506.02438 (June 2015). arXiv: 1506.02438

[cs.LG].

[92] John Schulman et al. “Motion planning with sequential convex optimization and
convex collision checking”. In: IJRR 33.9 (2014), pp. 1251–1270.

[93] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint
arXiv:1707.06347 (2017).

[94] Pierre Sermanet et al. “Time-contrastive networks: Self-supervised learning from
video”. In: 2018 IEEE International Conference on Robotics and Automation (ICRA).
IEEE. 2018, pp. 1134–1141.

[95] Zhe Su et al. “Force estimation and slip detection/classification for grip control using
a biomimetic tactile sensor”. In: 2015 IEEE-RAS 15th International Conference on
Humanoid Robots (Humanoids). IEEE. 2015, pp. 297–303.

107

https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438

[96] Ioan A Sucan, Mark Moll, and Lydia E Kavraki. “The open motion planning library”.
In: IEEE Robotics & Automation Magazine 19.4 (2012), pp. 72–82.

[97] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT Press, 1998.

[98] Garrett Thomas et al. “Learning robotic assembly from CAD”. In: 2018 IEEE In-
ternational Conference on Robotics and Automation (ICRA). IEEE. 2018, pp. 1–
9.

[99] Jonathan Tremblay et al. “Deep Object Pose Estimation for Semantic Robotic
Grasping of Household Objects”. In: arXiv preprint arXiv:1809.10790 (2018).

[100] Nikolaus Vahrenkamp et al. “Humanoid motion planning for dual-arm manipulation
and re-grasping tasks”. In: IROS. IEEE. 2009.

[101] Nikolaus Vahrenkamp et al. “Visual servoing for dual arm motions on a humanoid
robot”. In: 2009 9th IEEE-RAS International Conference on Humanoid Robots.
IEEE. 2009, pp. 208–214.

[102] Nikolaus Vahrenkamp et al. “Visual servoing for humanoid grasping and manipu-
lation tasks”. In: Humanoids 2008-8th IEEE-RAS International Conference on Hu-
manoid Robots. IEEE. 2008, pp. 406–412.

[103] Jacob Varley et al. “Shape completion enabled robotic grasping”. In: 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE. 2017,
pp. 2442–2447.

[104] Mel Vecerik et al. “A practical approach to insertion with variable socket position
using deep reinforcement learning”. In: 2019 International Conference on Robotics
and Automation (ICRA). IEEE. 2019, pp. 754–760.

[105] Matej Večerık et al. “Leveraging demonstrations for deep reinforcement learning on
robotics problems with sparse rewards”. In: arXiv preprint arXiv:1707.08817 (2017).

[106] Ulrich Viereck et al. “Learning a visuomotor controller for real world robotic grasping
using simulated depth images”. In: arXiv preprint arXiv:1706.04652 (2017).

[107] Rick Wagner. “Multi-linear interpolation”. In: Beach Cities Robotics (2008).

[108] Chen Wang et al. “DenseFusion: 6D Object Pose Estimation by Iterative Dense
Fusion”. In: arXiv preprint arXiv:1901.04780 (2019).

108

[109] Shaoxiong Wang et al. “3d shape perception from monocular vision, touch, and
shape priors”. In: 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE. 2018, pp. 1606–1613.

[110] David Watkins-Valls, Jacob Varley, and Peter Allen. “Multi-modal geometric learn-
ing for grasping and manipulation”. In: 2019 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2019.

[111] David Watkins-Valls, Jacob Varley, and Peter Allen. “Multi-modal geometric learn-
ing for grasping and manipulation”. In: 2019 International Conference on Robotics
and Automation (ICRA). IEEE. 2019, pp. 7339–7345.

[112] Jonathan Weisz and Peter K Allen. “Pose error robust grasping from contact wrench
space metrics”. In: 2012 IEEE international conference on robotics and automation.
IEEE. 2012, pp. 557–562.

[113] William J Wilson, CC Williams Hulls, and Graham S Bell. “Relative end-effector
control using cartesian position based visual servoing”. In: IEEE Transactions on
Robotics and Automation 12.5 (1996), pp. 684–696.

[114] Bohan Wu, Iretiayo Akinola, and Peter K Allen. “Pixel-Attentive Policy Gradient
for Multi-Fingered Grasping in Cluttered Scenes”. In: 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE. 2019.

[115] Bohan Wu et al. “MAT: Multi-fingered adaptive tactile grasping via deep reinforce-
ment learning”. In: arXiv preprint arXiv:1909.04787 (2019).

[116] Manuel Wüthrich et al. “Probabilistic object tracking using a range camera”. In:
Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference
on. IEEE. 2013, pp. 3195–3202.

[117] Huangsheng Xie et al. “Research on visual servo grasping of household objects for
nonholonomic mobile manipulator”. In: Journal of Control Science and Engineering
2014 (2014), p. 16.

[118] Xinchen Yan et al. “Learning 6-DoF grasping interaction via deep geometry-aware
3D representations”. In: 2018 IEEE International Conference on Robotics and Au-
tomation (ICRA). IEEE. 2018, pp. 1–9.

[119] Xinyu Ye and Shan Liu. “Velocity Decomposition Based Planning Algorithm for
Grasping Moving Object”. In: 2018 IEEE 7th Data Driven Control and Learning
Systems Conference (DDCLS). IEEE. 2018, pp. 644–649.

109

[120] Brayan S Zapata-Impata, Pablo Gil, and Fernando Torres. “Non-Matrix Tactile Sen-
sors: How Can Be Exploited Their Local Connectivity For Predicting Grasp Stabil-
ity?” In: arXiv preprint arXiv:1809.05551 (2018).

[121] Andy Zeng et al. “Learning Synergies between Pushing and Grasping with Self-
supervised Deep Reinforcement Learning”. In: arXiv preprint arXiv:1803.09956 (2018).

[122] Andy Zeng et al. “Robotic pick-and-place of novel objects in clutter with multi-
affordance grasping and cross-domain image matching”. In: 2018 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2018, pp. 1–8.

[123] Yuke Zhu et al. “Reinforcement and imitation learning for diverse visuomotor skills”.
In: arXiv preprint arXiv:1802.09564 (2018).

110

	List of Figures
	List of Tables
	Acknowledgements
	Dedication
	1 Introduction
	1.1 Spatial Awareness
	1.2 Sensor Awareness
	1.2.1 Tactile Awareness
	1.2.2 Visual 3D Awareness

	1.3 Contributions Per Chapter

	2 Workspace Aware Online Grasp Planning
	2.1 Workspace-Awareness during Grasp Planning
	2.2 Offline Reachability Space Generation
	2.3 Reachability Space Representation
	2.4 Online Reachability-Aware Grasp Planning
	2.4.1 Simulated Annealing for Grasp Planning
	2.4.2 Novel Grasp Energy Formulation
	2.4.3 Embedding Obstacles in the Reachability Space

	2.5 Experiments
	2.5.1 Evaluation Metrics
	2.5.2 Grasp Planning with Runtime Obstacles Experiment
	2.5.3 Real Robot Crowded Scene Experiment

	2.6 Summary

	3 Motion-Aware Reaching and Grasping of Moving Objects in Cluttered Environments
	3.1 Introduction
	3.2 Related Works
	3.2.1 Grasping in Dynamic Environments
	3.2.2 Database-based Robotic Grasping
	3.2.3 Object Tracking
	3.2.4 Motion Generation

	3.3 Problem Definition
	3.4 Method
	3.4.1 Overview
	3.4.2 Object Motion Modelling
	3.4.3 Grasp Planning for Moving Objects
	3.4.4 Motion Generation and Grasp Execution

	3.5 Experiments
	3.5.1 Experimental Setup
	3.5.2 Experimental Results and Discussion

	3.6 Conclusion

	4 Tactile-Aware Multi-fingered Grasping
	4.1 Multi-Fingered Adaptive Tactile Grasping
	4.2 Related Work
	4.2.1 Vision-Based Closed-Loop Grasping
	4.2.2 Robotic Grasping with Tactile Only (Blind Grasping without Vision)
	4.2.3 Improving Vision-Based Grasping using Tactile or Other Contact Force Modalities

	4.3 Preliminaries
	4.4 Multi-Fingered Adaptive Tactile Grasping
	4.4.1 Observation Space
	4.4.2 Action Space
	4.4.3 Reward Structure
	4.4.4 Soft Proximal Policy Optimization
	4.4.5 Curriculum Learning

	4.5 Experiments
	4.5.1 Results and Discussions
	4.5.2 Grasping under Calibration Noise
	4.5.3 Extensive Ablation Experiments

	4.6 Summary

	5 3D-Aware Closed-Loop Manipulation via Multiple Camera Views
	5.1 Learning Precise 3D Manipulation from Multiple Uncalibrated Cameras
	5.2 Related Work
	5.2.1 Precision Robotics Manipulation
	5.2.2 Vision-based Robot Manipulation

	5.3 Preliminaries
	5.3.1 RL Formulation for Task Learning
	5.3.2 Q Target Optimization (QT-Opt)
	5.3.3 Robot Simulation Setup

	5.4 Multi-View Task Learning
	5.4.1 Single View
	5.4.2 Multi-Tower (MV_Towers)
	5.4.3 Siamese (MV_Siamese)
	5.4.4 Sensor Dropout (MV_Dropout)
	5.4.5 Q-Aggregate Network (MV_Q_AGG)

	5.5 Experiments
	5.5.1 Single and Multi-View Insertion
	5.5.2 Varying Task Difficulty
	5.5.3 Camera Dropout Robustness Test

	5.6 Summary

	6 Conclusion
	6.1 Current Limitations and Future Work
	6.2 Closed-Loop Sensory Awareness: An important ingredient for Complex Robotic Manipulation

	Bibliography

