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Abstract

The demographic shift has caused labor shortages across the world, and it seems inevitable to
rely on robots more than ever to fill the widening gap in the workforce. The robotic replace-
ment of human workers necessitates the ability of autonomous grasping as the most natural but
rather a vital part of almost all activities. Among different types of grasping, fingertip grasping
attracts much attention because of its superior performance for dexterous manipulation. This
thesis contributes to autonomous fingertip grasping in four areas including hand-eye calibra-
tion, grasp quality evaluation, inverse kinematics (IK) solution of robotic arm-hand systems,
and simultaneous achievement of grasp planning and IK solution.

To initiate autonomous grasping, object perception is the first needed step. Stereo cameras
are well-embraced for obtaining an object’s 3D model. However, the data acquired through a
camera is expressed in the camera frame while robots only accept the commands encoded in the
robot frame. This dilemma necessitates the calibration between the robot (hand) and the cam-
era (eye) with the main goal is of estimating the camera’s relative pose to the robot end-effector
so that the camera-acquired measurements can be converted into the robot frame. We first study
the hand-eye calibration problem and achieve accurate results through a point set matching for-
mulation. With the object’s 3D measurements expressed in the robot frame, the next step is
finding an appropriate grasp configuration (contact points + contact normals) on the object’s
surface. To this end, we present an efficient grasp quality evaluation method to calculate a pop-
ular wrench-based quality metric which measures the minimum distance between the wrench
space origin (~06×1) to the boundary of grasp wrench space (GWS). The proposed method math-
ematically expresses the exact boundary of GWS, which allows to evaluate the quality of the
grasp with the speed that is desirable in most robotic applications. Having obtained a suitable
grasp configuration, an accurate IK solution of the arm-hand system is required to perform the
planned grasp. Conventionally, the IK of the robotic hand and arm are solved sequentially,
which often affects the efficiency and accuracy of the IK solutions. To overcome this problem,
we kinematically integrate the robotic arm and hand and propose a human-inspired Thumb-
First strategy to narrow down the search space of the IK solution. Based on the Thumb-First
strategy, we propose two IK solutions. Our first solution follows a hierarchical IK strategy,
while our second solution formulates the arm-hand system as a hybrid parallel-serial system to
achieve a higher success rate. Using these results, we propose an approach to integrate the pro-
cess of grasp planning and IK solution by following a special-designed coarse-to-fine strategy
to improve the overall efficiency of our approach.

Keywords: Robotic fingertip grasping, Hand-eye calibration, Grasp quality evaluation,
Inverse kinematics, Integrated arm-hand systems, Integrated grasp planning and inverse kine-
matics solution.
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Summary For Lay Audience

The demographic shift has caused labor shortages across the world, and it seems inevitable to
rely on robots more than ever to fill the widening gap in the workforce. The robotic replacement
of human workers necessitates the ability of autonomous grasping as the most natural but rather
a vital part of almost all activities. This thesis contributes to the improvement of the accuracy
and efficiency of the overall autonomous grasping process.

The target object’s model is often needed to start the grasping process. Stereo cameras are
well-embraced to reconstruct the object’s 3D model. It is necessary to express the data ac-
quired through a camera in the robot coordinate frame for commanding the robot with camera-
acquired data. This requires estimating the camera’s pose (position+orientation) relative to the
robot’s end-effector (the hand), which is well-known as the hand-eye calibration problem. We
first study the hand-eye calibration problem for stereo cameras and achieve accurate calibra-
tion results for stereo cameras by formulating the hand-eye calibration problem as a point set
matching problem. With the object’s 3D model expressed in the robot coordinate system, we
then study the efficient evaluation of the general capability of one grasp configuration (contact
positions + contact directions), which can be accumulated to significantly expedite the evalu-
ation process when numerous grasp configurations are involved. Once a grasp configuration
is satisfactory, the inverse kinematics (IK) of the robotic arm-hand system needs to be solved
to achieve this grasp in practice. Conventionally, the robotic hand’s and arm’s IK are solved
sequentially, which may be inefficient and inaccurate. To release this potential limitation, we
regard the robotic arm and hand as an integrated system and study the IK problem of integrated
arm-hand systems. We notice that the sequential procedure of finding the desired grasp con-
figuration (i.e., grasp planning) and solving the IK affects the overall efficiency. To improve
the overall efficiency of our approach, we reorganized and intertwined the process of grasp
planning and IK solution to solve these two problems simultaneously.
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Chapter 1

Introduction

The demographic shift has become a global problem nowadays due to decreased birth rate and
increased life expectancy [1, 2]. Besides, human workers tend to switch from tedious and low
value-added activities to more valuable tasks to pursue high-level lifestyles. As a consequence,
the problem of labor shortage has emerged in various industrial and domestic scenarios [3, 4],
which hampers the further development of the global economy. It seems inevitable to rely on
robots more than ever to fill the widening gap in the workforce. The robotic replacement of
human workers necessitates the ability of autonomous grasping as the most natural but rather
a vital part of almost all activities. The general objective of robotic grasping is to immobilize
the target object using a robotic hand for further manipulation. Based on the manner of object
immobilization, robotic grasps are roughly labeled as power (or envelope) and precision (or
fingertip) grasps [5]. Power grasps are achieved by utilizing the tips and phalanges of the
fingers and/or the palm to establish hand-object contacts [6, 7]. Precision grasps are performed
by only using the fingertips to immobilize the target object [8, 9]. A power grasp is selected
when considerations of stability and security predominate other factors, whereas a precision
grasp is preferred when sensitivity and dexterity are of elevated importance [10]. This thesis
contributes to some critical components in the procedure of autonomous fingertip grasping. In
our work, we assume all the joints of robotic hands are controllable, which may be achieved
by powering the hand with Magneto-Rheological actuators [11, 12, 13, 14, 15, 16, 17].

Figure 1.1: A general pipeline of autonomous fingertip grasping

1
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(a) Possible grasp configurations (b) Desired grasp configuration

Figure 1.2: An example of grasp configurations on a bottle

A general pipeline of autonomous fingertip grasping is shown in Fig. 1.1. To initiate au-
tonomous grasping, object perception is the first needed step. With the development of com-
puter vision techniques, stereo cameras have become well-embraced in the robotic community
because of their ability to obtain 3D measurements (e.g., point clouds) of the target object. For
object perception, cameras can be either attached to the robot’s end-effector (i.e., the eye-in-
hand configuration) or mounted near the robot as an independent device (i.e., the eye-to-hand
configuration). The eye-in-hand configuration is widely adopted since it enables the camera
to explore the scene. However, the data acquired through a camera is originally expressed in
the camera coordinate system while the robot only accepts the command encoded in the robot
coordinate system. This dilemma necessitates the calibration between the robot (hand) and
the camera (eye) with the main goal is of estimating the camera’s relative pose to the robot
end-effector so that the camera-acquired measurements can be converted into the robot frame.
We study the problem of hand-eye calibration for stereo cameras in Chapter 2. We find out that
more accurate calibration results can be obtained by solving the hand-eye calibration problem
as a point set matching problem than by using conventional methods.

After hand-eye calibration, the camera-acquired object’s model can be transferred into the
robot coordinate system. With the object’s model expressed in the robot frame, the next step is
to appropriately plan the fingers’ contact points (i.e., fingertip locations) and contact normals
(i.e., the outward direction of fingertip normals) to achieve fingertip grasping. It is ordinary to
synthesize numerous grasp configurations during the process of grasp planning (see Fig. 1.2(a)
for an example), but it’s impossible to conduct all potential grasps in practice. This dilemma
induces the problem of grasp quality evaluation whose objective is evaluating the quality of
possible grasp configurations to predestine the one that can lead to a successful grasp task
in reality (see Fig. 1.2(b) for an example). For this purpose, many grasp quality metrics from
different perspectives have been proposed [18, 19, 20, 21]. Among grasp metrics from different
perspectives, those related to the concept of grasp wrench space (GWS) are undoubtedly among
the most popular ones. In GWS-related metrics, the core problem is to determine the boundary
of GWS, which reveals the maximum capability of a grasp configuration in a general sense. We
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study the problem of grasp quality evaluation in Chapter 3, where we mathematically express
the boundary of GWS. Based on this boundary expression, we propose a method to calculate a
popular GWS-related quality metric [22], the minimum distance from the 6-dimensional origin
(~06×1) to the boundary of GWS.

After finding the desired grasp configuration, the next step is solving the arm-hand system’s
inverse kinematics (IK) to perform the planned grasp. Conventionally, the robotic arm and
hand are treated as independent devices and their IK is solved in sequence. That is, the joint
configuration of the fingers and the corresponding palm’s pose are solved first, and the arm’s
inverse kinematics is solved to accommodate the hand. However, two inherent limitations exist
in this sequential solving strategy. First, the palm pose solved from the hand’s IK problem
may be infeasible for the arm. Second, the error of the arm’s IK solution would exacerbate
that of the hand’s IK solution when conducting the separately solved arm-hand configuration
to perform the planned fingertip grasp in practice. To overcome these two disadvantages, we
consider the robotic arm and the hand together as an integrated system in this thesis. We study
the IK of integrated arm-hand systems in Chapter 4. We propose a human-inspired Thumb-
First strategy to narrow down the complex search space of integrated arm-hand systems. Based
on the Thumb-First strategy, we propose two distinctive IK solutions. One solution follows the
hierarchical IK strategy. The other formulates the arm-thumb serial chain as a closed chain and
controls the arm-hand system as a hybrid parallel-serial mechanism.

Having studied the problem of grasp quality evaluation and the IK of integrated arm-hand
systems, we notice that it is inefficient to sequentially solve the problem of grasp configuration
synthesis, grasp quality evaluation, and inverse kinematics. To improve the overall efficiency,
we propose a special-designed coarse-to-fine strategy and use it as a guidance to reorganize
and intertwine the process of grasp configuration synthesis, grasp quality evaluation, and IK
solution based on our previous works.

1.1 Thesis Outline and Contributions
In summary, the objective of this thesis is to develop algorithms with the goal of improving
the overall accuracy and efficiency of the grasp planning procedure. Three critical components
involved in the pipeline of autonomous precision grasping are studied and explored. Fig. 1.1
shows the purpose of the chapters and their connections. The content and contributions of each
chapter are summarized as follows.

Chapter 2: Hand-Eye Calibration As Point Set Matching
Chapter 2 deals with the calibration problem related to the hand (i.e., the end-effector) and the
eye (i.e., a stereo vision camera) of a robot manipulator, which is well-known as the hand-eye
calibration problem. In this chapter, the hand-eye calibration problem for stereo cameras is
solved with the point set matching formulation instead of the conventional AX = XB formula-
tion. Two methods are proposed based on the point set matching formulation. The first method
is based on the gradient descent technique on the Special Euclidean group SE(3) and is termed
as “GD-SE(3)”. The second method is based on a nonlinear estimator on manifold SO(3)×R3

and is termed as “HI-SO(3)R3”. Both presented methods offer better accuracy than conven-
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tional AX = XB solutions, while HI-SO(3)R3 achieves fast convergence speed in addition. To
prove the validity of the proposed methods and to demonstrate their advantages, experimental
results are provided where we compare the performance of GD-SE(3) and HI-SO(3)R3 with
both conventional AX = XB solutions as well as those based on point set matching.

The contributions of this chapter are summarized as follows:

• We formulate and solve the hand-eye calibration problem for stereo cameras as a point
set matching problem to obtain a better calibration accuracy.

• We present two solutions to match two rigidly related point sets and estimate the ho-
mogeneous transformation matrix between them. One solution is based on the gradient
descent technique on the Special Euclidean group SE(3). The other one works on mani-
fold SO(3)×R3 based on a nonlinear observer proposed in [23, 24].

• In our second solution, we extend the nonlinear continuous observer proposed in [23,
24] to a nonlinear discrete observer (estimator) for point set matching.

• In our second solution, We show that the convergence of the rotational and translational
error are independent. With this decoupling property, the learning rates for rotation and
translation estimation can be tuned separately, which significantly increases the conver-
gence speed of the proposed algorithm without affecting its accuracy.

• For the second solution, we propose a strategy for selecting suitable learning rates for the
estimation of the unknown rotation matrix and translation vector such that convergence
is guaranteed.

• We show that the proposed point set matching formulation is more accurate than conven-
tional hand-eye calibration formulation (i.e., AX = XB).

Parts of the material in this chapter are published in IEEE Transactions on Instrument and
Measurement [25], Control Engineering Practice [26], and IEEE Instrumentation & Measure-
ment Magazine [27].

Chapter 3: Efficient Grasp Quality Evaluation
In Chapter 3, we aim to use a continuous formulation for the efficient calculation of a well-
known wrench-based grasp metric (often referred to as “Q-distance”) [22], the minimum dis-
tance from the wrench space origin to the boundary of the grasp wrench space (GWS). With
the L∞ metric and the nonlinear friction cone model, the core challenge of using GWS-based
metrics is to determine the boundary of GWS. Instead of relying on convex hull construction,
we propose to formulate the boundary of GWS as continuous functions by following geomet-
ric principles. By doing so, the problem of Q-distance calculation can be efficiently solved as
typical least-squares problems, and it can be easily implemented by employing off-the-shelf
optimization algorithms. Numerical tests will demonstrate the advantages of the proposed for-
mulation compared with the conventional convex hull-based methods.

The contributions of this chapter are summarized as follows.

• We mathematically derive the exact expression of the boundary of grasp wrench space.
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• Based on the derived boundary formulation, we propose a continuous formulation for
the calculation of Q-distance [22] considering the L∞ metric and the nonlinear model of
the Coulomb friction cone with the hard finger contact model.

• We show that it is easy to implement the proposed formulation by employing existing
optimization algorithms.

Parts of the material in this chapter are published in Mechanism and Machine Theory [28].

Chapter 4: Inverse Kinematics of Integrated Arm-Hand Systems
In Chapter 4, we aim to solve the inverse kinematics (IK) of integrated arm-hand systems to
achieve fingertip grasping. In this chapter, we assume the desired fingertip positions (i.e., con-
tact points) and the desired contact direction of fingertips (i.e., contact normals) are provided.
Provided the desired grasp configuration (contact points + contact normals), the IK problem of
integrated arm-hand systems is kinematically over-constrained. To solve this over-constrained
IK problem, we propose two solutions. Our first solution follows the principle of hierarchical
inverse kinematics and is termed as “HIK-ArmHand”. HIK-ArmHand contains three key com-
ponents. (1) A human-inspired Thumb-First strategy to narrow down the search space of the
IK solution. (2) A well-designed task hierarchy to precisely fulfill all fingers’ requirements.
(3) A null space enlargement method to explore the null space to the maximum extend. Differ-
ent with our first solution, our second solution includes a novel closed-chain formulation and
is termed as “IK-TFCC” (Inverse Kinematics solution based on the Thumb-First strategy and
a Closed-Chain formulation). IK-TFCC also has three components. (1) The human-inspired
Thumb-First strategy for search space reduction. (2) A novel closed-chain formulation of the
arm-thumb serial chain. (3) A virtual revolute joint at the thumb tip to embody the thumb’s
functional redundancy. By formulating the arm-thumb serial chain as a closed chain and select-
ing the thumb’s joints including the virtual revolute joint as the active joints, we can directly
control the arm-thumb system’s self-motion and the thumb’s functional redundancy. This pro-
vides a new possibility to control the self-motion of robot manipulators. Comprehensive sim-
ulation results will demonstrate the advantages and the superb performance of the proposed
methods for achieving fingertip grasps compared to other classical approaches.

The contributions of this chapter are summarized as follows.

• We propose a Thumb-First strategy to dramatically narrow down the inverse kinematics
(IK) search space of integrated arm-hand systems.

• We propose two IK solutions of integrated arm-hand systems for achieving fingertip
grasping.

• In our first solution, we propose a hierarchical approach for arm-hand systems to obtain
a precise IK solution and utilize a null space enlargement method to fully explore the
null space of the thumb.

• In our second solution, we propose to formulate the arm-thumb serial chain as a closed
chain and attach a virtual revolute joint at the tip of the thumb to incorporate the thumb’s
functional redundancy. By doing so, we provide a new possibility to explicitly utilize the
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null space and the functional redundancy of the thumb by selecting the thumb’s joints
including the virtual revolute joint as the active joints of the arm-thumb closed chain.

Parts of the material in this chapter are published in Journal of Intelligent & Robotic Sys-
tems[29], 2021 IEEE International Conference on Robotics and Automation (ICRA) [30], and
IEEE Robotics and Automation Letters [31].

Chapter 5: Integrated Solution of Grasp Planning and Inverse Kinematics
In Chapter 5, we present an approach to solve grasp planning and inverse kinematics (IK) prob-
lems, simultaneously. Our proposed solution is for integrated arm-hand systems. Using this
approach, we will achieve force-closure fingertip grasping without providing a priori reachabil-
ity information. Conventional approaches consider the robot manipulator (arm) and the robotic
hand separately and solve the problems of grasp planning and IK in sequence. Such separate
considerations of the arm and hand often introduce errors in the IK solution. The sequential
approaches waste significant computational power in searching for infeasible grasps. To ad-
dress these issues, we propose to consider the robotic arm and hand as kinematically integrated
systems. We then introduce a coarse-to-fine strategy to solve grasp planning and IK problems
simultaneously. By integrating grasp planning and IK problems, we will utilize the reacha-
bility information obtained from the IK solution to filter out infeasible grasps. This strategy
will dramatically reduce the search space and save significant computational power. Numerical
examples will be used to demonstrate the efficiency of the proposed approach in comparison
with a brute-force approach that sequentially solves the problem of grasp planning and IK for
integrated arm-hand systems.

The contributions of this chapter are listed as follows:

• We propose a coarse-to-fine strategy to decompose the process of grasp planning into
several phases.

• Using the coarse-to-fine strategy, we propose an approach to integrate the process of
grasp planning and IK solution to increase the overall efficiency.

• We evaluate our approach using a number of scenarios and provide a comparison be-
tween the proposed integrated method and a sequential solution for grasp planning and
inverse kinematics.

Parts of the material in this chapter are submitted to Robotics and Autonomous Systems.
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[21] Máximo A Roa and Raúl Suárez. “Grasp quality measures: review and performance”.
In: Autonomous robots 38.1 (2015), pp. 65–88.

[22] Carlo Ferrari and John F Canny. “Planning optimal grasps.” In: ICRA. Vol. 3. 1992,
pp. 2290–2295.

[23] Miaomiao Wang and Abdelhamid Tayebi. “Hybrid nonlinear observers for inertial nav-
igation using landmark measurements”. In: IEEE Transactions on Automatic Control
(2020). doi: 10.1109/TAC.2020.2972213.

[24] Miaomiao Wang and Abdelhamid Tayebi. “Hybrid Pose and Velocity-bias Estimation
on SE(3) Using Inertial and Landmark Measurements”. In: IEEE Transactions on Auto-
matic Control 64.8 (2019), pp. 3399–3406.

[25] Shuwei Qiu, Miaomiao Wang, and Mehrdad R Kermani. “A New Formulation for Hand-
Eye Calibrations as Point Set Matching”. In: IEEE Transactions on Instrumentation and
Measurement 69.9 (2020), pp. 6490–6498.

[26] Shuwei Qiu, Miaomiao Wang, and Mehrdad R Kermani. “A fast and accurate new algo-
rithm for hand–eye calibration on SO(3) × R3”. In: Control Engineering Practice 109
(2021), p. 104726.

[27] Shuwei Qiu, Miaomiao Wang, and Mehrdad R Kermani. “A Modern Solution for an Old
Calibration Problem”. In: IEEE Instrumentation & Measurement Magazine 24.3 (2021),
pp. 28–35.

[28] Shuwei Qiu and Mehrdad R Kermani. “A New Approach for Grasp Quality Calculation
using Continuous Boundary Formulation of Grasp Wrench Space”. In: Mechanism and
Machine Theory (2021).

https://doi.org/10.1109/TAC.2020.2972213


BIBLIOGRAPHY 9

[29] Shuwei Qiu and Mehrdad R Kermani. “Inverse Kinematics of High Dimensional Robotic
Arm-Hand Systems for Precision Grasping”. In: Journal of Intelligent & Robotic Sys-
tems 101.4 (2021), pp. 1–15.

[30] Shuwei Qiu and Mehrdad R Kermani. “Arm-Hand Systems As Hybrid Parallel-Serial
Systems: A Novel Inverse Kinematics Solution”. In: IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2021.

[31] Shuwei Qiu and Mehrdad R Kermani. “Precision Grasping Using Arm-Hand Systems
As Hybrid Parallel-Serial Systems: A Novel Inverse Kinematics Solution”. In: IEEE
Robotics and Automation Letters (2021).



Chapter 2

Hand-Eye Calibration As Point Set
Matching

2.1 Introduction
The new collaborative robot manipulators intended for interactive manipulation tasks use ex-
teroceptive sensors such as stereo cameras as a common sensor. The need of using these
cameras necessitates camera calibration — a subject under in-depth research for decades [1].
The camera used for this purpose can be either on-board the robot (eye-in-hand) or mounted
near the robot as an independent device (eye-to-hand). The camera-acquired data is repre-
sented in the camera coordinate system, but robots only accept the commands encoded in the
robot coordinate system. To use the data from the camera along with the robot’s proprioceptive
measurements, it is necessary to represent the camera-acquired data within the robot coordi-
nate system. This requires estimating the transformation matrix between the camera’s and the
robot’s coordinate system, which is the goal of the hand-eye calibration problem [2]. However,
it is difficult to precisely estimate such a transformation matrix [3].

The hand-eye calibration problem is conventionally formulated as AX = XB or AX = YB
problems [4]. The AX = XB formulation provides a solution for the unknown transformation
matrix between the robot end-effector and the camera (X). The AX = YB formulation, on
the other hand, provides solutions for the unknown transformation matrix between the robot
end-effector and the camera (X) as well as the unknown transformation matrix between the
calibration apparatus and the robot base (Y). The objective of the this chapter is to obtain X in
AX = XB formulation. A typical configuration for solving this problem is shown in Fig. 2.1 in
that Ai (i = 1, 2) denotes the homogeneous transformation matrix between the robot base and
the robot gripper for the two different configurations, Bi (i = 1, 2) denotes the homogeneous
transformation matrix between the camera’s frame and the calibration device’s frame, and X is
the homogeneous transformation matrix to be solved. In this context, it is not difficult to show
that,

A1XB1 = A2XB2 ⇒ A−1
2 A1X = XB2B−1

1 ⇒ AX = XB (2.1)

where A = A−1
2 A1 and B = B2B−1

1 .
This well-known formulation was first developed in [5] and [6]. Using homogeneous trans-

10
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Figure 2.1: The classical configuration for solving AX = XB

formation matrix one can expand AX = XB formulation as follows,[
RA pA

0 1

] [
RX pX

0 1

]
=

[
RX pX

0 1

] [
RB pB

0 1

]
⇒

RARX = RXRB

RA pX + pA = RX pB + pX
(2.2)

where Ri represents the rotation matrix and pi represents the translation vector for i = A, B,
and X, respectively. Different methods have been proposed to solve this problem that can be
categorized as separable, simultaneous, and iterative methods [4]. In separable methods, the
rotation (RX) and the translation (pX) portion of the X matrix are solved in sequence. Different
techniques have been used for this purpose, such as Lie theory [7], Procrustes analysis [8], the
Kronecker product [9], and so on. The separable methods suffer from a common problem —
the estimation error of RX exacerbates the estimation of pX [4, 10]. The simultaneous methods
[11] overcome this problem by solving for the rotational and translational components simul-
taneously. The iterative methods [12] solve RX and pX iteratively by employing optimization
techniques [4, 10]. Because of using the optimization technique, the error propagation from
RX to pX is avoided in iterative methods. The readers are referred to [4] for more exhaustive
review of the hand-eye calibration problem. However, these AX = XB based methods treat
the data from stereo cameras in exactly the same way as that from single cameras, and they
overlook the benefit of depth recovering feature of stereo cameras. In this chapter, we leverage
the depth recovering feature of stereo cameras to solve the hand-eye calibration problem as a
point set matching problem. By doing so, a better calibration accuracy is achieved as shown
experimentally in Section 2.5.

The problem of point set matching (also known as point set registration) is to estimate
the homogeneous transformation matrix between two point sets, often called target points and
moving points. This transformation matrix is rigid when the distance between the correspond-
ing points is constant, otherwise, it is non-rigid [13]. The problem of point set matching can
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be solved by the singular value decomposition of the covariance matrix between the two point
sets, with the Iterative Closest Point (ICP) algorithm [14, 15] being the most notable algo-
rithm. The problem of point set matching can also be considered as an estimation problem of
the probability density, with the Coherent Point Drift (CPD) algorithm [16] being a famous
algorithm of this kind. For an exhaustive review of point set matching algorithms, readers are
referred to [13].

In what follows, we explain the rationale for formulating the hand-eye calibration problem
as a point set matching problem. To make the notations in (2.1) consistent with those that are
common in robotics literature, X, Ai, and Bi are relabeled as G

CT (the transformation matrix
between the gripper’s frame, G, and the camera’s frame, C), B

GTi (the transformation matrix
between the robot base’s frame, B, and the gripper’s frame, G), and C

WTi (the transforamtion
matrix between the camera’s frame, C, and the calibration device’s frame, W), respectively. If
B
CT is available, the relation among B

CT , B
GT and G

CT can be expressed as,

B
CT = B

GT G
CT (2.3)

By rearranging (2.3), one can deduce G
CT as,

X = G
CT = B

GT−1 B
CT (2.4)

in that B
GT is available through robot kinematics. Consequently, the problem of solving G

CT
boils down to the estimation of B

CT . Since matching the points expressed in two frames (i.e.,
point set matching) is a common approach for estimating the homogeneous transformation
matrix between these frames, one can formulate the hand-eye calibration problem as a point
set matching problem. Note that there is a major difference between the hand-eye calibration
problem and the point set matching problem. In the problem of point set matching, the main
challenge is to estimate the unknown correspondence between two sets of points. However, this
correspondence has to be provided in hand-eye calibration otherwise the robot cannot reach
the expected point in practice. Given the correspondence between the two sets of points, more
effort should be dedicated to improving the calibration accuracy and computational efficiency
in the scenario of hand-eye calibration.

Based on the point set matching formulation, we present two solutions for the hand-eye
calibration problem. One solution is a gradient descent algorithm on the Special Euclidean
group SE(3) [17]. We named this solution as “GD-SE(3)”. In this solution, the gradients of the
rotation matrix (R) and the translation vector (p) are grouped in a homogeneous transformation
matrix in SE(3). The main advantage of GD-SE(3) is that it offers a more accurate calibration
result than the conventional AX = XB methods. The other solution is motivated by the non-
linear estimators proposed in [18, 19] and works on the manifold SO(3)×R3. We named this
solution “HI-SO(3)R3”. The main advantage of HI-SO(3)R3 is that it allows the independent
convergence of the rotational estimation error on Lie group SO(3) and the translational esti-
mation error on R3, which subsequently allows tuning the learning rates for the rotation and
translation estimation, separately. As a result, the convergence speed of HI-SO(3)R3 is dramat-
ically increased without sacrificing the calibration accuracy. Although HI-SO(3)R3 estimates a
homogeneous transformation matrix in SE(3), we use the term “SO(3)R3”, instead of “SE(3)”,
in the name to emphasize its characteristics. The details of the present solutions are presented
in the next section.



2.2. Problem Statement and Objective 13

The rest of this chapter is organized as follows. Section 2.2 formulates the hand-eye cali-
bration problem as a problem of point set matching. Section 2.3 and 2.4 introduce the proposed
algorithms (GD-SE(3) and HI-SO(3)R3) and provide corresponding mathematical derivations.
Section 2.5 experimentally evaluates the effectiveness of the proposed algorithms. At the end,
section 2.6 concludes this chapter.

2.2 Problem Statement and Objective
Let us consider two point sets, one in the camera frame and the other in the robot base frame
(denoted as {CXi} and {BXi} (i = 1, 2, . . . , n), respectively, where n is the number of sample
points). Let us also assume that a rigid correspondence between the points in two sets is
available. Here, “rigid correspondence” has two meanings: (1) the two point sets are rigidly
related, and (2) the correspondence is time-invariant. The two point sets can be related as
follows,

BPi = B
CT CPi, ∀i = 1, 2, · · · , n (2.5)

where B
CT =

[B
CR B

C p
0 1

]
is the homogeneous transformation matrix between the robot base frame

and the camera frame, in that B
CR and B

C p are the rotation matrix and translation vector of B
CT ,

BPi =
[

BXi 1
]>

, and CPi =
[
CXi 1

]>
.

We denote
B
CR̂ and B

C p̂ as the estimation of B
CR and B

C p, respectively and define
B
CT̂ =[B

CR̂ B
C p̂

0 1

]
. The objective is to find the pair

B
CR̂ and B

C p̂ (i.e.,
B
CT̂ ) in order to minimize the

following error function,

f (
B
CT̂ , CP, BP) :=

1
n

n∑
i=1

∥∥∥∥B
CT̂ CPi −

BPi

∥∥∥∥2
=

1
n

n∑
i=1

∥∥∥∥B
CR̂ CXi + B

C p̂ − BXi

∥∥∥∥2
(2.6)

Moreover, using (2.4) and the result of (2.6) (i.e.,
B
CT̂ ), G

CT can be obtained as,

G
CT = G

BT
B
CT̂ = B

GT−1 B
CT̂ (2.7)

in that B
GT is derived from the robot kinematics. Thus, the hand-eye calibration problem for

estimating G
CT boils down to the problem of estimating the homogeneous transformation matrix

(B
CT ) between the two sets of points ({CXi} and {BXi}, i = 1, 2, · · · , n) within the context of hand-

eye calibration.

2.3 Method 1: GD-SE(3)

2.3.1 Algorithm Derivation
In this section we present the details of our first solution (GD-SE(3)) that applies the gradient
descent technique to the problem defined in (2.6).
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Let us consider the 3-dimensional Special Euclidean group SE(3) which is defined as,

SE(3) :=
{
g =

[
R p
0 1

]
∈ R4×4

∣∣∣∣R−1 = R> ∈ R3×3, det(R) = 1, p ∈ R3.
}

(2.8)

On any Lie group the tangent space at the group identity has the structure of a Lie algebra. The
Lie algebra of SE(3) is given by,

se(3) :=
{ [

Ω v
0 0

]
∈ R4×4

∣∣∣∣ Ω> = −Ω ∈ R3×3, v ∈ R3
}

(2.9)

For ∀X ∈ SE(3), and U1,U2 ∈ se(3), the right invariant Riemannian metric 〈·, ·〉X is defined as,

〈XU1, XU2〉X := 〈U1,U2〉 (2.10)

where 〈·, ·〉 denotes the Euclidean metric on R4×4. Given a differentiable smooth function
f : SE(3)→ R, the gradient of f at X (i.e., gradX f ∈ TXSE(3)) relative to the Riemannian
metric is uniquely defined as,

d f · XU = 〈gradX f , XU〉X = 〈X−1gradX f , U〉. (2.11)

In view of the cost function defined in (2.6) and the definition of the gradient in (2.11), one can
obtain gradB

C T̂ f (
B
CT̂ , CP, BP) as follows,

d f
(B

CT̂ , CP, BP
)
·

B
CT̂ · U = 〈

B
CT̂−1gradB

C T̂ f
(B

CT̂ , CP, BP
)
, U 〉 (2.12)

with some U ∈ se(3).
On the other hand, in view of (2.6) we have,

d f
(B

CT̂ , CP, BP
)
·

B
CT̂ · U =

2
n

n∑
i=1

(B
CT̂ CPi −

BPi

)> B
CT̂ · U · CPi

=
2
n

n∑
i=1

tr
(

CPi

(B
CT̂ CPi −

BPi

)> B
CT̂ · U

)
=

2
n

n∑
i=1

〈B
CT̂>

(B
CT̂ CPi −

BPi

)
CP>i , U

〉
(2.13)

where we make use of the facts that y>x = tr(xy>) and 〈A>, B〉 = tr(AB), in that tr(·) is the trace
of a matrix. Defining P : R4×4 → se(3) as a projection on the Lie algebra se(3), then for all
A ∈ R3×3, b, c> ∈ R3 and d ∈ R, we have

P

([
A b
c d

])
=

[ 1
2

(
A − A>

)
b

01×3 0

]
. (2.14)

For any A ∈ R4×4 and U ∈ se(3), it could be shown that their Euclidean inner product (denoted
as 〈〈A,U〉〉) has the following property,

〈〈A,U〉〉 = 〈〈P(A),U〉〉 = 〈〈U,P(A)〉〉. (2.15)
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From (2.13) and (2.15), we obtain,

d f
(B

CT̂ , CP, BP
)
·

B
CT̂ · U =

2
n

n∑
i=1

〈
P
(B

CT̂>
(B

CT̂ CPi −
BPi

)
CP>i

)
,U

〉
=

2
n

n∑
i=1

〈
P
(B

CT̂−1
(B

CT̂ CPi −
BPi

)
CP>i

)
,U

〉
=

2
n

n∑
i=1

〈
P
((

CPi −
B
CT̂−1 BPi

)
CP>i

)
,U

〉
(2.16)

where we make use of the fact that P(X>yz>) = P(X−1yz>) for all y, z ∈ R4 and X ∈ SE(3).
Then, in view of (2.12) and (2.16), it can be concluded that,

gradB
C T̂ f

(B
CT̂ , CP, BP

)
=

B
CT̂P

2
n

n∑
i=1

(
CPi −

B
CT̂−1 BPi

)
CP>i

 (2.17)

Moreover, motivated by [20] [19], the update equation for
B
CT̂ can be defined as,

B
CT̂ k+1 =

B
CT̂ k exp

(
−α

B
CT̂−1

k gradB
C T̂ f (

B
CT̂ , CP, BP)

)
(2.18)

where α > 0 is the learning rate, and the initial value of
B
CT̂ is

B
CT̂ 0 ∈ SE(3).

2.3.2 The GD-SE(3) Algorithm
Having derived the definition of gradient and the update equation, we now describe the pro-
posed GD-SE(3) algorithm (see Algorithm 2.1). It is proven that gradient descent methods
can converge to the global minimum from any initial condition on the Special Euclidean group
SE(3) with appropriate learning rate(s) [20]. Hence, the initial value of

B
CT̂ when minimizing

the cost function (2.6) can be randomly chosen in SE(3). For convergence detection, the mean
difference of the rotation matrix and the translation vector within the recent three iterations (de-
noted as ”dR” and ”dp” respectively) are computed. If dR and dp are both less than a tolerance
(denoted as ”σ”), the iteration will be terminated.

Contrary to terminating condition, selection of the learning rate (i.e., α) is often more im-
portant and difficult when using gradient descent for optimization. A large α prohibits the
algorithm to converge, while a small α slows down the converge of the algorithm, even for
off-line calculations. Hence, setting α as a constant value is not the best option. To select
an adaptive α, we employ a method called “AdaDelta” [21]. It is an algorithm for first-order
gradient-based optimizations that utilizes the gradient accumulation (denoted as E[g2]) and the
step size of the accumulation (denoted as E[∆x2]) to dynamically calculate the learning rate as,

α =

√(
E[∆x2] + τ

E[g2] + τ

)
(2.19)

where E[g2] = ρE[g2] + (1 − ρ)g2 and E[∆x2] = ρE[∆x2] + (1 − ρ)∆x2, in that g is the gradi-
ent, ∆x = −αg is the step size, ρ denotes a decay constant that is similar to the decay constant
commonly used in momentum methods, and τ is a smoothing term to avoid the denominator
from becoming zero. The details of the GD-SE(3) algorithm is given in Algorithm 2.1.



16 Chapter 2. Hand-Eye Calibration As Point SetMatching

Algorithm 2.1: The GD-SE(3) algorithm
Input : Two point sets with known correspondence ({BPi} and {CPi}, i = 1, 2, . . . , n),

maximum iteration (N).
Output: The best estimation of the homogeneous transformation matrix between the input

point sets (B
CT̂ k, k = 1, . . . ,N)

1 Initialization: randomly generate a rotation matrix, R0 ∈ SO(3), and a translation vector,

p0 ∈ R
3, to get the initial guess of B

CT̂ 0, which is (R0, p0) ∈ SO(3)
2 For convergence detection: define the tolerance (σ)
3 For adaptive learning rate: initialize accumulation variables E[g2] = 0, E[∆x2] = 0; define the

decay rate ρ and the value of τ
4 for k ∈ [0,N] do

/* Convergence detection */

5 B
CRk = B

CT k(1 :3, 1:3), B
C pk = B

CT k(1 :3, 4)
6 qk = rot2qua(B

CRk) // Convert the rotation matrix into quaternion
7 if 0 < k < 3 then
8 dR = 1

k+1
∑k

j=0 acos( q j·q j+1
‖q j‖‖q j+1‖

), dp = 1
k+1

∑k
j=0 ‖

B
C p j −

B
C p j+1‖

9 else if k ≥ 3 then
10 dR = 1

3
∑k−1

j=k−3 acos( q j·q j+1
‖q j‖‖q j+1‖

), dp = 1
3
∑k−1

j=k−3 ‖
B
C p j −

B
C p j+1‖

11 end
12 if dR < σ and dp < σ then
13 Return B

CT k

14 end
/* Calculate the gradient */

15 U = 0
16 for all measurements i do
17 U = U + 2

n (CPi −
B
CT̂−1

k
BPi) CP>i

18 end
19 gradB

C T̂ k
f =

B
CT̂ kP(U)

/* Calculate the learning rate using AdaDelta */

20 E[g2] = ρE[g2] + (1 − ρ)‖gradB
C T̂ k

f ‖2, α =
(

E[∆x2]+τ
E[g2]+τ

) 1
2

21 E[∆x2] = ρE[∆x2] + (1 − ρ)∆x2// where ∆x = −α
∥∥∥∥gradB

CT f
∥∥∥∥

/* Update the estimation */

22
B
CT̂ k+1 =

B
CT̂ k exp(−α B

CT̂−1
k gradB

C T̂ k
f )

23 end
24 return B

CT̂ k
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2.4 Method 2: HI-SO(3)R3

2.4.1 Nonlinear Estimator Design
In this section we present details of our second solution (HI-SO(3)R3) which uses a nonlinear
estimator for the problem defined in (2.6). We define

B
CR̂k and B

C p̂k as the estimated value of
B
CRk and B

C pk at the k-th iteration of the algorithm, respectively. We also define the re-projection
error of the i-th point, epi at the k-th iteration as follows:

epi := BXi −
(B

CR̂k
CXi + B

C p̂k

)
(2.20)

Given the relation between the point coordinates in two frames, i.e., BXi = B
CR CXi + B

C p, one
can obtain that epi = 03 if

B
CR̂k = B

CR and B
C p̂k = B

C p. Let BXc = 1
n

∑n
i=1

BXi be the center of the
point set {BXi} with n points. We use epi to introduce the following two innovation terms:

∆R :=
n∑

i=1

epi

(
BXi −

BXc

)>
(2.21)

∆p :=
n∑

i=1

epi (2.22)

We then propose the following discrete nonlinear estimator for estimating the values of
B
CR̂k

and B
C p̂k and its update criteria as,

B
CR̂k+1 = exp

(
−
αR

2
(∆R − ∆>R )

)
B
CR̂k (2.23)

B
C p̂k+1 = exp

(
−
αR

2
(∆R − ∆>R )

) (
B
C p̂k + αp∆p −

BXc

)
+ BXc (2.24)

where the scalars αR and αp are the learning rates for the estimation of
B
CR̂ and B

C p̂, respectively.
Our second solution (HI-SO(3)R3) is motivated by the continuous nonlinear observers pro-
posed in [18, 19]. However unlike the continuous observers, our estimator updates discretely
and the data from an IMU (inertial measurement unit) is not required. Hence, the convergence
results and the selection of the gains in [18, 19] are not applicable to our method. Although a
large value of the learning rate can increase the convergence speed, the value of αR and αp can-
not be arbitrarily selected otherwise the estimation process would not converge. To guarantee
the convergence, the selection of αR and αp is discussed next.

2.4.2 Learning Rate Selection
Let us first discuss the selection of the learning rate for the rotation estimation (i.e., αR). To this
end, we define the rotational error between the truth and the estimate of B

CR at the k-th iteration
as,

ER
k = B

CR
B
CR̂>k (2.25)
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where B
CR is the truth and

B
CR̂k is its estimate at the k-th iteration. According to [18], the inno-

vation term ∆R defined in (2.21) can be rewritten as

∆R = (I − ER
k )>M (2.26)

M =

n∑
i=1

(
BXi −

BXc

) (
BXi −

BXc

)>
(2.27)

and it follows from (2.23) and (2.25) that

ER
k+1 = ER

kR(∆R)> (2.28)

R(∆R) = exp
(
−
αR

2
(∆R − ∆>R )

)
(2.29)

It has been shown that [22, Theorem 1], if there exist at least three non-collinear sample points
in the point set {BXi} with noise-free measurements {CXi}, then the rotation estimation error ER

k
will converge to I for any initial condition that satisfies tr(ER

0 ) , −1 (i.e., the angle of initial
rotational error ER

0 is strictly less than 180◦) when the value of αR in the estimator in (2.23) is
selected as,

0 < αR

(
tr(M) − λMi

)
< 1, i = 1, 2, 3 (2.30)

M =

n∑
i=1

(
BXi −

BXc

) (
BXi −

BXc

)>
(2.31)

in that tr(M) denotes the trace ofM, and λMi is the i-th eigenvalue ofM. The stability analysis
for this approach has been previously reported and is not repeated here for the sake of brevity
[22, Theorem 1].

Remark The condition in (2.30) for the scalar gain αR was developed for the worst cases. If
αR is selcted slightly larger than the bound in (2.30), the rotational estimation error ER

k may
still converge to I, especially when ER

k is close to I. The experimental results will show that
the proposed algorithm works when αR is slightly larger than the bound given in (2.30).

Remark Theoretically, in the absence of measurement noise, ∆R − ∆T
R = 03×3 implies either

ER
k = I or tr(ER

k ) = −1, in that the latter at k = 0 may cause the convergence issue of our
estimator [18]. However, due to the unavoidable measurement noise in practice, the estimation
error ER

k with tr(ER
0 ) = −1 will leave the undesired equilibrium point and converge to I.

In what follows, let us discuss the selection of the learning rate for the translation estimation
(i.e., αp). To this end, we define the translational error between the truth and the estimate of B

C p
at the k-th iteration as,

Ep
k = B

C p − BXc − ER
k

(
B
C p̂k −

BXc

)
(2.32)

where BXc is the center of the point set {BXi}, B
C p is the truth translation vector, and B

C p̂k is its
estimated value at the k-th iteration. Using (2.22), (2.25) and (2.32), one can rewrite ∆p in
terms of estimation errors ER

k and Ep
k as,

∆p = n(ER
k )>Ep

k (2.33)
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where n is the number of points in the point set. From (2.23)-(2.25), (2.32) and (2.33), one can
show that,

Ep
k+1 = B

C p − BXc − ER
k+1

(
B
C p̂k+1 −

BXc

)
⇔ Ep

k+1 = Ep
k − αpER

k ∆p

⇔ Ep
k+1 = Ep

k − nαpER
k

(
ER

k

)>
Ep

k

⇔ Ep
k+1 = Ep

k − nαpEp
k

⇔ Ep
k =

(
1 − nαp

)k
Ep

0 (2.34)

where Ep
0 denotes the initial translational error (at k = 0). It is obvious from (2.34) that Ep

k will
exponentially converge to 03 with noise-free measurements if αp is selected as

0 < nαp < 1. (2.35)

It is worth to note that αp and αR including the matrixM and λMi (i = 1, 2, 3) (the eigenval-
ues ofM) are calculated before conducting the iterative estimation of the proposed algorithm.

Remark If αp does not satisfy the bound in (2.35), Ep
k may still converge but the convergence

is not guaranteed [18]. The experimental results will show that the proposed algorithm works
if αp is selected slightly larger than the bound given in (2.35).

Remark As seen in (2.28) and (2.34) the convergence of the estimation errors ER
k and Ep

k are
independent. In other words, the convergence time and accuracy of ER

k and Ep
k will not be

affected by each other. This decoupling property results from the special design of the innova-
tion terms ∆R and ∆p. This decoupling property results in a dramatic reduction in the algorithm
convergence time. Note also that ER

k = B
CR

B
CR̂>k = I and Ep

k = B
C p − BXc − ER

k

(
B
C p̂k −

BXc

)
= 03

imply that
B
CR̂k = B

CR and B
C p̂k = B

C p, respectively. Consequently, we obtain
B
CT̂ k = B

CT .

2.4.3 The HI-SO(3)R3 Algorithm

Having introduced the nonlinear estimator and the requirements for selecting the learning rates,
the flow chart of our second solution (HI-SO(3)R3) is presented in Fig. 2.2 followed by the
details of the algorithm.

The initial value of
B
CR̂ can be randomly chosen in SO(3) and the initial value of B

C p̂ can be
chosen to be 03. A simple method is applied to terminate iterations appropriately. Consider-
ing the recent three iterations, we calculate the average change of the rotation matrix and the
translation vector (denoted as dR and dp, respectively) to determine the algorithm termination.
The algorithm will stop either when both dR and dp are below a given tolerance (denoted as
σ’), or when the maximum number of iteration (denoted as N) is surpassed. The following
pseudo-codes provides the details regarding the algorithm.
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Algorithm 2.2: The HI-SO(3)R3 algorithm
Input : Two point sets ({BXi} and {CXi}, i = 1, 2,. . . , n) with established correspondence,

maximum iteration (N), learning rates (αR and αp), the tolerance (σ), initial guess (R0
and p0).

Output: B
CT̂ (the estimated transformation matrix between the two input point sets).

1 Initialization: B
CR̂k = R0, B

C p̂k = p0, BXc = 1
n
∑n

i=1
BXi

2 for k ∈ [0,N] do
/* Convergence detection */

3 qk = rot2qua(B
CR̂k)// Convert B

CR̂k into quaternion

4 if 0 < k < 3 then
5 dR = 1

k+1
∑k

j=0 acos( q j·q j+1
‖q j‖‖q j+1‖

), dp = 1
k+1

∑k
j=0 ‖

B
C p j −

B
C p j+1‖

6 else if k ≥ 3 then
7 dR = 1

3
∑k−1

j=k−3 acos( q j·q j+1
‖q j‖‖q j+1‖

), dp = 1
3
∑k−1

j=k−3 ‖
B
C p j −

B
C p j+1‖

8 end
9 if dR < σ and dp < σ then

10 return B
CT̂ k =

[B
CR̂k

B
C p̂k

0 1

]
11 end

/* Calculate the innovation terms (∆R and ∆p) */

12 ∆R = 0, ∆p = 0
13 while 1 ≤ i ≤ n do
14 ePi = BXi − (B

CR̂k
CXi + B

C p̂k), ∆p = ∆p + epi , ∆R = ∆R + epi(
BXi −

BXc)
15 end

/* Estimate the unknown rotation matrix and translation vector */

16 R(∆R) = exp
(
−

αR
2 (∆R − ∆T

R)
)
, B

CR̂k+1 = R(∆R) B
CR̂k,

B
C p̂k+1 = R(∆R)

(
B
C p̂k + αp∆p −

BXc

)
+ BXc

17 end

18 return B
CT̂ k =

[B
CR̂k

B
C p̂k

0 1

]
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Figure 2.2: Flow chart of the proposed HI-SO(3)R3 algorithm

2.5 Experiments
This section outlines the experiments designed to demonstrate the performance of the proposed
algorithms, GD-SE(3) and HI-SO(3)R3, in comparison with some other hand-eye calibration
algorithms and point set matching algorithms.

2.5.1 Hardware Setup

We used a KUKA Light-Weight Robot (LWR) IV controlled with a open-sourced software
[23] to conduct our experiments. A special fixture that included a screw with a sharp tip was
fabricated and attached to the KUKA robot. The fixture was designed such that the tip of the
screw coincided with the gripper frame. The calibration device used in these experiments was
a typical checkerboard pattern containing 54 corners. These components are shown in Fig. 2.3.
We used two different stereo cameras, Intel RealSense D435 and KYT-U100-960R301, also
shown in Fig. 2.3 for conducting our experiments. The Intel camera has better resolution than
the KYT camera. All statistics were collected using MATLAB r2019b on a personal computer
powered by an i5-6400 CPU with 16GB RAM.

2.5.2 Experiment Data Collection

Conventional Formulation

At the outset of our experimental studies, we aimed at evaluating the performance of some
of the conventional methods of hand-eye calibration in comparison to our proposed algo-
rithms. To this end, we captured 100 different images of the checkerboard pattern. During
image acquisition, we also recorded the gripper poses (i.e., position and orientation) using
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(a) The robot is touching a corner on the checkerboard

(b) The screw with Intel RealSense D435 (c) The screw with the KYT stereo camera

Figure 2.3: Experimental setup.
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the internal encoders of the KUKA robot. The A and B matrix in (2.1) were calculated as
A = A−1

2 A1 = B
GT−1

2
B
GT 1 and B = B2B−1

1 = C
WT 2

C
WT−1

1 , respectively, where B
GT as defined pre-

viously is the transformation matrix between the base of the KUKA robot and the gripper and
C
WT is the transformation matrix between the camera’s and the checkerboard’s frame. Different
implementations of the traditional methods reported in [7][8][9][11] were used for this evalu-
ation.

Point Set Matching Formulation

We also examined and compared the performance of our algorithms with some widely used
point set matching algorithms (ICP [14] and CPD [16]). The coordinates of the checkerboard
corners expressed in the robot base frame were used as the target points. The coordinates of the
target points were collected when the tip of the screw made physical contact with each corner
as shown in Fig. 2.3(a). Referring to (2.5), these coordinates constituted {BP}. By taking advan-
tage of the stereo camera, we estimated the checkerboard corners’ 3D coordinates expressed
in the camera frame from the images acquired previously. These coordinates constituted {CP}.
The collected data (i.e., {BP} and {CP}) was used to compare the performance of HI-SO(3)R3,
GD-SE(3), ICP, and CPD algorithms. To this effect, 100 sets of {CP} were obtained among
which 70% were used for training and the remaining 30% were used for validation.

2.5.3 Performance Evaluation
The performance of the implemented algorithms was assessed and compared using the previ-
ously acquired data.

Training Phase

During the training phase, we used the obtained values of A and B matrices calculated from
B
GT and C

WT matrices and several conventional algorithms [7][8][9][11] to estimate G
CT (i.e., X

matrix). We also used {BP} and {CP} to estimate B
CT as per (2.5) by implementing ICP [14], CPD

[16], GD-SE(3) [17] and HI-SO(3)R3 [24] algorithms. We then used the estimated value of
B
CT̂

to obtain G
CT as per (2.7). To reduce the influence of the measurement noises, the estimation of

G
CT was obtained through averaging the results from the training data sets.

As for parameter selection in these algorithms, we selected the parameters that achieved
the best performance of each implemented algorithm as listed in Table 2.1. More specifically,
for the algorithms that required an initial solution (e.g., ICP, GD-SE(3), and HI-SO(3)R3), the
initial rotation matrix R0 was randomly generated in SO(3) and the initial translation vector
p0 was set to 03. The learning rates for HI-SO(3)R3 were selected as αR = 1.5

tr(M)−λMmin
and

αP = 0.9
n in that λMmin is the minimum eigenvalue of theM matrix and n is the number of points.

The tolerance σ for detecting the convergence of the algorithm and the maximum number of
iteration (N) in HI-SO(3)R3 and ICP were chosen to be 1 × 10−4 and 1 × 104, respectively. To
obtain the same accuracy, σ and N used in GD-SE(3) were selected to be 1× 10−7 and 1× 106,
respectively. The aforementioned parameters were the same with different cameras. To achieve
its best performance, the d parameter in Wu’s method [8] was chosen as 1 × 1014 and 1 × 106

for the tests with Intel camera and the KYT camera, respectively.
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Table 2.1: Parameters used in the implemented algorithms

Algorithms Parameter Symbol Value

HI-SO(3)R3

Initial rotation matrix R0 Random R0 ∈ SO(3)
Initial translation vector p0 03

Learning rate for rotation αR 1.5/
(
tr(M) − λM

min

)
Learning rate for translation αp 0.9/n

Tolerance σ 1 × 10−4

Maximum iteration number N 1 × 104

GE-SE(3)

Initial rotation matrix R0 Random R0 ∈ SO(3)
Initial translation vector p0 03

Tolerance σ 1 × 10−7

Maximum iteration number N 1 × 106

ICP

Initial rotation matrix R0 Random R0 ∈ SO(3)
Initial translation vector p0 03

Tolerance σ 1 × 10−4

Maximum iteration number N 1 × 104

Wu’s Scaling Factor d
1 × 1014 (For Intel Camera)
1 × 106 (For KYT Camera)

The correspondence between {CP} and {BP} is a necessary component of HI-SO(3)R3,
GD-SE(3), and ICP algorithms whether it is known or is calculated as part of the algorithm. To
shed light on the effect of known v.s. calculated correspondence, we used the CPD algorithm
to estimate the correspondence between the points as part of the algorithm. Comparing the
results from these algorithms will demonstrate the importance of the correspondence between
two point sets in the hand-eye calibration scenario.

Validation Phase

The implemented algorithms were assessed and compared using the validation data sets. To
this end, the reconstruction accuracy error (RAE) and the root mean error of the combined
rotation and translation error (RMCE) were used to compare the results. RAE is calculated
as the RMSE (root mean square error) of the Euclidean distance between the estimated points
(i.e., {

B
P̂}) and the truth points (i.e., {BP}) as,

RAE =
(1
n

n∑
i=1

‖
B
P̂i −

BPi‖
2
) 1

2 (2.36)

where n is the number of points in the validation set. Also, RMCE is defined as,

RMCE =
1
m

( m∑
i=1

‖AiX − XBi‖
2
) 1

2 (2.37)

where Ai and Bi are the robot and camera motion matrices described in (2.1), and m is the
number of matrices in the validation set.
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Table 2.2: Experimental Results With The Intel RealSense Camera

Methods
Average RAE

In Training
(mm)

Training Time
(seconds)

Average RAE
In Validation

(mm)
RMCE

HI-SO(3)R3 [24] 0.9436 0.3368 4.2517 1.1×10−3

GD-SE(3) [17] 0.9436 121.29 4.2516 1.1×10−3

Traditional
Algorithms

Horaud’s [11] —– 0.0083 30.273 1.1×10−3

Park’s [7] —– 0.0042 30.273 1.1×10−3

Wu’s [8] —– 0.0024 34.724 1.1×10−3

Shah’s [9] —– 0.0026 134.06 1.3×10−3

Point Set
Matching Algorithms

ICP [14] 0.9436 0.5711 4.2517 1.1×10−3

CPD [16] 102.97 2.0650 204.92 6.9×10−3

Table 2.3: Experimental Results With The KYT Camera

Methods
Average RAE

In Training
(mm)

Training Time
(seconds)

Average RAE
In Validation

(mm)
RMCE

HI-SO(3)R3 [24] 1.7002 0.3643 20.4847 2.4×10−3

GD-SE(3) [17] 1.7001 229.60 20.4808 2.4×10−3

Traditional
Algorithms

Horaud’s [11] —– 0.0110 35.4475 2.4×10−3

Park’s [7] —– 0.0090 35.4484 2.4×10−3

Wu’s [8] —– 0.0026 118.575 2.4×10−3

Shah’s [9] —– 0.0028 162.282 2.4×10−3

Point Set
Matching Algorithms

ICP [14] 1.7001 0.6183 20.4837 2.4×10−3

CPD [16] 60.357 2.3733 267.5175 7.8×10−3

2.5.4 Results and Discussion

In this section, the results from all experiments are provided and compared.

Results of the training phase

We conducted the training phase following the procedure described in Section 2.5.3. The
training results for HI-SO(3)R3, GD-SE(3), ICP, and CPD using two different cameras (Intel
RealSense and KYT) are shown in Fig. 2.4. The training errors and the training time of these
algorithms are listed in Table 2.2 and 2.3. As shown in Fig. 2.4, {

B
P̂} (the estimated points)

obtained using these algorithms seems to match well with {BP} (the truth points). However,
for the CPD algorithm, its RAE value is much larger than other algorithms. The reason is
that the CPD algorithm cannot estimate the correspondence between {CP} and {BP} effectively.
This problem was exacerbated because of the rectangular arrangement of {CP} and {BP}, which
made the CPD algorithm more-likely to ill-estimate the correspondence between the two sets
of points.

It is clear that the HI-SO(3)R3 algorithm outperformed all other point set matching algo-
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(a) HI-SO(3)R3 (b) GD-SE(3) (c) ICP (d) CPD

Training examples with the Intel camera

(e) HI-SO(3)R3 (f) GD-SE(3) (g) ICP (h) CPD

Training examples with the KYT camera

Figure 2.4: Training examples: estimated points ({
B
P̂}, denoted by red crosses) v.s. the truth

points ({BP}, denoted by blue circles)

rithms with respect to the training time. In comparison to our previous algorithm GD-SE(3),
the speedup achieved in HI-SO(3)R3 is due to the fact that the rotational estimation error is
decoupled from the translational estimation error as discussed in section 2.4.2. Even though
the ICP algorithm required less number of iterations, it took longer to train due to its reliance
on the singular value decomposition (SVD) for estimating the rotation matrix in each iteration.
It is also important to note that the implemented conventional algorithms [7][11][8][9] required
much less training time. This is due to the fact that these algorithms use closed-form solutions
for the results. The trade-off here was in much larger validation error (RAE) values as shown
in the results of these algorithms.

Result of the validation phase

After the training phase, the validation phase was conducted following the procedure described
in Section 2.5.3. Examples of the validation results obtained from different implemented al-
gorithms are shown in Fig. 2.5 and the results are listed in the last two columns of Table 2.2
and 2.3. As seen, the results are consistent with those obtained during the training phase. Once
again, the degraded performance of the CPD algorithm highlights the adverse effect of not
having the correct correspondence between the points. Another important observation is the
inconsistent outcome seen in the values of RMCE v.s. RAE. The RMCE cannot represent the
effectiveness of various methods and separate the results properly. On the other hand, the RAE
clearly shows the superiority of point set matching algorithms to traditional methods. This is
due to the fact that the point set matching algorithms benefit from the availability of the point
correspondence. The conventional algorithms, on the other hand, define a cost function such
as 1

n

∑n
i=1 ‖AiX − XBi‖

2 to solve for X through optimization. In reality, such optimization, as
also seen in our result in Table 2.2 and 2.3 does not necessarily minimize the RAE values.

It should be pointed out that Shah’s method [9] is designed for robot-world and hand-eye
calibration using AX = YB formulation to provide a solution for both X and Y . The results in
Table 2.2 and 2.3 only present the accuracy of the X matrix for this algorithm. Since in Shah’s
algorithm, both X and Y matrices are estimated together, the errors from one matrix propagate
into another matrix resulting in the least accurate results among conventional methods.
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(a) HI-SO(3)R3 (b) GD-SE(3) (c) Horaud’s (d) Park’s

(e) Wu’s (f) Shah’s (g) ICP (h) CPD

Validation examples with the Intel camera

(i) HI-SO(3)R3 (j) GD-SE(3) (k) Horaud’s (l) Park’s

(m) Wu’s (n) Shah’s (o) ICP (p) CPD

Validation examples with the KYT camera

Figure 2.5: Validation examples with different cameras: {
B
P̂} (estimated points, denoted by red

crosses) v.s. {BP} (truth points, denoted by blue circles)



28 Chapter 2. Hand-Eye Calibration As Point SetMatching

It is clear that our proposed algorithm, in comparison to other state-of-the-art algorithms,
offers a much better computation speed without compromising the accuracy of the results.

To further assess the performance of implemented methods, we applied the hand-eye cali-
bration results (i.e., the estimated transformation matrix from the gripper frame to the camera
frame,

G
CT̂ ) to reconstruct a complete point cloud of a power drill from its partial point clouds

(see Fig. 2.6). Point Cloud Reconstruction (also known as Point Cloud Stitching) is the process
of constructing a complete point cloud of a scene/object through combining/stitching several
partial point clouds belonging to the same scene/object. As shown in Fig. 2.6(a)(b), partial
point clouds of a power drill were acquired with various camera poses using the Intel Re-
alSense stereo camera. From

G
CT̂ and B

GT (computed from robot kinematics), the estimated
transformation matrix from the robot base frame to the camera frame (i.e.,

B
CT̂ ) can be calcu-

lated as
B
CT̂ = B

GT
G
CT̂ . Using

B
CT̂ , we can convert the partial point clouds represented in different

camera frames into the same robot base frame. If
G
CT̂ is estimated accurately, we can attain

a more complete point cloud with high quality expressed in the robot base frame. As shown
in Fig. 2.6, the methods with lower RAE values perform better than those with higher RAE
values.

To show the effect of αR and αp, additional experiments were conducted using HI-SO(3)R3
with the data acquired from the Intel RealSense stereo camera. The results are shown in
Fig. 2.7, 2.8, and 2.9. Fig. 2.7 and 2.8 show that larger values of αR and αp result in faster con-
vergence as long as these values satisfy the conditions described in (2.30) and (2.35). Fig. 2.9
shows the average training time of HI-SO(3)R3 with different choices of learning rates while
achieving the same accuracy as that listed in Table 2.3. The infinite training time in Fig. 2.9
means HI-SO(3)R3 did not converge using the selected learning rate. As mentioned in Sec-
tion 2.4.2, with slightly larger learning rates αR, αp than the bounds given in (2.30) and (2.35),
the estimated error may still converge to its minimum (see Fig. 2.7, 2.8, and 2.9), but the con-
vergence is not guaranteed for other systems. Hence, αR and αp should be selected according
to (2.30) and (2.35) when no prior information is available.

To show the effect of the selection of tolerance and initial guess, additional experiments
were conducted using HI-SO(3)R3 and ICP with the data acquired using the Intel RealSense
stereo camera. In these experiments, the maximum number of iterations for HI-SO(3)R3
and ICP were chosen to be 1 × 104. The learning rates in HI-SO(3)R3 were selected as
αR = 1.5

tr(M)−λMmin
and αp = 0.9

n . During these experiments, the initial rotation matrix was obtained
from various rotation angles (ranging from 0◦ to 350◦) around the rotation axis computed from
the best calibration results of the previous tests. Similarly, the initial translation vector was
obtained from various translation distances (ranging from 0 to 1000 mm) along the translation
direction computed from the best calibration results of the previous tests. The experiments
regarding different tolerances and initial guesses were divided into two parts: (1) the exper-
iments about various tolerances and initial rotation angles with the initial translation vector
being 03, and (2) the experiments about various tolerances and initial translation distances with
the initial rotation matrix being I. The results from these experiments are shown in Fig. 2.10.
Although the accuracy of ICP was less sensitive to the selection of tolerance and initial guess,
its training time was much longer than that of HI-SO(3)R3. On the other hand, the accuracy
of HI-SO(3)R3 is sensitive to the selection of tolerance and the best result was obtained when
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Attaining a drill’s partial point clouds from various camera positions

(a) The drill and various camera positions (b) Partial point clouds of the drill

(c) HI-SO(3)R3 (d) GD-SE(3) (e) ICP (f) CPD

(g) Park’s (h) Horaud’s (i) Wu’s (j) Shah’s
Figure 2.6: Point cloud reconstruction using hand-eye calibration results
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Figure 2.8: Performance of HI-SO(3)R3 for different αp values and αR = 1.5
tr(M)−λMmin

the tolerance was chosen to be less or equal to 1 × 10−5 for both the rotation matrix and trans-
lation vector. Hence the best value of tolerance for HI-SO(3)R3 is suggested to be 1 × 10−5

to achieve the best accuracy and computational efficiency. As for the selection of the initial
guess, however, no clear relation between the initial guess and the accuracy and efficiency of
HI-SO(3)R3 can be deducted from Fig. 2.10. In practice, using singular value decomposition
(SVD) is a common approach to estimate the rigid transformation matrix between two sets of
points. When the initial guess was computed using SVD, the performances of HI-SO(3)R3
and ICP with the data acquired from the Intel RealSense stereo camera are listed in Table 2.4.
During the tests with SVD intialization, the tolerance was set to 1 × 10−5 for both the rotation
matrix and the translation vector, and the learning rates of HI-SO(3)R3 were αR = 1.5

tr(M)−λMmin
and

αp = 0.9
n . With SVD initialization, the initial guess is expected to be close to the optimal solu-

tion. In this case, the computational efficiency of HI-SO(3)R3 is even more superb compared
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Figure 2.9: Average training time (s) of HI-SO(3)R3 with different values of αR and αp (The
darker the colour is, the less the training time).

Table 2.4: The performance of HI-SO(3)R3 and ICP with SVD initialization

HI-SO(3)R3 ICP
Training Time (s) 0.001044 0.4724
Ave. RAE (mm) 4.2517 4.2517

to the ICP algorithm.

Remark To achieve the best accuracy and computational efficiency, the suggested tolerance
for HI-SO(3)R3 algorithm is 1× 10−5 and HI-SO(3)R3 algorithm is best to be initialized using
the SVD method.

2.6 Conclusion
In this chapter, we formulated and solved the hand-eye calibration problem as a problem of
point set matching. In this light, we proposed two new algorithms. Our first proposed algo-
rithm works on the Special Euclidean group SE(3) with the gradient descent technique. We
call this algorithm “GD-SE(3)”. Our second proposed algorithm works on manifold SO(3)×R3

with a nice decoupling property between the rotational estimation error and translational esti-
mation error. As a result, the convergence speed of this algorithm was significantly increased.
We called our second algorithm “HI-SO(3)R3” for its high convergence speed. The perfor-
mance of GD-SE(3) and HI-SO(3)R3 was evaluated and compared with some conventional
algorithms for hand-eye calibration and some widely used point set matching algorithms. The
results manifested that better accuracy in practice could be achieved by formulating the prob-
lem of hand-eye calibration as a problem of point set matching. HI-SO(3)R3 offers a superior
and convenient alternative to conduct hand-eye calibration for robot manipulators. The experi-
mental results also highlighted drawbacks of the proposed algorithms. First, GD-SE(3) requires
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(a) HI-SO(3)R3: Ave. Validation RAE (b) ICP: Ave. Validation RAE

(c) HI-SO(3)R3: Training Time (d) ICP: Training Time

Effects of tolerance and initial rotation angle

(e) HI-SO(3)R3: Ave. Validation RAE (f) ICP: Ave. Validation RAE

(g) HI-SO(3)R3: Training Time (h) ICP: Training Time

Effects of tolerance and initial translation distance

Figure 2.10: Effects of the selection of tolerance and initial guess to HI-SO(3)R3 and ICP
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longer computational time than other implemented algorithms, which is overcome by the de-
coupling feature of HI-SO(3)R3. Second, for both presented algorithms, the robot is required
to physically move and make contact with the calibration apparatus to attain the coordinates in
the robot coordinate system. Our future work will focus on eliminating this requirement and
also solve the robot-world/hand-eye calibration problem (i.e., AX = YB).
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Chapter 3

Efficient Grasp Quality Evaluation

3.1 Introduction

In the field of robotic grasping, grasp planning is a fundamental topic. Given a target object
to be grasped, the purpose of grasp planning is to appropriately plan the contact points and the
contact normals on the object’s surface to balance contact forces and other external forces such
as gravity. The topic of grasp planning contains many problems, for instance, the problem of
finding a suitable set of contact points given the target object and some grasp constraints (i.e,
the grasp synthesis problem), the problem of determining if a given grasp is force/form closure
(i.e, the force/form closure determination problem), the problem of quantifying the goodness
of a given grasp (i.e, the grasp quality calculation problem), and so on. In this chapter, we
propose an efficient method to evaluate the quality of a given grasp configuration (contact
points + contact normals) for both the hard finger (see Fig. 3.1(a)) and the soft finger contact
model (see Fig. 3.1(b)).

For a target object, there are usually numerous possibilities to grasp it [1]. To find the
desired grasp among many potentials, it is necessary to evaluate and rank the quality of these
grasps [2, 3]. To define the quality of a given grasp, many metrics from different perspectives
have been proposed [4, 5]. For example, there are metrics related to the grasp matrix (G),
such as the minimum singular value of G and the grasp isotropy index. There are also metrics
considering the geometric relationships in the grasp, such as the shape and the area of the grasp
polygon. The robot configurations can also be used as a grasp quality measure. The distance
to singular configurations [6] and the volume of the manipulability ellipsoid [7] are examples
of such measures. By combining different grasp quality measures, one can also quantify the
goodness of a grasp in a global scale [8]. Due to limited space, we refer the readers to [9] for a
comprehensive overview of grasp metrics.

Among different grasp metrics, those related to the grasp wrench space (GWS) are un-
doubtedly among the most popular ones. The seminal work of GWS-based grasp metrics was
proposed by Ferrari and Canny [10], which is often referred to as “Q-distance”. Q-distance
quantifies the goodness of force closure grasps. Since at least three contact points are required
to achieve force closure in spatial problems, Q-distance is a suitable measure for multi-fingered
robotic hands and precision grasping. Q-distance is conceptualized by following an intuitive
approach which is to calculate the ratio between the magnitude of the maximum wrench this
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(a) Hard finger contact model (b) Soft finger contact model

Figure 3.1: Contact models

given grasp can resist along with all directions and the magnitude of the applied finger forces
[10]. The ability to counterbalance the external wrenches is a general criterion to define if a
grasp is stable. A wrench (denoted as ~w ∈ R6) is a vector obtained by stacking a force vector
~f ∈ R3 and a torque vector ~t ∈ R3,

~w =
[
~f >, ~t>

]>
(3.1)

whose magnitude is defined as

‖~w‖ =

√
‖ ~f ‖2 + λ‖~t‖2 (3.2)

where λ is a scaling factor. In this work, we use the L2 metric for ‖~w‖ (i.e., λ = 1). λ can also
be defined differently for other purposes, for instance, for unifying force and torque units [11]
and for removing the reference frame dependence [12]. To ensure a stable grasp, the contact
force on each contact point must lie in the Coulomb friction cone (denoted as FC) expressed
in the contact frame,

FC =

{[
f1, f2, fn

]> ∣∣∣∣ fn ≥ 0,
√

f 2
1 + f 2

2 ≤ µ fn

}
(HF) (3.3)

FC =

{[
f1, f2, fn, ft

]> ∣∣∣∣ fn ≥ 0,
√

f 2
1 + f 2

2 ≤ µ fn, | ft| ≤ γ fn

}
(SF) (3.4)

where f1 and f2 are the tangential force components, fn is the normal force component along
the contact normal direction, ft is the torsional component around the contact normal (see
Fig. 3.1(b)), µ is the tangential friction coefficient, γ is the torsional friction coefficient, and
“HF” and “SF” stand for hard finger and soft finger contact model, respectively. In this work,
we assume µ and γ are constant over the surface of the object to be grasped. A contact force
applied to the i-th contact point (denoted as ~fi) can be converted into a wrench by the cor-
responding grasp matrix (denoted as Gi) as ~wi = Gi ~fi. With different contact models, Gi is
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expressed differently as,

Gi =

[
Ri

SiRi

]
(HF) (3.5)

Gi =

[
Ri ~03×1

SiRi ~ni

]
(SF) (3.6)

where Ri ∈ R
3×3 is the orientation of the i-th contact frame with respect to the inertial frame,

Si = S (~pi − ~c) is the cross-product matrix, in that ~pi is the position of the i-th contact point
and ~c is the position of the object’s center of mass, and ~ni is the unit normal vector at the i-th
contact point. All possible wrenches that can be applied through the i-th contact point (i.e,, the
i-th wrench set, denoted as Wi) is then formulated as,

Wi =

{
Gi ~fi

∣∣∣∣ ~fi ∈ FC
}

(3.7)

To find the set of wrenches that can be exerted on the object, Ferrari and Canny [10] introduced
two criterias. One limits the maximum magnitude of each normal contact force to 1 (i.e, the
L∞ metric). Using the L∞ metric, the set of all possible wrenches acting on the object (i.e, the
grasp wrench space) is,

WL∞ =

nc⊕
i=1

Wi (3.8)

where
⊕

is the Minkowski summation and nc is the number of contact points. The other
criteria limits the summation of the magnitudes of all contact normal forces to 1 (i.e, the L1

metric). Using the L1 metric, the grasp wrench space is,

WL1 =

nc⋃
i=1

Wi (3.9)

where
⋃

is the union operation. The value of Q-distance is geometrically the distance from
the origin of the 6-D wrench space (i.e, ~06×1) to the boundary of the grasp wrench space.
Ferrari and Canny also proposed to construct the convex hull of the grasp wrench space to
calculate the value of Q-distance as follows. First, the primitive wrench sets are generated by
approximating the friction cone as an m-sided pyramid. Second, the grasp wrench space (WL∞
or WL1) is approximated by constructing the convex hull. Third, the minimum distance between
the origin and the facets of the convex hull is obtained.

Calculating the value of Q-distance is challenging in practice, especially with the L∞ metric.
The reason is twofold. First, the convex hull construction only works for finite sets. Second,
the convex hull construction and the calculation of the distances from the origin to the convex
hull’s facets are computationally expensive [13]. As a consequence, there are two common
practices in the calculation of Q-distance. First, the Coulomb friction cone is linearized by
an m-sided pyramid [14, 15]. Second, the L1 metric is considered rather than the L∞ metric.
However, these two common practices have their inhabited drawbacks. Using the linear friction
cone model has the following disadvantages [16]. The solution obtained from the linear model
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may conflict with the one obtained from the nonlinear model. Also, the computation time will
be significantly increased when increasing the number of the pyramid’s facets in the linear
model. As for the L1 metric, it only suits the robotic hands with a single actuator. If the L1

metric is used for the robotic hands whose fingers are empowered by independent actuators,
the actual capabilities of the grasp would be severely underestimated which may mislead the
further operations and analysis [17].

In this chapter, we study how to efficiently calculate the value of Q-distance considering
both the L∞ metric and the nonlinear friction cone model. To this end, we formulate the bound-
ary of the grasp wrench space with continuous functions. By doing so, the value of Q-distance
can be solved as typical least-square problems and it can be easily implemented by employing
off-the-shelf optimization algorithms.

The rest of this chapter is structured as follows. Section 3.2 reviews the related works
about Q-distance calculation. Section 3.3 mathematically derives the continuous boundary
formulation of grasp wrench space. Section 3.4 presents the numerical results. Section 3.5
concludes this work.

3.2 Related Works
Table 3.1: Related Works on Q-Distance Calculation

Methods
Friction Cone

Model
Normal Force

Constraint
Highlights

Miller and
Allen [18]

Linear L1 metric
Invoke the Qhull algorithm [19] to
calculate Q-distance

Borst et al. [20] Linear L∞ metric
Incrementally construct the convex hull of
the grasp wrench space

Zhu and
Wang [21]

Linear L∞ metric
Consider the distance between the origin
and the boundary of GWS along with
finite directions

Liu and
Carpin [22]

Linear L1 and L∞
Intertwine Q-distance calculation with
convex hull construction

Dai et al. [23] Linear L1 metric
Approximate Q-distance by semi-definite
programming

Pokorny and
Kragic [24]

Linear L1 metric
Investigate theoretical properties of
Q-distance and compute an upper bound

Harada et al. [25] Ellipsoidal L∞ metric
Evaluate the grasp stability under gravity with
soft finger contact model

Krug et al. [17] Linear L1 and L∞
Investigate the influence of the L1 and L∞
metric to a fully actuated robotic hand

Zheng and
Qian [12]

Nonlinear L1 and L∞
Cast the problem of Q-distance calculation
as an nonlinear optimization problem

Zheng [26] Nonlinear L∞ metric
Iteratively enlarge a polytope inside GWS
and contains the origin by calculating its
support function and support mapping

In this section, we briefly review the works related to the calculation of Q-distance [10],
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which are summarized in Table 3.1. Following the suggested approach of Ferrari and Canny
[10], Miller and Allen [18] provided examples of calculating Q-distance with the L1 metric
by employing the open-sourced Qhull algorithm [19]. They invoked the Qhull algorithm to
construct the convex hull of the grasp wrench space and calculated the distance between all the
facets of the convex hull to the 6-D origin, which is computationally expensive. To expedite
the computational speed, some remedies were proposed. Borst et al. [20] proposed to incre-
mentally construct the convex hull of the grasp wrench space. In this approach, the convex
hull was constructed starting from a coarse approximation of the friction cone and the nearest
facet of this convex hull to the origin was attained. To compensate for the approximation error,
additional wrenches with the largest possible distance to the previously obtained facet were
incrementally added to the wrench set spanning the convex hull. The nearest facet to the origin
and the quality measure are then updated. This procedure is repeated until the improvement of
the quality measure below a preset threshold. Zhu and Wang [21] provided an approximation
of Q-distance by considering the distance between the origin and the boundary of grasp wrench
space along with finite directions instead of all directions. Based on the Qhull algorithm, Liu
and Carpin [22] proposed a solution to calculate Q-distance while constructing the convex hull
to avoid building the entire convex hull of the grasp wrench space. Dai et al. [23] showed that
the value of Q-distance with the L1 metric can be approximated by solving a semi-definite pro-
gramming problem. With the L1 metric, Pokorny and Kragic [24] investigated some theoretical
properties of Q-distance and proposed an algorithm to compute an upper bound of Q-distance
which can be used to efficiently reject unstable grasps. Using an ellipsoidal approximation of
the friction cone, Harada et al. [25] took the soft finger contact model into account and evalu-
ated the stability of a given grasp under gravity. Krug et al. [17] investigated the influence of
the L1 and L∞ metric to wrench-based grasp quality indexes. They showed that the capability
of a grasp executed by a fully actuated robotic hand would be severely underestimated if the
L1 metric is applied.

The above-mentioned works [18, 20, 21, 22, 23, 24, 25, 17] have a common limitation
that the nonlinear friction cone is simplified either an m-sided pyramid or an ellipsoid. Many
works have been proposed to consider the nonlinear friction cone model. Zheng and Qian
[12] formulated the problem of Q-distance calculation as a nonlinear optimization problem by
means of the concept of support function. To improve the computational efficiency, Zheng [26]
proposed an improvement of Borst’s method [20] to calculate Q-distance with the nonlinear
friction cone model. Starting from a polytope in the grasp wrench space containing the ori-
gin, Zheng’s method [26] iteratively enlarges this polytope by calculating its support function
and support mapping. By doing so, the minimum distance between the origin and the poly-
tope boundary can quickly converge to the value of Q-distance. However, Zheng’s method
[26] only works when the origin is contained in the grasp wrench space and is complex to be
implemented.

In this work, we calculate the value of Q-distance from a geometric perspective. We regard
all the forces and torques that can be applied at each contact point as two solid objects in
3D geometric space and the grasp wrench space (GWS) as a 6D convex object. We then
parameterize the boundary of GWS and calculate Q-distance as typical least-square problems.
The details of the proposed method are explained next.
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3.3 Continuous Boundary Formulation of Grasp Wrench
Space

3.3.1 Problem Formulation
The problem we target is to calculate the wrench-based grasp quality metric proposed by Fer-
rari and Canny [10] (the Q-distance) with the L∞ metric and the nonlinear friction cone. We
propose to solve this problem based on the geometric interpretation of Q-distance. Q-distance
is geometrically interpreted as the shortest distance from the six-dimensional origin (~06×1) to
the boundary of the wrench space composed of all possible wrenches that can be generated by
the given grasp (i.e, the grasp wrench space). Provided a grasp with nc contact points, the cor-
responding grasp matrices (denoted as Gi, i = 1, . . . , nc), and the friction coefficients (denoted
as µ and γ), the problem of Q-distance calculation can be formulated as,

min
~w∈bd(WL∞ )

1
2
~w>~w (3.10)

where WL∞ is the grasp wrench space with the L∞ metric and bd(WL∞) is the boundary of
WL∞ . Assuming the friction coefficients are invariant over the object’s surface, the challenge of
solving (3.10) is the determination of bd(WL∞).

We regard the problem of determining bd(WL∞) as a problem of geometric modelling. As
noticed, a 3D convex cone expressed in the local contact frame (denoted as LC) is defined by
the friction cone constraint (see (3.3) and the first three components of (3.4)),

LC =

{
[ f1, f2, fn]>

∣∣∣∣ fn ∈ [0, h],
√

f 2
1 + f 2

2 ≤ µ fn

}
(3.11)

where h is the height of this cone acting as the maximum value of the normal force component.
All the forces that can be applied at the i-th contact point (i.e, the i-th force set, denoted as Fi)
constitute a 3D convex cone expressed in the inertial frame,

Fi =

{
Ri ~fi

∣∣∣∣ ~fi ∈ LC
}

=

{
Ri

[
fi1 , fi2 , fin

]> ∣∣∣∣ fin ∈ [0, h],
√

f 2
i1

+ f 2
i2
≤ µ fin

}
, i = 1, . . . , nc (3.12)

where Ri ∈ R
3×3 is the orientation of the i-th contact frame with respect to the inertial frame. All

the torques that can be applied at the i-th contact point (i.e., the i-th torque set, denoted as Ti)
constitute a convex object obtained from LC after a linear transformation (and a translational
displacement along ~ni with the soft finger contact model),

Ti =

{
SiRi~ti

∣∣∣∣~ti ∈ LC
}
, i = 1, . . . , nc

=

{
SiRi

[
ti1 , ti2 , tin

]> ∣∣∣∣tin ∈ [0, h],
√

t2
i1

+t2
i2
≤ µtin

}
(HF) (3.13)

Ti =

{
SiRi~ti + ~nitit

∣∣∣∣~ti ∈ LC, |tit | ≤ γtin

}
, i = 1, . . . , nc

=

{
SiRi

[
ti1 , ti2 , tin

]>
+~nitit

∣∣∣∣tin ∈ [0, h],
√

t2
i1

+t2
i2
≤ µtin , |tit | ≤ γtin

}
(SF) (3.14)
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Based on the definition of the wrench vector as per (3.1), all the wrenches that can be applied
at the i-th contact point (i.e, the i-th wrench set, denoted as Wi) constitute a 6D convex object
which is the Cartesian product of Fi (a 3D convex cone) and Ti (a 3D convex object),

Wi = Fi × Ti =

{[
~f
~t

] ∣∣∣∣ ~f ∈ Fi,~t ∈ Ti

}
, i = 1, . . . , nc

=

{[
Ri

[
fi1 , fi2 , fin

]>
SiRi

[
ti1 , ti2 , tin

]>]∣∣∣∣ fin , tin ∈ [0, h],
√

f 2
i1

+ f 2
i2
≤µ fin ,

√
t2
i1

+t2
i2
≤µtin

}
(HF) (3.15)

=

{[
Ri

[
fi1 , fi2 , fin

]>
SiRi

[
ti1 , ti2 , tin

]>
+~nitit

]∣∣∣∣ fin , tin ∈ [0, h],
√

f 2
i1

+ f 2
i2
≤µ fin ,

√
t2
i1

+t2
i2
≤µtin , |tit |≤γtin

}
(SF) (3.16)

With this geometric interpretation, WL∞ is a 6D convex object obtained as the Minkowski sum
of multiple 6D convex objects (Wi) as WL∞ =

⊕nc

i=1 Wi. In what follows, the proposed contin-
uous formulation of bd(WL∞) is derived.

3.3.2 Boundary Decomposition: bd(WL∞) = bd(WL∞)1 ∪ bd(WL∞)2

To reduce the difficulty of formulating bd(WL∞), we first decompose bd(WL∞) into two compo-
nents. Regarding Fi and Ti as independent convex objects and substituting Wi = Fi × Ti into
WL∞ =

⊕nc

i=1 Wi, we obtain,

WL∞ =

nc⊕
i=1

Wi =

nc⊕
i=1

(Fi × Ti) =

nc⊕
i=1

Fi ×

nc⊕
i=1

Ti (3.17)

where we use the fact that the Minkowski sum is distributive over Cartesian product [27, 28].
Since Fi and Ti are both closed convex objects in 3D geometric space,

⊕nc

i=1 Fi and
⊕nc

i=1 Ti

are also 3D closed objects [29]. An example of the Minkowski sum of two 3D cones is shown
in Fig. 3.2.

Figure 3.2: An example of the Minkowski sum of two 3D cones [30]
From (3.17), bd(WL∞) is obtained as,

bd(WL∞) = bd

 nc⊕
i=1

Fi ×

nc⊕
i=1

Ti

 =

bd

 nc⊕
i=1

Fi

 × nc⊕
i=1

Ti

︸                      ︷︷                      ︸
bd(WL∞ )1

⋃ nc⊕
i=1

Fi × bd

 nc⊕
i=1

Ti

︸                      ︷︷                      ︸
bd(WL∞ )2

(3.18)
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where we apply the product rule for the boundary of the Cartesian product of closed sets (see
Appendix A for proof). A 3D example of (3.18) is shown in Fig. 3.3. Geometrically, a solid
cylinder is the Cartesian product of a disk and a line segment (see Fig. 3.3(a)). The boundary
of a cylinder can be obtained by applying the product rule (see Fig. 3.3(b)).

(a) A solid cylinder: the Cartesian product of a disc and a line segment.

(b) The components of a cylinder’s boundary.

Figure 3.3: The boundary of a cylinder: a 3D example of (3.18).
As seen in (3.18), bd(WL∞) is decomposed into two components, bd(WL∞)1 and bd(WL∞)2.

Note that bd(WL∞)1 and bd(WL∞)2 are not fully disjoint as they both contain the component[
bd(⊕nc

i=1Fi) × bd(⊕nc
i=1Ti)

]
. But decomposing bd(WL∞) as (3.18) can make use of the second-

order cone definition of the friction cone (3.11) when we formulate
⊕nc

i=1 Ti and
⊕nc

i=1 Fi as will
be shown in (3.27), (3.28) and (3.30), respectively. With (3.18), (3.10) can be re-formulated
as,

min
~w∈bd(WL∞ )

1
2
~w>~w⇔ min (d1, d2) (3.19)

d1 = min
~w1∈bd(WL∞ )1

1
2
~w>1 ~w1

d2 = min
~w2∈bd(WL∞ )2

1
2
~w>2 ~w2

In what follows, we will explain the formulation of bd(WL∞)1 and bd(WL∞)2.

3.3.3 Formulation of bd(WL∞)1

In this section, bd(WL∞)1 is formulated. Since bd(WL∞)1 = bd
(⊕nc

i=1 Fi

)
×

⊕nc

i=1 Ti as per

(3.18), we need to formulate bd
(⊕nc

i=1 Fi

)
(i.e., the boundary of the Minkowski sum of force

sets) and
⊕nc

i=1 Ti (i.e., the Minkowski sum of torque sets).
Geometrically, the boundary of the Minkowski sum of convex objects is obtained by only

adding up the points on each object’s boundary with the same outward normal directions [31,
32]. A 2D example of this principle is shown in Fig. 3.4 in that the boundary of two squares’
Minkowski sum is obtained by combining the sides with the same outward normal directions.
Following this principle, bd

(⊕nc

i=1 Fi

)
is formulated as,

bd

 nc⊕
i=1

Fi

 =

 nc∑
i=1

~bFi

∣∣∣∣~bFi ∈ bd (Fi) , ~nbF1 = · · · = ~nbFnc

 (3.20)
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Figure 3.4: The Minkowski sum of two squares

where bd (Fi) is the boundary of Fi and ~nbFi is the unit outward normal vector on bd (Fi)

(i = 1, . . . , nc). Since Fi =

{
Ri ~fi

∣∣∣∣ ~fi ∈ LC
}
, bd (Fi) is obtained as,

bd (Fi) =

{
Ri~bLC

∣∣∣∣~bLC ∈ bd (LC)
}

(3.21)

where bd (LC) (the boundary of the local cone) is parameterized as,

bd (LC) =


µ fn cos θ
µ fn sin θ

fn

 ∣∣∣∣ fn ∈ [0, h], θ ∈ [0, 2π)

 (3.22)

To attain ~nbFi (i = 1, . . . , nc), we first obtain the unit outward normal vector on bd (LC)
(denoted as ~v) as [33, Chapter 3],

~v =

(
∂bd (LC)
∂ fn

×
∂bd (LC)

∂θ

)
/

∥∥∥∥∥∂bd (LC)
∂ fn

×
∂bd (LC)

∂θ

∥∥∥∥∥
=

1

µ fn

√
µ2 + 1

µ fn cos θ
µ fn sin θ
−µ2 fn

 =
1√
µ2 + 1

cos θ
sin θ
−µ

 (3.23)

Alternatively, the same expression of ~v can be obtained by,

BF ( f1, f2, fn) B f 2
1 + f 2

2 − µ
2 f 2

n = 0

~v =
Grad (BF)
‖Grad (BF) ‖

∣∣∣∣∣ f1=µ fn cos θ
f2=µ fn sin θ

where BF ( f1, f2, fn) is defined as an implicit function of the local friction cone’s boundary
whose gradient is denoted as Grad (BF). Since bd (Fi) =

{
Ri~bLC |~bLC ∈ bd (LC)

}
(i = 1, . . . , nc),

we characterize ~nbFi from ~v using different parameters (θbFi) as,

~nbFi = Ri~v
(
θbFi

)
=

Ri√
µ2 + 1

cos θbFi

sin θbFi

−µ

 (3.24)



3.3. Continuous Boundary Formulation of GraspWrench Space 45

Furthermore, from the condition that~nbF1 and~nbFi pointing to the same direction, we can obtain,

~nbFi = ~nbF1 , i = 2, . . . , nc

⇔
Ri√
µ2 + 1

cos θbFi

sin θbFi

−µ

 =
R1√
µ2 + 1

cos θbF1

sin θbFi

−µ


⇔

cos θbFi

sin θbFi

−µ

 = R>i R1

cos θbF1

sin θbF1

−µ


⇒


cos θbFi =

(
ir11 −

ir12
ir31

ir32

)
cos θbF1 +

(
ir12(ir33−1)

ir32
− ir13

)
µ

sin θbFi =
(

ir21 −
ir22

ir31
ir32

)
cos θbF1 +

(
ir22(ir33−1)

ir32
− ir23

)
µ

(3.25)

where ir jk ( j, k = 1, 2, 3) is the entry of the matrix R>i R1 at j-th row and k-th column.
In view of (3.20), (3.21), and (3.22), we parameterize bd

(⊕nc

i=1 Fi

)
with θbF1 and fin (i =

1, . . . , nc) as,

bd

 nc⊕
i=1

Fi

 =

{
R1

µ f1n cos θbF1

µ f1n sin θbF1

f1n

 +

nc∑
i=2

Ri

µ fin cos θbFi

µ fin sin θbFi

fin

 ∣∣∣∣ f1n , fin ∈ [0, h], θbF1 ∈ [0, 2π)
}

(3.26)

where cos θbFi and sin θbFi (i > 1) are functions about cos θbF1 as per (3.25).
To formulate bd(WL∞)1, we also need to formulate

⊕nc

i=1 Ti. Based on (3.13) and (3.14),⊕nc

i=1 Ti is formulated as,

nc⊕
i=1

Ti =

 nc∑
i=1

SiRi~ti

∣∣∣∣~ti ∈ LC


=


nc∑

i=1

SiRi

ti1
ti2
tin

 ∣∣∣∣tin ∈ [0, h],
√

t2
i1

+ t2
i2
≤ µtin

 (HF) (3.27)

nc⊕
i=1

Ti =

 nc∑
i=1

SiRi~ti + ~nitit

∣∣∣∣~ti ∈ LC, |tit | ≤ γtin


=


nc∑

i=1

SiRi

ti1
ti2
tin

 + ~nitit

∣∣∣∣tin ∈ [0, h],
√

t2
i1

+ t2
i2
≤ µtin , |tit | ≤ γtin

 (SF) (3.28)

where ti1 , ti2 , and tin (i = 1, . . . , nc) are the tangent and normal components expressed in the i-th
contact frame, respectively, and tit is the torque component around the i-th contact normal (~ni).

Having formulated bd
(⊕nc

i=1 Fi

)
and

⊕nc

i=1 Ti, bd(WL∞)1 is formulated as,

bd(WL∞)1 =


[
~f
~t

] ∣∣∣∣ ~f ∈ bd

 nc⊕
i=1

Fi

 , ~t ∈ nc⊕
i=1

Ti

 (3.29)

where the expressions of bd
(⊕nc

i=1 Fi

)
is as per (3.26) and

⊕nc

i=1 Ti is formulated as per (3.27)
or (3.28).
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3.3.4 Formulation of bd(WL∞)2

In this section, bd(WL∞)2 is formulated. The procedure of formulating bd(WL∞)2 is similar with
that of bd(WL∞)1. To formulate bd(WL∞)2, we need to formulate

⊕nc

i=1 Fi (i.e., the Minkowski
sum of force sets) and bd

(⊕nc

i=1 Ti

)
(i.e., the boundary of the Minkowski sum of torque sets)

since bd(WL∞)2 =
⊕nc

i=1 Fi × bd
(⊕nc

i=1 Ti

)
as per (3.18).

From (3.12),
⊕nc

i=1 Fi is formulated as,

nc⊕
i=1

Fi =

 nc∑
i=1

Ri ~fi

∣∣∣∣ ~fi ∈ LC

 =


nc∑

i=1

Ri

 fi1
fi2
fin

 ∣∣∣∣ fin ∈ [0, h],
√

f 2
i1

+ f 2
i2
≤ µ fin

 (3.30)

Analogous to bd
(⊕nc

i=1 Fi

)
, bd

(⊕nc

i=1 Ti

)
is also obtained by only adding up the points on

the boundary of torque sets (denoted as bd (Ti), i = 1, . . . , nc) with the same outward normal
directions (~nbTi) [31, 32] (see Fig. 3.4 for a graphical example),

bd

 nc⊕
i=1

Ti

 =

 nc∑
i=1

~bTi

∣∣∣∣~bTi ∈ bd (Ti) , ~nbT1 = · · · = ~nbTnc

 (3.31)

where

bd (Ti) =

{
SiRi~bLC

∣∣∣∣~bLC ∈ bd (LC)
}

(HF) (3.32)

bd (Ti) =

{
SiRi~bLC + ~nitit

∣∣∣∣~bLC ∈ bd (LC) , |tit | ≤ γtin

}
(SF) (3.33)

And ~nbTi is obtained from ~v (3.23) as,

~nbTi = SiRi~v
(
θbTi

)
=

SiRi√
µ2 + 1

cos θbTi

sin θbTi

−µ

 (3.34)

From ~nbT1 and ~nbTi (i = 2, . . . , nc) pointing to the same direction, we can obtain,

~nbTi = ~nbT1 , i = 2, . . . , nc

⇔
SiRi√
µ2 + 1

cos θbTi

sin θbTi

−µ

 =
S1R1√
µ2 + 1

cos θbT1

sin θbT1

−µ


⇔

cos θbTi

sin θbTi

−µ

 = (SiRi)−1 S1R1

cos θbT1

sin θbT1

−µ


⇒


cos θbTi =

(
is11 −

i s12
i s31

i s32

)
cos θbT1 +

(
i s12(i s33−1)

i s32
− is13

)
µ

sin θbTi =
(

is21 −
i s22

i s31
i s32

)
cos θbT1 +

(
i s22(i s33−1)

i s32
− is23

)
µ

(3.35)

where is jk ( j, k = 1, 2, 3) is the entry of the matrix (SiRi)−1 S1R1 at j-th row and k-th column.
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In view of (3.22), (3.31), (3.32), and (3.33) bd
(⊕nc

i=1 Ti

)
is parameterized with θbT1 and tin

(i = 1, . . . , nc) as,

bd

 nc⊕
i=1

Ti

 =

{ nc∑
i=1

SiRi

µ fin cos θbTi

µ fin sin θbTi

fin

 ∣∣∣∣ fin ∈ [0, h], θbT1 ∈ [0, 2π)
}

(HF) (3.36)

bd

 nc⊕
i=1

Ti

 =

{ nc∑
i=1

SiRi

µ fin cos θbTi

µ fin sin θbTi

fin

+ nc∑
i=1

~nitit

∣∣∣∣ fin ∈ [0, h], θbT1 ∈ [0, 2π),|tit |≤γtin

}
(SF) (3.37)

where cos θbTi and sin θbTi (i > 1) are functions of cos θbT1 as per (3.35).
Having formulated

⊕nc

i=1 Fi and bd
(⊕nc

i=1 Ti

)
, bd(WL∞)2 is formulated as,

bd(WL∞)2 =


[
~f
~t

] ∣∣∣∣ ~f ∈ nc⊕
i=1

Fi, ~t ∈ bd

 nc⊕
i=1

Ti


 (3.38)

where
⊕nc

i=1 Fi is as per (3.30) and bd
(⊕nc

i=1 Ti

)
is as per (3.36) or (3.37).

3.3.5 The Proposed Q-Distance Calculation Method
Having formulated the exact expression of bd(WL∞)1 and bd(WL∞)2, we finalize the formulation
of Q-distance calculation based on (3.19). To obtain meaningful values of the Q-distance and
keep the generality of the proposed solution, we set the height of the local friction cone as 1
(i.e., h = 1). The calculation of Q-distance is formulated as,

Q =
√

2dmin, dmin = min (d1, d2) (3.39)

d1 = min
~w1∈bd(WL∞)1

1
2
~w>1 ~w1 (3.40)

d2 = min
~w2∈bd(WL∞ )2

1
2
~w>2 ~w2 (3.41)

Since bd(WL∞)1 = bd
(⊕nc

i=1 Fi

)
×

⊕nc

i=1 Ti and bd(WL∞)2 =
⊕nc

i=1 Fi × bd
(⊕nc

i=1 Ti

)
as per

(3.18), we can expand (3.40), and (3.41) as,

d1 = min
~f1∈bd(

⊕nc
i=1 Fi)

~t1∈
⊕nc

i=1 Ti

1
2

[
~f >1 ~t>1

]> [
~f1
~t1

]
= min

~f1∈bd(
⊕nc

i=1 Fi)

1
2
~f >1 ~f1︸                 ︷︷                 ︸

d1 f

+ min
~t1∈

⊕nc
i=1 Ti

1
2
~t>1~t1︸          ︷︷          ︸

d1t

(3.42)

d2 = min
~f2∈

⊕nc
i=1 Fi

~t2∈bd(
⊕nc

i=1 Ti)

1
2

[
~f >2 ~t>2

]> [
~f2
~t2

]
= min

~f2∈
⊕nc

i=1 Fi

1
2
~f >2 ~f2︸            ︷︷            ︸

d2 f

+ min
~t2∈bd(

⊕nc
i=1 Ti)

1
2
~t>2~t2︸               ︷︷               ︸

d2t

(3.43)

As observed, the calculation of Q-distance is now formulated as four independent least-square
problems which are detailed as follows.
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Based on the formulation of bd
(⊕nc

i=1 Fi

)
as per (3.26), the minimization problem for solv-

ing the value of d1 f is formulated as,

d1 f = min
1
2
~f >1 ~f1 (3.44)

~f1 = f11R1

µ cos θbF1

µ sin θbF1

1

 +

nc∑
i=2

f1iRi

µ cos θbFi

µ sin θbFi

1


cos θbFi =

(
ir11 −

ir12
ir31

ir32

)
cos θbF1 +

 ir12

(
ir33 − 1

)
ir32

− ir13

 µ, for i > 1

sin θbFi =

(
ir21 −

ir22
ir31

ir32

)
cos θbF1 +

 ir22

(
ir33 − 1

)
ir32

− ir23

 µ, for i > 1

s.t. θbF1 ∈ [0, 2π), f1i ∈ [0, 1], i = 1, . . . , nc

where θbF1 and f1i (i = 1, . . . , nc) are the decision variables, where Ri ∈ R
3×3 is the orientation

of the i-th contact frame with respect to the inertial frame, ir jk ( j, k = 1, 2, 3) is the entry of the
matrix R>i R1 at j-th row and k-th column, and µ is the tangential friction coefficient.

If hard finger contact model is used, based on the formulation of
⊕nc

i=1 Ti as per (3.27), the
minimization problem for solving the value of d1t is formulated as,

d1t = min
1
2
~t>1~t1 (With hard finger contact model) (3.45)

~t1 =

nc∑
i=1

SiRi

t1i1
t1i2
t1in


s.t. t1in ∈ [0, 1],

√
t2
1i1

+ t2
1i2
≤ µt1in , i = 1, . . . , nc

where t1i1 , t1i2 and t1in (i = 1, . . . , nc) are the decision variables, and Si = Skew(~pi − ~c) is the
cross product matrix, in that ~pi represents the i-th contact point and ~c represents the object’s
center of mass.

If soft finger contact model is used, based on the formulation of
⊕nc

i=1 Ti as per (3.28), the
minimization problem for solving the value of d1t is formulated as,

d1t = min
1
2
~t>1~t1 (With soft finger contact model) (3.46)

~t1 =

nc∑
i=1

SiRi

t1i1
t1i2
t1in

 +

nc∑
i=1

~nitit

s.t. t1in ∈ [0, 1],
√

t2
1i1

+ t2
1i2
≤ µt1in , |tit | ≤ tin , i = 1, . . . , nc

where t1i1 , t1i2 , t1in , and tit (i = 1, . . . , nc) are the decision variables, and ~ni is the unit normal
vector at the i-th contact point.
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Based on the formulation of
⊕nc

i=1 Fi as per (3.30), the minimization problem for solving
the value of d2 f is formulated as,

d2 f = min
1
2
~f >2 ~f2 (3.47)

~f2 =

nc∑
i=1

Ri

 f2i1
f2i2
f2in


s.t. f2in ∈ [0, 1],

√
f 2
2i1

+ f 2
2i2
≤ µ f2in , i = 1, . . . , nc

where f2i1 , f2i2 and f2in (i = 1, . . . , nc) are the decision variables.
If hard finger contact model is used, based on the formulation of bd

(⊕nc

i=1 Ti

)
as per (3.36),

the minimization problem for solving the value of d2t is formulated as,

d2t = min
1
2
~t>2~t2 (With hard finger contact model) (3.48)

~t2 = t21S1R1

µ cos θbT1

µ sin θbT1

1

 +

nc∑
i=2

t2iSiRi

µ cos θbTi

µ sin θbTi

1


cos θbTi =

(
is11 −

is12
is31

is32

)
cos θbT1 +

 is12

(
is33 − 1

)
is32

− is13

 µ, for i > 1

sin θbTi =

(
is21 −

is22
is31

is32

)
cos θbT1 +

 is22

(
is33 − 1

)
is32

− is23

 µ, for i > 1

s.t. θbT1 ∈ [0, 2π), t2i ∈ [0, 1], i = 1, . . . , nc

where θbT1 and t2i (i = 1, . . . , nc) are the decision variables, and is jk ( j, k = 1, 2, 3) is the entry
of the matrix (SiRi)−1 S1R1 at j-th row and k-th column.

If soft finger contact model is used, based on the formulation of bd
(⊕nc

i=1 Ti

)
as per (3.37),

the minimization problem for solving the value of d2t is formulated as,

d2t = min
1
2
~t>2~t2 (With soft finger contact model) (3.49)

~t2 = t21S1R1

µ cos θbT1

µ sin θbT1

1

 +

nc∑
i=2

t2iSiRi

µ cos θbTi

µ sin θbTi

1

 +

nc∑
i=1

~nit2it

cos θbTi =

(
is11 −

is12
is31

is32

)
cos θbT1 +

 is12

(
is33 − 1

)
is32

− is13

 µ, for i > 1

sin θbTi =

(
is21 −

is22
is31

is32

)
cos θbT1 +

 is22

(
is33 − 1

)
is32

− is23

 µ, for i > 1

s.t. θbT1 ∈ [0, 2π), t2i ∈ [0, 1], |t2it | ≤ γt2i, i = 1, . . . , nc

where θbT1 , t2i, and t2it (i = 1, . . . , nc) are the decision variables.
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Remark Note that trivial solutions exist in the above minimization problems (i.e., f1i = 0 for
(3.44), t1in = 0 for (3.45) and (3.46), f2in = 0 for (3.47), and t2i = 0 for (3.48) and (3.49)
(i = 1, . . . , nc)). To exclude the trivial solutions in these minimization problems, one should
use a small value (e.g., 1 × 10−3), instead of 0, as the lower bound for the decision variables.

The calculation of d1 f in (3.44) and d2t in (3.48) or (3.49) are the minimization of trigono-
metric polynomials, which can be solved by constrained nonlinear optimization algorithms.
The calculation of d1t in (3.45) or (3.46) and d2 f in (3.47) are second-order cone programming
problems, which can be efficiently solved by second-order cone programming algorithms. In
addition, since these four least-square problems are independent, the computational speed can
be further increased by implementing parallel computing techniques if available. The algorithm
for calculating the value of Q-distance using the above formulation is provided in Algorithm 3.1
in the form of pseudo-code.

3.4 Numerical Results
This section outlines the numerical tests designed to demonstrate the performance of the pro-
posed solution in comparison with the conventional convex hull construction method imple-
mented with the Qhull algorithm [19].

3.4.1 Implementation Details
Before presenting the results of numerical tests, we provide the details of the implemented
methods. For the proposed solution explained in Section 3.3.5, the calculation of d1t as per
(3.45) or (3.46) and the calculation of d2 f as per (3.47) were solved by the “SeDuMi” algorithm
[34] implemented with “YALMIP” [35] in MATLAB. The calculation of d1 f as per (3.44) and d2t

as per (3.48) or (3.49) were solved by the MATLAB built-in function “fmincon” implemented
with “YALMIP”. Both algorithms were using their default settings in “YALMIP”. Since YALMIP is
not compatible with the Parallel Computing Toolbox of MATLAB, these least-square problems
were solved in sequence rather than in parallel. For the conventional Qhull-based method, the
calculation of Q-distance was performed in three steps. (1) Given unit normal forces, the
primitive wrench vectors at a contact point were generated by linearizing the friction cone
as an m-sided pyramid. With different values of m, the Qhull-based methods are referred
to as “Qhull-m” hereafter. (2) Considering all combinations among primitive wrenches (i.e,
the Minkowski sum of primitive wrenches), the convex hull of the grasp wrench space was
constructed by invoking the Qhull program. (3) The distance from the origin to the facets of
the constructed convex hull was calculated and the minimum value is regarded as the value of
Q-distance.

3.4.2 Numerical Tests
All numerical tests were conducted using MATLAB r2019b on a laptop computer powered by
an i5-5200U CPU @2.20GHz with 12GB RAM. The friction coefficients are assumed to be
µ = 0.3 and γ = 0.2 in all tests. With the hard finger contact model, we consider the case of
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grasping a banana, a power drill and a cleanser bottle with three, four, and five contact points,
respectively. With the soft finger contact model, we consider the case of grasping a can, a
hammer and a cracker box with three, four, and five contact points, respectively. 100 force-
closure grasps were randomly selected from the point cloud of each object from the famous
YCB dataset [36] (see Fig. 3.5). The centroid of the point cloud was regarded as the center of
mass in all tests.

To calculate the value of Q-distance for these grasps, we implemented the proposed method
in comparison with Qhull-5 (i.e, the Qhull-based method using a 5-sided pyramid to linearize
the friction cone), Qhull-8, Qhull-9, Qhull-10, Qhull-13, Qhull-15, and Qhull-17.

3.4.3 Results

The results are listed in Table 3.2, 3.3, and 3.4, where SD stands for standard deviation. The
proposed method outperformed Qhull-based methods dramatically in terms of computational
speed. Efficient grasp quality evaluation is a critical component in the process of grasp plan-
ning, especially for real-time applications [37, 38, 39]. In the process of grasp planning, it
is ordinary to synthesize and evaluate numerous grasp configurations using grasp quality mea-
sure(s) in an iterative process. A decreased evaluation time of a single grasp configuration is an
important factor that can significantly improve the overall grasp planning efficiency. The pro-
posed continuous boundary formulation enhances the grasp quality evaluation in two aspects.
On the one hand, the proposed continuous boundary formulation makes it possible to utilize
the efficiency of existing solvers and mathematical programming techniques. On the other
hand, since the proposed calculation method is composed of four independent minimization
problems, it enables the use of parallel computing techniques on individual processing units to
further enhance the efficiency of the grasp quality evaluation. As for the values of Q-distance,
the results from Qhull-based methods fluctuate significantly. For example, among the same
potential 3-contact grasps for grasping a banana as shown in Fig. 3.5(a), the maximum value
of Q-distance calculated by Qhull-9 (7.40 × 10−5) is less than the minimum Q-distance value
calculated by Qhull-10 (9.54 × 10−5). We also exhibit the best grasp found by different meth-
ods (i.e., the grasps corresponding to the maximum Q-distance value calculated by different
methods) in Fig. 3.6, 3.7, 3.8, 3.9 3.10, and 3.11. As seen, the best grasps found by different
methods are not consistent. Thus, in the absence of ground truth solution and without the con-
sideration of the hand structure in the Q-distance definition, it remains debatable which grasp
configuration is better than the others. The stability of a planned grasp needs to be assessed
when Q-distance is used for a specific task, due to its task-independent definition. This can be
achieved using some benchmarks [40, 41, 36]. These results show that the number of pyramid’s
sides (i.e., m) sways the result obtained from convex hull-based methods, and different choices
of m affect not only the computation time but also the decision of grasp planning. The problem
of selecting m stems from the sampling nature of convex hull construction. The input point set
to the operation of convex hull construction has to be finite. As a consequence, the boundary
of the wrench set at the i-th contact point (i.e., bd (Wi), i = 1, . . . , nc) can only be approximated
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(a) (b) (c)

(d) (e) (f)

Figure 3.5: Different grasps on different objects (unit: meter). (a) 3-contact grasps on a banana.
(b) 4-contact grasps on a power drill. (c) 5-contact grasps on a cleanser bottle. (d) 3-contact
grasps on a can. (e) 4-contact grasps on a hammer. (f) 5-contact grasps on a cracker box.
Red, blue, green, magenta, and yellow dots are the contact points for Finger 1, 2, 3, 4, and 5,
respectively.
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by a limited number of points. Mathematically speaking, bd (Wi) can be decomposed as,

bd (Wi) = bd (Fi × Ti) = [bd (Fi) × Ti] ∪ [Fi × bd (Ti)]
= {bd (Fi) × [int (Ti) ∪ bd (Ti)]} ∪ {[int (Fi) ∪ bd (Fi)] × bd (Ti)}
= [bd (Fi) × int (Ti)] ∪ [int (Fi) × bd (Ti)] ∪ [bd (Fi) × bd (Ti)] (3.50)

where int (Fi) and int (Ti) denote the interior of Fi and Ti, respectively. As seen, bd (Wi) is
decomposed into three disjoint components. In convex hull-based methods, it is common to
approximate bd (Wi) using the primitive wrench set (denoted as PWi) which is obtained by
mapping the primitive force set (denoted as PFi) using the grasp matrix (Gi) as,

PWi =
{
Gi ~f

∣∣∣ ~f ∈ PFi

}
=

{[
Ri

SiRi

]
~f
∣∣∣ ~f ∈ PFi

}
(HF) (3.51)

=

{[
Ri ~03×1

SiRi ~ni

]
~f
∣∣∣ ~f ∈ PFi

}
(SF) (3.52)

Since PFi is sampled from the friction cone boundary (i.e., PFi ⊂ bd (FC)), we can obtain,{
Ri ~f

∣∣∣ ~f ∈ PFi

}
⊂ bd (Fi) ,

{
SiRi ~f

∣∣∣ ~f ∈ PFi

}
⊂ bd (Ti) (HF) (3.53){[

Ri, ~03×1

]
~f
∣∣∣ ~f ∈ PFi

}
⊂ bd (Fi) ,

{[
SiRi, ~ni

] ~f ∣∣∣ ~f ∈ PFi

}
⊂ bd (Ti) (SF) (3.54)

As a result, PWi ⊂
[
bd (Fi) × bd (Ti)

]
and PWi only approximates a part of

[
bd (Fi) × bd (Ti)

]
which is only one component of bd (Wi) as in (3.50), in that there is no consideration about the
points in the other two components of bd (Wi) (i.e., [bd (Fi) × int (Ti)] and [int (Fi) × bd (Ti)]).
Consequently, one can only conclude that in convex hull-based methods, the grasp wrench
space boundary has been obtained using the points sampled from one component of bd (Wi).
As a comparison, we consider all the portions of bd (Wi) (i = 1, . . . , n) in the proposed method
by regarding Fi and Ti as solid objects in the 3D geometric space, and parameterize bd (Wi)
and bd

(
WL∞

)
following geometric principles. Therefore, the proposed formulation of bd

(
WL∞

)
is more concrete from a geometric perspective.

It is noteworthy to discuss a limitation of the calculation method presented in Section 3.3.5.
In the proposed Q-distance calculation method, two nonlinear minimization problems are in-
volved when calculating the value of d1 f as per (3.44) and d2t as per (3.48) or (3.49), and they
were solved by a generic constrained nonlinear optimization algorithm (i.e., the “fmincon”
function in MATLAB) in the current work. Consequently, it is not guaranteed to find their
global minimums. However, the proposed calculation method can benefit from the future de-
velopment of mathematical programming techniques since it does not require any specific al-
gorithms or special-designed heuristic procedures.

3.5 Conclusions
In this chapter, we formulated the boundary of grasp wrench space with continuous functions
considering the L∞ metric and the nonlinear friction cone model. With this new continuous
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(a) Qhull-5 (b) Qhull-8 (c) Qhull-9 (d) Qhull-10 (e) Qhull-13 (f) Qhull-15 (g) Qhull-17 (h) Proposed

Figure 3.6: The best 3-contact grasp on the banana found by different methods with hard finger
contact model. Red, blue, and green dots (arrows) are the contact points (normals) for Finger
1, 2, and 3, respectively.

(a) Qhull-5 (b) Qhull-8 (c) Qhull-9 (d) Qhull-10 (e) Qhull-13 (f) Qhull-15 (g) Qhull-17 (h) Proposed

Figure 3.7: The best 3-contact grasp on the can found by different methods with soft finger
contact model. Red, blue, and green dots (arrows) are the contact points (normals) for Finger
1, 2, and 3, respectively.

(a) Qhull-5 (b) Qhull-8 (c) Qhull-9 (d) Qhull-10

(e) Qhull-13 (f) Qhull-15 (g) Qhull-17 (h) Proposed

Figure 3.8: The best 4-contact grasp on the power drill found by different methods with hard
finger contact model. Red, blue, green, and magenta dots (arrows) are the contact points (nor-
mals) for Finger 1, 2, 3, and 4, respectively.
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(a) Qhull-5 (b) Qhull-8 (c) Qhull-9 (d) Qhull-10 (e) Qhull-13 (f) Qhull-15 (g) Qhull-17 (h) Proposed

Figure 3.9: The best 4-contact grasp on the hammer found by different methods with soft finger
contact model. Red, blue, green, and magenta dots (arrows) are the contact points (normals)
for Finger 1, 2, 3, and 4, respectively.

(a) Qhull-5 (b) Qhull-8 (c) Qhull-9 (d) Qhull-10 (e) Qhull-13 (f) Qhull-15 (g) Qhull-17 (h) Proposed

Figure 3.10: The best 5-contact grasp on the cleanser bottle found by different methods with
hard finger contact model. Red, blue, green, magenta, and yellow dots (arrows) are the contact
points (normals) for Finger 1, 2, 3, 4, and 5, respectively.

(a) Qhull-5 (b) Qhull-8 (c) Qhull-9 (d) Qhull-10 (h) Proposed

Figure 3.11: The best 5-contact grasp on the cracker box found by different methods with soft
finger contact model. Red, blue, green, magenta, and yellow dots (arrows) are the contact
points (normals) for Finger 1, 2, 3, 4, and 5, respectively.
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formulation, the wrench-based grasp quality (Q-distance) [10] is calculated much more ef-
ficiently as typical least-square problems. The proposed method can be easily implemented
by employing off-the-shelf optimization algorithms. In addition, by regarding the force sets
(Fi, i = 1, . . . , nc) and the torque sets (Ti) as solid objects in 3D geometric space, this work
provides an entirely new and more concrete formulation for Q-distance calculation than the
convex hull-based methods from a geometric perspective.

Future works include implementing parallel computing techniques to further increase the
computational speed, comparing the proposed method with more Q-distance calculation meth-
ods, and applying the proposed method in grasp planning applications with real robotic sys-
tems.
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Algorithm 3.1: Q-Distance Calculation with Continuous Boundary Formulation
Input : contact points (~pi, i = 1, . . . , nc), contact normals (~ni), center of mass (~c), and the

friction coefficients (µ and γ)
Output: the value of Q-distance (Q)
/* Step 1: Compute grasp matrices */

1 [Gi,Ri, Si]←Get Grasp Matrices(~pi, ~ni, ~c), (i = 1, . . . nc)
/* Step 2: Define the minimization problem for solving d1 f */

2
[
θbF1 , f1i

]
←Define Decision Variables, (i = 1, . . . , nc)

3 C1 =
[
0 ≤ θbF1 < 2π, 0 ≤ f1i ≤ 1

]
, (i = 1, . . . , nc)// Define constraints

4 CF1 ←Define Cost Function// see (3.44)
/* Step 3: Define the minimization problem for solving d1t */

/* If hard finger contact model is used */

5
[
t1i1 , t1i2 , t1in

]
←Define Decision Variables, (i = 1, . . . , nc)

6 C2 =

[
0 ≤ t1in ≤ 1,

√
t2
1i1

+ t2
1i2
≤ µt1in

]
, (i = 1, . . . , nc)// Define constraints

7 CF2 ←Define Cost Function// see (3.45)
/* If soft finger contact model is used */

8
[
t1i1 , t1i2 , t1in , t1it

]
←Define Decision Variables, (i = 1, . . . , nc)

9 C2 =

[
0 ≤ t1in ≤ 1,

√
t2
1i1

+ t2
1i2
≤ µt1in , |t1ii | ≤ γt1in

]
, (i = 1, . . . , nc)// Define constraints

10 CF2 ←Define Cost Function// see (3.46)
/* Step 4: Define the minimization problem for solving d2 f */

11
[
f2i1 , f2i2 , f2in

]
←Define Decision Variables, (i = 1, . . . , nc

12 C3 =

[
0 ≤ f1in ≤ 1,

√
f 2
1i1

+ f 2
1i2
≤ µ f1in

]
, (i = 1, . . . , nc)// Define constraints

13 CF3 ←Define Cost Function// see (3.47)
/* Step 5: Define the minimization problem for solving d2t */

/* If hard finger contact model is used */

14
[
θbT1 , t2i

]
←Define Decision Variables, (i = 1, . . . , nc)

15 C4 =
[
0 ≤ θbT1 < 2π, 0 ≤ t2i ≤ 1

]
, (i = 1, . . . , nc)// Define constraints

16 CF4 ←Define Cost Function// see (3.48)
/* If soft finger contact model is used */

17
[
θbT1 , t2i, t2it

]
←Define Decision Variables, (i = 1, . . . , nc)

18 C4 =
[
0 ≤ θbT1 < 2π, 0 ≤ t2i ≤ 1, |t2it | ≤ γt2i

]
, (i = 1, . . . , nc)// Define constraints

19 CF4 ←Define Cost Function// see (3.49)
/* Step 6: Solve least-square problems */

20 d1 f ←Nonlinear Minimization(CF1,C1)
21 d1t ←Second-order Cone Programming(CF2,C2)
22 d2 f ←Second-order Cone Programming(CF3,C3)
23 d2t ←Nonlinear Minimization(CF4,C4)
/* Step 7: Calculate the value of Q-distance */

24 d1 = d1 f + d1t, d2 = d2 f + d2t

25 dmin = min (d1, d2), Q =
√

2dmin

26 Return Q
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Table 3.2: Results for 3-contact grasps

Banana (With hard finger contact model)
Q-distance values Computation time (s)
Min Max Mean SD

Proposed 1.18 × 10−7 1.16 × 10−3 1.1091 0.6660
Qhull-5 4.21 × 10−2 8.93 × 10−2 6.5833 0.6923
Qhull-8 5.00 × 10−7 1.01 × 10−2 8.4916 1.4610
Qhull-9 4.85 × 10−7 7.40 × 10−5 10.9036 1.1889
Qhull-10 9.54 × 10−5 2.75 × 10−3 15.9925 3.0494
Qhull-13 2.50 × 10−2 3.90 × 10−2 20.4811 4.0401
Qhull-15 5.35 × 10−7 2.72 × 10−5 25.1361 5.1627
Qhull-17 1.95 × 10−2 3.26 × 10−2 22.3091 4.8169

Can (With soft finger contact model)
Q-distance values Computation time (s)
Min Max Mean SD

Proposed 1.03 × 10−5 1.69 × 10−3 1.1946 0.8121
Qhull-5 4.64 × 10−3 8.72 × 10−2 19.7646 2.5444
Qhull-8 2.09 × 10−7 1.22 × 10−2 20.3274 2.9333
Qhull-9 4.33 × 10−7 6.02 × 10−7 13.7367 0.9708
Qhull-10 3.57 × 10−3 1.61 × 10−2 29.6489 5.8831
Qhull-13 2.63 × 10−2 7.88 × 10−2 43.8785 11.1880
Qhull-15 5.24 × 10−7 6.85 × 10−7 31.7682 12.7370
Qhull-17 2.18 × 10−2 7.61 × 10−2 45.4346 20.2032
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Table 3.3: Results for 4-contact grasps

Drill (With hard finger contact model)
Q-distance values Computation time (s)
Min Max Mean SD

Proposed 1.41 × 10−7 1.26 × 10−3 1.2441 0.8372
Qhull-5 2.19 × 10−2 1.40 × 10−1 10.8608 3.0631
Qhull-8 5.01 × 10−7 2.30 × 10−2 16.8790 2.3686
Qhull-9 5.33 × 10−7 2.82 × 10−4 17.8227 3.3504
Qhull-10 7.38 × 10−7 1.58 × 10−2 28.6167 4.5378
Qhull-13 1.31 × 10−2 7.58 × 10−2 19.6621 5.2444
Qhull-15 1.31 × 10−2 7.58 × 10−2 43.3528 13.3126
Qhull-17 1.04 × 10−2 5.62 × 10−2 24.7275 5.7986

Hammer (With soft finger contact model)
Q-distance values Computation time (s)
Min Max Mean SD

Proposed 2.16 × 10−7 3.37 × 10−4 1.4569 0.9688
Qhull-5 1.58 × 10−2 5.27 × 10−2 21.0927 3.4943
Qhull-8 7.52 × 10−3 1.35 × 10−2 32.9613 14.7716
Qhull-9 4.48 × 10−7 6.64 × 10−7 38.7754 23.0801
Qhull-10 4.54 × 10−3 9.01 × 10−3 66.7382 29.1699
Qhull-13 3.18 × 10−2 5.22 × 10−2 106.9676 129.3091
Qhull-15 5.23 × 10−7 7.29 × 10−7 685.1036 848.6893
Qhull-17 2.93 × 10−2 5.12 × 10−2 178.7923 143.2959

Table 3.4: Results for 5-contact grasps

Cleanser bottle (With hard finger contact model)
Q-distance values Computation time (s)
Min Max Mean SD

Proposed 1.27 × 10−7 1.30 × 10−3 1.5835 1.1145
Qhull-5 1.16 × 10−1 2.09 × 10−1 8.5327 2.3327
Qhull-8 5.00 × 10−7 1.19 × 10−2 20.7646 5.0158
Qhull-9 4.83 × 10−7 6.62 × 10−4 37.7040 10.8483

Qhull-10 7.22 × 10−7 3.50 × 10−3 55.4412 20.7376
Qhull-13 4.45 × 10−2 8.72 × 10−2 26.3182 9.1274
Qhull-15 5.23 × 10−7 1.91 × 10−4 464.3587 484.6158
Qhull-17 3.66 × 10−2 8.12 × 10−2 53.8731 24.1987

Cracker box (With soft finger contact model)
Q-distance values Computation time (s)
Min Max Mean SD

Proposed 2.80 × 10−7 1.96 × 10−3 1.7293 0.3502
Qhull-5 3.33 × 10−2 5.37 × 10−2 82.8356 46.0398
Qhull-8 1.74 × 10−3 8.23 × 10−3 258.4507 317.9621
Qhull-9 4.13 × 10−7 5.89 × 10−7 629.7605 570.6241

Qhull-10 4.20 × 10−3 9.19 × 10−3 1373.8469 1404.2188
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Chapter 4

Inverse Kinematics of Integrated
Arm-Hand Systems

4.1 Introduction

Robots with multiple end-effectors have attracted much attention in the past two decades. The
common characteristics of such systems are complex kinematic structure and a large number of
degrees of freedom (DOFs), which leads to the complexity of handling the ultrahigh kinematic
redundancies of such systems [1]. Meanwhile, the redundancies of robotic complexes also
endow such systems with the ability to simultaneously achieving multiple tasks. Depending on
the number of tasks, the problems of inverse kinematics (IK) can be roughly labeled as under-
and over-constrained IK problems.

The bulk of the literature focuses on the under-constrained IK problems with redundant
systems, whose main challenge is utilizing redundancies to achieve multiple tasks while con-
sidering the singularity/stability and solvability/reachability. In general, simultaneous achieve-
ment of multiple tasks can be achieved by utilizing a weighting matrix or constructing a
task hierarchy [2]. The weighting matrix can be imposed on the Cartesian/task space or the
joint/configuration space. Sugihara [3] proposed a Levenberg-Marquardt based IK solution
using the error information with a small bias as the damping factor. In this method, a weight-
ing matrix was imposed on the task errors to reflect the task priorities and absorb the physical
metric difference between different tasks. Chan and Dubey [4] proposed an influential solution
for joint limit avoidance by imposing a weighting matrix to the joint space. Task hierarchy is
implemented by assigning each task with a specific priority. Flacco and Luca [5] proposed a
Reverse Priority method to handle multi-task control of redundant robots, where the solution
for lower-priority tasks was computed followed by the calculation of the solution for higher-
priority tasks. Jarquin et al. [6] utilized a weighting method to smoothly modify the task
priorities within a hierarchical IK problem. Lee et al. [7] and Hu et al. [1] utilized the rela-
tive Jacobian formulation to design a multi-tasking control framework for a dual-arm robotic
system, where the conflicting tasks are handled by assigning different priorities.

To achieve fingertip grasps, the fingers’ contact points (i.e., fingertip locations) and contact
normals (i.e., the outward direction of fingertip normals) should be appropriately planned to
balance contact forces and the gravity when lifting an object [8], and the arm-hand system’s
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joint configuration should be found to accurately perform the planned grasp. Conventionally,
the hand’s IK is solved first to find a 6D end-effector pose whose IK solution is subsequently
solved for a robotic arm. Liu et al. [9] proposed a mixed-integer conic programming formu-
lation for the hand’s IK problem and solved it using a branch-and-bound algorithm. Gori et
al. [10] formulated the hand’s IK problem as an optimization problem which was solved by
a nonlinear optimization algorithm [11]. Rosales et al. [12] proposed a method to identify
all possible hand configurations for reaching a given set of grasping points based on the posi-
tion analysis of general linkages. As an extension of [12], Rosales et al. [13] formulated the
IK problem of robotic hands as a system of polynomials which was solved by using a linear
relaxation-based technique. However, there are two inherent limitations in the sequential solv-
ing process of the robotic arm’s and the hand’s IK. First, the end-effector pose solved from
the hand’s IK problem is not guaranteed to be feasible for the arm. Second, the error of the
hand’s IK solution would be exacerbated by the error of the arm’s IK solution when the sepa-
rately solved arm-hand configuration is executed for achieving fingertip grasps in practice. To
overcome these two disadvantages, we consider the robotic arm and the hand together as an
integrated system in this work. The IK problem of integrated arm-hand systems is essentially
over-constrained. In the case of the KUKA-Barrett system as in Fig. 4.2, there are 14 degrees of
freedom (DOFs) in total supposing all joints are controllable (see Fig. 4.3), while 15 degrees of
constraints (DOCs) are imposed from the desired contact points and contact normals (9 DOCs
from desired contact points and 6 DOCs from desired contact normals). In over-constrained IK
problems, the number of solutions is quite limited which dramatically increases the difficulty
of finding the IK solution for a high-DOF system. Moreover, the achievement of all the fingers’
desired contact points and contact normals rely on the same arm’s motion. Due to the above
reasons, task conflicts almost always exist in the IK of arm-hand systems, which makes such
problems more challenging to be solved. To handle task conflicts, A well-known strategy is
constructing a task hierarchy with the null space projection technique. The highest-priority task
is achieved by exploiting all DOFs in the system while lower-priority tasks are executed within
the null space of the higher-priority tasks. Consequently, all tasks except the top-priority task
can only be achieved sub-optimally without interfering with higher-level tasks. To improve
the accuracy of lower-priority tasks, task transition [6, 14] and null space shaping techniques
[15] has been applied to hierarchical IK problems. But they are only partial solutions since
they are essentially trade-offs between different tasks’ accuracy, and thus they are compro-
mised treatments of the problem. Except for task hierarchy construction, extended Jacobian
formulation [16] and relative Jacobian formulation [1, 7] have also been applied to handle task
conflicts. But the extended Jacobian formulation only suits under-constrained IK problems,
and the relative Jacobian formulation is more suitable for handling the task conflicts in the
systems composed of multiple redundant manipulators such as dual-arm systems. Closed-form
solutions [17] has also been applied to robotic complexes for parts of the kinematic chain. But
closed-form solutions are usually not available for general robotic systems.

After studying the characteristics of integrated arm-hand systems, we address the IK prob-
lem of such systems in two aspects, search space reduction and null space exploitation. Due
to its over-constrained nature, the IK problem of arm-hand systems is essentially finding a
limited number of solutions in a large search space. In this circumstance, reducing the search
space by filtering impossible configurations is a common strategy. To this end, we propose a
human-inspired Thumb-First strategy to narrow down the search space of an arm-hand system.
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Figure 4.1: Thumb’s functional redundancy

Humans always place the thumb on an object to counterbalance other fingers’ forces for grasp-
ing. The ability to use the opposing thumb is unique to humans and some primates, which is
infrequent in nature [18, 19]. The significance of the thumb in grasping has been highlighted
in some previous studies [20, 21]. In our work, we regard the finger of a robotic hand counter-
acting other fingers in fingertip grasps as the opposing “thumb” and assign the highest priority
to it. We then let the thumb lead the motion of the entire arm-hand system and achieve thumb-
related tasks first. By doing so, we can enforce meaningful constraints on other fingers and
significantly narrow down the IK search space of the arm-hand system. The tasks related to
other fingers are conducted in the null space of the thumb to enhance the compliance of other
fingers to the thumb.

To increase the accuracy of other fingers’ tasks, we also study how to exploit the null
space of the thumb. After achieving thumb-related tasks, the arm-thumb chain normally has
redundancies due to extra DOFs which contribute to the major part of the thumb’s null space.
However, except for the redundancies caused by extra DOFs, there also exists one extra de-
gree of redundancy due to the task definition in fingertip grasping. Such redundancy is often
referred to as functional redundancy [22]. While there are requirements for contact points and
contact normals in fingertip grasping, the rotation around the contact normals is undemanded.
The undetermined rotation in thumb-related tasks is the thumb’s functional redundancy (see
Fig. 4.1), which can be used to enlarge the null space of the thumb.

Regarding how to exploit the null space of the thumb, we proposed two solutions. Our first
solution follows the principle of hierarchical IK to solve the IK of integrated arm-hand systems
(referred to as “HIK-ArmHand” hereafter). In HIK-ArmHand, the thumb-related position and
orientation IK tasks have higher priorities than the tasks of other fingers, and they are solved
first (see Fig. 4.4(b)) to implement the proposed Thumb-First strategy. After achieving thumb-
related tasks, the thumb’s functional redundancy is used to enlarge the null space of the thumb.
The tasks related to other fingers are then conducted in the enlarged null space of the thumb
through the null space projection technique. Our second solution also implements the Thumb-
First strategy. But different from our first solution, we formulate the arm-thumb serial chain
as a closed chain after achieving thumb-related tasks. Thus, we name our second solution as
“IK-TFCC” which stands for “the inverse kinematics solution based on the Thumb-First strat-
egy and the arm-thumb closed-chain formulation”. In this arm-thumb closed chain, the arm
and the thumb are the two supporting legs of this closed chain, and the palm is the end-effector
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Thumb’s Contact Normal
and Revolute Joint

Thumb’s Revolute 
Motion

Figure 4.2: The arm-thumb closed chain with the virtual revolute joint on the thumb’s tip

(see Fig. 4.2). By doing so, the thumb’s null space can be actively exploited by controlling
the palm’s motion. To utilize the thumb’s functional redundancy, we attach a virtual revolute
joint to the thumb’s tip and make its rotation axis aligning with the thumb’s contact normal
(see Fig. 4.2). This virtual joint embodies the thumb’s functional redundancy. We can then di-
rectly control the thumb’s functional redundancy by including this virtual joint in the Jacobian
formulation of the arm-thumb closed chain.

The rest of this chapter is organized as follows. Section 4.2 briefly reviews the preliminary
knowledge related to the proposed solutions. Section 4.3 provides an overview of the proposed
solutions. Section 4.4 presents the details about how the proposed Thumb-First strategy is
implemented in the proposed solutions. Section 4.5 and 4.6 explains the remaining parts of
the two proposed solutions. Section 4.7 evaluates the performance of the proposed solutions
and validates their effectiveness through comprehensive numerical results. Finally, Section 4.8
concludes this chapter.

4.2 Preliminaries
In this section, the fundamental knowledge on which the proposed approaches ground is briefly
introduced.

4.2.1 Null Space Projection
The null space projection is one of the most effective methods of dealing with the kinematic
redundancies of systems with large DOFs. The seminal work on the null space projection
approach was proposed in 1980s [23, 24, 25]. It is frequently implemented along with a hier-
archical organization of the tasks, where each task is assigned with a specific priority within
the hierarchy. The highest-priority task is accomplished by exploiting all DOFs in the system
while each lower-priority task is executed within the null space of the higher-priority tasks.
As a consequence, all tasks except the top-priority task can only be achieved sub-optimally
without interfering with the execution of higher-level tasks.
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The null space projector (N) for a given task is defined asN = I − J†J where J is the task-
related Jacobian matrix and J† is the Moore–Penrose inverse of J. The projector N projects a
given joint motion (∆~q) into the null space of J [26]. When more than two tasks are involved,
there are two projection strategies, successive projection and augmented projection. In suc-
cessive projection, the null space projectors are calculated successively and the system joint
movement (∆~qsys) is obtained as,

∆~qsys = ∆~q1 +N1∆~q2 +N1N2∆~q3 + . . . (4.1)

where Ni = I − J†i Ji (i = 1, 2, . . . ) is the null space projector for each task. In augmented
projection, the null space projector is calculated using the augmented Jacobians, taking into
account all higher-priority tasks’ Jacobian matrices, i.e.,

∆~qsys = ∆~q1 +N1∆~q2 +N12∆~q3 + . . . (4.2)

N12 = I − J†12J12, J12 =

[
J1

J2

]
The successive projection is computationally more efficient than the augmented projection

thanks to the decoupled calculation of the null space projector (N). But the task hierarchy is
not strictly maintained in successive projection as the task hierarchy’s depth increases. In this
projection method, the joint motion related to a low-priority task has to be multiplied by the
null space projectors of all higher-priority tasks. Each multiplication only assures compliance
to the corresponding task but not to all other preceding tasks. Consequently, the execution of
the lower-priority tasks start to eventually interfere with the higher-priority tasks [27]. Since
the task hierarchy is often deep and complicated for the robotic systems with complex kine-
matic structures, the successive projection approach is not the most suitable option for such
systems. The augmented projection has been shown to be more effective in maintaining strict
hierarchy of complex robotic systems [1, 6, 7, 15]. But it cannot avoid algorithmic singular-
ities. Algorithmic singularities appear when tasks with different priorities conflict with each
other. As a consequence, the accuracy of conflicting tasks would be affected.

4.2.2 Closed-Chain Robots
A kinematic structure containing at least one loop is known as closed-chain robots (or parallel
robots) [28]. closed-chain robots are typically composed of two platforms (a moving and a
fixed platform) connected by two or more legs that are usually serial mechanisms [29]. Thanks
to multiple supporting legs, the payload on the moving platform can be distributed to all legs,
which endows closed-chain robots with the ability of carrying large payloads. There are also
consequences of having multiple supporting legs. For instance, although the legs may have as
many as six DOFs, the entire parallel robot can only have six DOFs at most [30]. Consequently,
not all joints are necessary to be actuated. This feature minimizes the number of actuators in
a parallel robot, but it also complicates the analysis of a parallel robot. Only the actuated
joints can be prescribed input velocities, while the movement of the remaining passive joints
must be determined by the kinematic constraints induced by the supporting legs [28]. Due
to these kinematic constraints, closed-chain robots suffer from more singularities than their
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serial alternatives, such as actuator singularities, configuration singularities, and end-effector
singularities [31]. Because of this, the workspace of closed-chain robots becomes fractured.
Furthermore, the workspace of a parallel robot is significantly more limited than that of serial
robots as it is the intersection of all legs’ workspaces.

4.2.3 Screw Theory

Screw theory is the theory about screw displacement. It is a powerful mathematical tool for
the analysis of spatial mechanisms. Analogous to the motion of a screw, a screw displacement
is the combination of rotation and translation. No matter how a rigid body moves from one
location to another, its movement can always be described by a screw displacement [29]. For
the motion of a rigid body driven by a joint, its screw displacement (denoted by ~$) is the product

of a unit screw vector (denoted by ~̂$) and the joint velocity (q),

~$ = ~̂$ · q =

[
~s
~so

]
q (4.3)

where ~s is a unit vector along the direction of the screw axis and ~so = ~s × ~ro + h~s is a moment
vector in that ~ro is the translation vector from the origin of the reference frame to any point on
the screw axis and h is the pitch. For a revolute joint, h = 0 while h = ∞ for a prismatic joint,
i.e.,

~̂$ =


[
~s > (~s × ~ro)>

]>
for revolute joints[

~01×3 ~s >
]>

for prismatic joints
(4.4)

Algebraic operations in screw theory are component-wise. For example,

~̂$1 + ~̂$2 =

[
~s1 + ~s2

~so1 + ~so2

]
, ~̂$ · q =

[
~s · q
~so · q

]
(4.5)

The velocity state about a rigid body’s screw is described by a twist (~V),

~V =

[
~ω
~vo

]
(4.6)

where ~ω is the angular velocity of this rigid body and ~vo is the instantaneous velocity of a point
on this body currently located at the reference frame’s origin, expressed in the reference frame.

Compared to the popular Denavit-Hartenberg (D-H) convention, screw-based methods are
more flexible in terms of robotic kinematic modelling. For instance, the frame of each link is
systematically selected in the D-H convention, while only two frames that can be arbitrarily
selected are required for the entire system in screw-based methods [32]. This feature is com-
pelling for closed-chain robots as the end-effector singularities can be generally avoided by
relocating the end-effector frame. Therefore, the screw-based Jacobian matrix is constructed
for the arm-thumb closed chain in the present work.
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4.2.4 Screw-Based Jacobian Matrices
The Jacobian matrices derived based on screw theory are commonly known as screw-based
Jacobians. Based on the choice of the reference frame, the screw-based Jacobian has two
representations: (1) the space Jacobian with the reference frame being a fixed space frame
(e.g., the robot base frame), and (2) the body Jacobian with the reference frame being the
end-effector’s frame. Unless otherwise specified, the screw-based Jacobian used for the arm-
thumb closed chain is body Jacobian in the present work. A screw-based Jacobian is a linear
combination of unit screw vectors of the joints such that the end-effector’s twist (denoted as
~Vee) is obtained as,

~Vee =

n∑
i=1

~̂$iqi = [~̂$1, . . . , ~̂$n]


q1
...

qn

 = J~q (4.7)

where n is the number of joints, ~̂$i and qi (i = 1, . . . , n) are the unit screw vector and joint
variable associated with the i-th joint, respectively.

4.2.5 Jacobian Formulation of Closed-Chain Robots
There are many approaches to derive the screw-based Jacobian of a parallel robot in the litera-
ture. We followed the procedure presented in [28]. Consider a parallel robot consisting of two
supporting chains, its end-effector’s twist (~Vee) can be expressed as

~Vee = J1~q1 = J2~q2 (4.8)

where J1 and J2 are the Jacobian matrices of the two supporting legs, and ~q1 and ~q2 are their
joint variables. This equation can be rearranged as

[J1 − J2]
[
~q1

~q2

]
= ~0 (4.9)

As mentioned in Section 4.2.2, the joints of a parallel robot are divided into active joints and
passive joints. Let us divide all the joints in (4.9) into two groups and rearrange (4.9) as

[Ha Hp]
[
~qa

~qp

]
= ~0⇔ Ha~qa + Hp~qp = ~0 (4.10)

where ~qa and ~qp indicate the active and passive joint variables, respectively, and Ha and Hp

are the matrices composed of the unit screw vectors associated with active and passive joints,
respectively. If Hp is invertible, we can obtain

~qp = −H−1
p Ha~qa (4.11)

As only the active joints can be prescribed input variables, the Jacobian of a parallel robot
is only related to the active joints. To derive this Jacobian matrix, we can use the forward
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(a) (b)

Figure 4.3: 14 DOFs KUKA-Barrett arm-hand system. (a) KUKA LWR 4+ manipulator and
(b) Barrett hand

kinematics for any of the two legs. Suppose the first leg has m joints and its first joint is chosen
as the only active joint, the end-effector’s twist is expressed as

~Vee = J1~q1 = J1


~e>1
~h>2
...
~h>m

 ~qa = Ja~qa (4.12)

where ~e>1 = [1, 0, . . . , 0], ~h>j ( j = 2, . . . ,m) is the row vector obtained from (4.11) correspond-
ing to the j-th joint in this leg, and Ja is the Jacobian matrix of the parallel robot with respect
to the active joints.

4.3 Method Overview
The problem we study in this chapter is to find a joint configuration of an integrated arm-
hand system with which all fingertips can be placed at desired contact locations and their
normals can be aligned with desired contact normals. To evaluate the results and validate the
effectiveness of our approach, we use the KUKA LWR manipulator and the Barrett robotic
hand (KUKA-Barrett for short) as our evaluation platform. The KUKA-Barrett system has 14
degrees of freedom (DOFs) in total as depicted in Fig 4.3. We assume all joints of the KUKA-
Barrett system are controllable. The abduction movement of Finger 2 and 3 is controlled by
a common revolute joint. The fingers of the Barrett hand are labeled as Finger 1, 2, and 3 as
depicted in Fig. 4.4 and their normal directions on the fingertips are labeled as ~ni, (i = 1,2,3),
respectively. Finger 1 is regarded as the thumb of Barrett hand in the proposed solutions.

An overview of the proposed solutions (HIK-ArmHand and IK-TFCC) is shown in Fig. 4.4.
They both have two phases. The first phase is named as the Thumb-Reaching phase. Starting
from the initial configuration as shown in Fig. 4.4(a), the thumb-related tasks are achieved
first and the thumb leads the arm-hand system to achieve the thumb’s desired contact point
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(a) (b) (c)

Figure 4.4: Overview of our proposed IK solutions. (a) The initial configuration (~q0). (b) The
Thumb-Reaching configuration (~qt). (c) The Hand-Alignment configuration (the final config-
uration, ~qh). The blue dots and the blue arrows indicate the desired contact points and desired
contact normals, respectively.

and contact normal (see Fig. 4.4(b)). We term the resulting arm-hand configuration as the
Thumb-Reaching configuration. The second phase is named as the Hand-Alignment phase.
In this phase, the Thumb-Reaching configuration is refined in multiple steps to facilitate the
achievement of other fingers’ tasks (see Fig. 4.4(c)). We term the obtained configuration as
the Hand-Alignment configuration which is also the final arm-hand configuration for a given
grasp configuration. HIK-ArmHand and IK-TFCC share a similar procedure in the Thumb-
Reaching phase but differ significantly in the Hand-Alignment phase. Thus, we explain the
Thumb-Reaching phase of HIK-ArmHand and IK-TFCC together but their Hand-Alignment
phase separately in the subsequent sections.

4.4 The Thumb-Reaching Phase

In this section, we present the Thumb-Reaching phase of the proposed two solutions, HIK-
ArmHand and IK-TFCC. The objective of the Thumb-Reaching phase is to implement the
proposed Thumb-First strategy in two aspects. (1) The thumb is assigned with a higher priority
than other fingers, and (2) the thumb-related tasks are achieved first. To implement these two
aspects, we conduct the typical hierarchical inverse kinematics (HIK) procedure with succes-
sive null space projection. The task hierarchy contains three tasks: (1) the achievement of hand
palm’s desired orientation (named as “palm orientation IK” task), (2) the achievement of the
thumb’s desired contact point (named as “thumb position IK”task), and (3) the achievement
of the thumb’s desired contact normal (named as “thumb orientation IK” task). The only dif-
ference between the Thumb-Reaching phase of HIK-ArmHand and IK-TFCC is the priority
assignment among the involved tasks, which are listed in Table 4.1, in that priority 1 and 3
indicate the highest and lowest priority, respectively.

In both solutions, the inclusion of the palm orientation IK task is to adjust the orientation
of the hand to make other fingers closer to their target poses and to facilitate their placement
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Table 4.1: Tasks in the Thumb-Reaching phase

Tasks
Task Priorities

HIK-ArmHand IK-TFCC
Palm Orientation IK 3 1
Thumb Position IK 1 2

Thumb Orientation IK 2 3

(a) Palm (b) Finger 3

Figure 4.5: Axes assignment of the Barrett hand

in the following Hand-Alignment phase. In the Thumb-Reaching phase of IK-TFCC, the palm
orientation IK task is assigned with the highest priority, and the rationale is as follows. The
workspace of a closed-chain mechanism is generally quite limited. Finger 2 and 3 are unlikely
to be closed to their desired poses when the thumb-related tasks are achieved without the palm
orientation task and assigning it with the highest priority. Consequently, a big motion of the
arm-thumb closed chain would be required to minimize these fingers’ errors. In this case, the
arm-thumb closed chain has a great chance to move beyond its workspace boundary such that
it would collapse. To avoid this situation, not only the presence of the palm orientation task
but also its precise conduction is required in this phase. The palm orientation IK task requires
estimating the desired palm orientation from the desired grasp configuration (contact points +

contact normals) as it is unavailable from the task requirements.

4.4.1 Estimate the desired palm orientation
We estimate the desired palm orientation based on the hand structure. In the case of Barrett
hand, Fig. 4.5(a) shows the coordinate frame attached to the palm. The palm’s frame is defined
such that its z-axis (Zpalm) aligns with the palm’s outward normal, its x-axis (Xpalm) is parallel
to the base of the isosceles triangle formed by the fingers’ base points, and its y-axis (Ypalm)
points toward the thumb’s base point along the median of the isosceles triangle. Based on their
definitions, the axes of the palm coordinate frame can be represented as,

Xpalm = p2b − p3b , Ypalm = p1b −
p2b + p3b

2
(4.13)

Zpalm = Xpalm × Ypalm, Xpalm = Ypalm × Zpalm (4.14)

where pib is the base point of Finger i (i = 1,2,3), and (4.14) is to guarantee the axes’ orthog-
onality. However, fingers’ base points are also unavailable from task requirements. To bridge
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this gap, the fingers’ desired contact points can be used in (4.13) and (4.14) as the reflection
of fingers’ base points. In the following, we delineate how to solve the HIK in the Thumb-
Reaching phase.

4.4.2 Hierarchical IK solution in the Thumb-Reaching phase
In the Thumb-Reaching phase, only the serial chain composed of the arm and the thumb is
involved and its Jacobian is formulated using the Denavit-Hartenberg (DH) method. The joint
movements for achieving the three tasks (i.e., “palm orientation IK”, “thumb position IK”, and
“thumb orientation IK” task) are solved independently, for example, by damped least-squares
methods. The resultant joint movements are combined to obtain the total joint movement by
successive null space projection.

For the “palm orientation IK” task, the error (denoted as ~ehpo) is defined as the difference
between the desired and the current palm orientation expressed by Euler angles,

~ehpo =
[
αd, βd, γd

]>
−

[
αc, βc, γc

]> (4.15)

Alternatively, ~ehpo can be expressed by the angle-axis convention calculated from the relative
rotation between the current and desired palm’s orientation to avoid the potential representation
singularities induced by the Euler angle representation. The corresponding null space projector
is computed by Nhp = I − J†hpJhp where Jhp is the analytical Jacobian of the palm orientation.

As for the thumb-related tasks, the thumb’s position and orientation error (denoted as ~etp

and ~eto , respectively) are defined as,

~etp = ~ptd − ~ptc , ~eto = ϕt
~ntc × ~ntd∥∥∥~ntc × ~ntd

∥∥∥ (4.16)

ϕt = 2arctan2 (‖U‖, ‖V‖) ,U = ‖~ntd‖~ntc − ‖~ntc‖~ntd ,V = ‖~ntd‖~ntc + ‖~ntc‖~ntd (4.17)

where ~ptc and ~ptd are the current and the desired contact point of the thumb, ~ntc and ~ntd are the
current and the desired contact normal of the thumb, and ϕt is the angle between ~ntc and ~ntd
[22][33]. The same error definition is also used for other fingers in the Hand-Alignment phase

of the proposed solutions. Calculating ϕi as per (4.17) rather than using ϕi = arccos
(

~n>i ~nid
‖~ni‖·‖~nid ‖

)
can avoid the inaccuracy problem associated with “arccos” when ~ni and ~nid are almost (anti-
)parallel [33]. The Jacobian matrices related to the “thumb position IK” and the “thumb orien-
tation IK” task are denoted as Jtp and Jto , respectively.

The procedure of the Thumb-Reaching phase is presented in Algorithm 4.1. The input argu-
ments include the initial configuration (~q0), the thumb’s desired contact point (~ptd ) and contact
normal (~ntd ), the estimated palm orientation expressed with Euler angles (Opalm(αd, βd, γd)), the
maximum number of iterations (kmax), and the preset error tolerances for the position (εp) and
orientation (εo). The output is the Thumb-Reaching configuration (~qt). Five steps are iteratively
conducted in the Thumb-Reaching phase until achieving the thumb-related tasks or reaching
the maximum number of iterations. In Step 1 (line 3–7), pose errors are calculated for the
three involved tasks. The iteration will be terminated when the errors of thumb-related tasks
are below the preset tolerances. In Step 2 (line 8–9), the IK of each task is solved to obtain
the joint movement for achieving each task. We employed the classical damped least-square
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algorithm [34] and its variant [35] for this purpose. In Step 3 (line 10), the null space projectors
used in this phase are computed. In Step 4 (line 11 or 12), the total joint movement is attained
according to the task priority assignment. In Step 5 (line 13), the joint configuration (~q) is
updated. Step 4 is the only difference between the Thumb-Reaching phase in HIK-ArmHand
and IK-TFCC.

Algorithm 4.1: The Thumb-Reaching Phase
Input : ~q0, ~ptd , ~ntd , Opalm(αd, βd, γd), kmax, εp, εo.
Output: ~qt

1 ~q = ~q0
2 for k ∈ [1, kmax] do

/* Step 1: Calculate pose error */

3
[
~pt, ~nt,Opalm(α, β, γ)

]
← Forward Kinematics(~q)

4 ~etp = ~ptd − ~pt, ~eto ← Get Ori. Error(~ntd , ~nt), ~ehpo = [αd, βd, γd]> − [α, β, γ]>

5 if ‖~etp‖ ≤ εp & ‖~eto‖ ≤ εo then
6 ~qt = ~q, Return ~qt

7 end
/* Step 2: Calculate joint movement for each task */

8
[
Jtp , Jto , Jhpo

]
← Get Jacobian Matrix(~q)

9 ∆~qm ← Inverse Kinematics(~em, Jm), (m = tp, to, hpo)
/* Step 3: Compute null space projector */

10 Nm = I − J†mJm, (m = tp, to, hpo)
/* Step 4: Obtain joint movement */

11 ∆~q = ∆~qtp +Ntp∆~qto +NtpNto∆~qhpo// For HIK-ArmHand

12 ∆~q = ∆~qhpo +Nhpo∆~qtp +NhpoNtp∆~qto// For IK-TFCC

/* Step 5: Update configuration */

13 ~q = ~q + ∆~q
14 end

4.5 The Hand-Alignment Phase of HIK-ArmHand

After achieving thumb-related tasks, the proposed two solutions deviate into different direc-
tions in the Hand-Alignment phase for the achievement of other fingers’ tasks. Our first so-
lution (HIK-ArmHand) follows the principle of hierarchical IK along with a mixed null space
projection approach and a null space enlargement method.

4.5.1 Task Hierarchy

To achieve the tasks related to other fingers, the task hierarchy is designed as in Fig. 4.6 in the
Hand-Alignment phase of HIK-ArmHand. Compared with the Thumb-Reaching phase, the
tasks related to other fingers are added to the task hierarchy. These tasks are assigned with
lower priorities than those for the thumb and the palm. The joint movements obtained in each
new task are added through the null space projection to achieve the placement of other fingers
without affecting the already achieved thumb-related tasks.
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Figure 4.6: The task hierarchy in the Hand-Alignment phase of HIK-ArmHand

4.5.2 Null Space Projection
As mentioned before, there are inevitable conflicts among the requirements of different fingers
due to the same arm shared among all fingers. If the joint movements for achieving the fingers’
tasks are directly combined, the conflicts among the fingers will result in system oscillation
during the IK solution process which may even lead to non-convergence. Tasks of different
fingers are assigned with different priorities to manage the conflicts among the fingers. The
joint movements obtained from lower-priority tasks are projected to the null space of higher-
priority tasks when constituting the total joint movements. For this purpose, we use a mixed
projection approach of the successive and augmented null space projection. We apply the suc-
cessive null space projection to the tasks that belong to the same part of the hand. Specifically,
we project the joint movement for achieving the orientation IK task (lower in the hierarchy)
of one finger into the null space of the position IK task (higher in the hierarchy) of the same
finger. We apply the augmented projection approach to different parts of the hand. The joint
movements of the part with a lower priority are projected into the augmented null space of the
parts with higher priorities. Specifically, since the orientation IK task of Finger 2 has priority
5 (see Fig. 4.6), its resulted joint movement is projected into the null space of the position
IK task of Finger 2 first and then into the augmented null space of the thumb and the palm.
The null space projector used for projecting the joint movement calculated for achieving Fin-
ger 2’s orientation IK task into the null space of its higher-priority tasks (denoted as Nt+p+ f2p

)
is calculated as,

Nt+hp+ f2p
= Nt+hpN f2p

(4.18)

Nt+hp = I − J†t+hpJt+hp, Jt+hp =
[
J>tp

J>to J>hpo

]>
N f2p

= I − J†f2p
J f2p

where Jt+hp is the augmented Jacobian matrix related to the thumb (t) and the palm (hp), Jtp ,
Jto , and Jhpo are the Jacobian matrix of the thumb’s position, thumb’s orientation, and palm’s
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orientation, respectively, and J f2p
is the Jacobian matrix related to Finger 2’s position, Nt+hp

and N f2p
are the projectors into the null space of Jt+hp and J f2p

, respectively, and (·)† is the
Moore-Penrose inverse of a matrix.

The rationale behind such mixed projection approach is as follows. The augmented pro-
jection method is suitable for maintaining the task hierarchy, while the main advantage of the
successive projection method is avoiding algorithmic singularities. Algorithmic singularities
appear when tasks with different priorities conflict with each other. On the one hand, if the
successive projection is used alone, it is not guaranteed to maintain the priority order due to
the non-orthogonality of the tasks [27]. Hence, we use the augmented projection to guarantee
strict compliance with the priority order among different parts. On the other hand, algorith-
mic singularities may occur if the augmented projection is used alone. Therefore, it is better
to design and use a mixed projection approach so that the advantages of the successive and
augmented projection are combined. Using the mixed null space projection allows us to not
only comply with the task hierarchy but also avoids the algorithmic singularities. Readers are
referred to [27] for a detailed comparison of successive and augmented null space projections.

4.5.3 Null Space Enlargement
Although operating in the null space can prevent lower-priority tasks from interfering with
higher-priority tasks, the search space of the lower-priority tasks is dramatically reduced as a
consequence. The reduced search space may unintentionally and undesirably exclude some IK
solutions of lower-priority tasks. To mitigate this problem, we apply a null space enlargement
method described in [22] to the thumb so that the thumb’s null space can be exploited to the
maximum extent.

A Jacobian matrix (J ∈ Rm×n) is a linear transformation from the n-dimensional configura-
tion space to the m-dimensional task space. According to the dimension theorem, we have,

Rank(J) + Nullity(J) = n (4.19)

where Rank(J) = dim(ran(J)), in that ran(J) is the range of J, and Nullity(J) = dim(null(J)),
in that null(J) is the null space of J. When J is nonsingular and n > m, we have Rank(J) = m
and Nullity(J) = n − m. Therefore, to enlarge J’s null space (null(J)), we need to reduce the
rank of J (Rank(J)) which can be achieved by excluding some rows of J.

We enlarge the thumb’s null space by deleting a row of Jto (the Jacobian matrix related to
the thumb’s orientation) that expressing the thumb’s functional redundancy (i.e., the rotation
around the thumb’s contact normal see Fig. 4.1). To achieve this, we take two operations to
isolate and express the thumb’s functional redundancy as a row of Jto . First, we change the ref-
erence frame of Jto from the robot base frame to a new frame ({Tnew}) that has an axis aligning
with the thumb’s desired contact normal (~ntd ). One can select {Tnew} as described in Algo-
rithm 4.2. Second, we formulate Jto as an analytical Jacobian matrix with the XYZ-convention
of Euler angles. For more details of analytical Jacobian matrices, readers are referred to [36].
After these two operations, one row of Jto is now corresponding to the thumb’s functional re-
dundancy. After excluding this row from Jto when calculating its null space projector, the null
space of Jto is enlarged. In the following section, the algorithm for the Hand-Alignment phase
of HIK-ArmHand is provided.
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Algorithm 4.2: Find a New Ref. Frame for the Thumb
Input : ~q0, ~ntd
Output: {Tnew}

/* Get the initial frame */

1 [b
tT , ~nt] = Forward Kinematics(~q0)
/* Find rotation matrix between ~nt and ~ntd */

2 ~w =
~nt×~ntd
‖~nt×~ntd ‖

, ~̂w = skew(~w), ζ = arccos
(

~nt ·~ntd
‖~nt‖‖~ntd ‖

)
3 R = I + ~̂wsin (ζ) + ~̂w2 (1 − cos (ζ))
/* Obtain Tnew */

4 Tnew =

[
R 0
0 1

]
b
tT

4.5.4 The Hand-Alignment Algorithm in HIK-ArmHand

The algorithm of the Hand-Alignment phase in HIK-ArmHand is presented in Algorithm 4.3.
The input arguments include the Thumb-Reaching configuration (~qt), the desired contact points
(~pid , i = t, 2, 3), the desired contact normals (~nid , i = t, 2, 3), the desired palm orientation ex-
pressed in Euler angles (Opalm(αd,βd,γd), estimated as in Section 4.4.1), the maximum number
of iterations (kmax), and the preset error tolerances (εp and εo). The output of the algorithm is
the Hand-Alignment configuration (~qh). Five steps are repeated in the Hand-Alignment phase
until achieving all fingers’ tasks or reaching the maximum iteration. In Step 1 (line 4–8), pose
errors of all fingers are calculated. The iteration is terminated when all the errors are below the
preset error tolerances. In Step 2 (line 9–10), the IK of each task is solved. In Step 3 (line 11–
12), the null space of the thumb is enlarged (see Section 4.5.3) and null space projectors are
computed following the mixed projection manner (see Section 4.5.2). In Step 4 (line 13), the
joint movements obtained in Step 2 are combined to obtain the total joint movement. In Step 5
(line 14), the system configuration is updated.

4.6 The Hand-Alignment Phase of IK-TFCC
Having presented the Hand-Alignment phase of our first solution (HIK-ArmHand), we explain
the Hand-Alignment phase of our second solution (IK-TFCC) in this section. In this phase, we
propose to formulate and control the arm-thumb serial chain as a closed chain. In this respect,
the arm-hand system is controlled as a hybrid parallel-serial system in which the parallel system
is the arm-thumb closed chain and the serial system consists of the other fingers.

Three steps are executed in sequence in each iteration of this phase (see Fig. 4.7): (1)
solving other fingers’ IK while fixating the arm-thumb closed chain, (2) solving the arm-thumb
closed chain’s IK while fixating other fingers, and (3) Thumb-Reaching without the “palm
orientation IK” task. Step 1 is to minimize other fingers’ errors under the current palm’s pose. If
other fingers’ errors are still unacceptable after Step 1, Step 2 is conducted to adjust the palm’s
pose to mitigate other fingers’ errors. Step 3 is to keep the thumb at its achieved pose by simply
repeating the Thumb-Reaching phase without the “palm orientation IK” task. Algorithm 4.4
lists the overall procedure of the Hand-Alignment phase of IK-TFCC, and the main components
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Algorithm 4.3: The Hand-Alignment Phase in HIK-ArmHand
Input : ~qt, {~ptd , ~p2d , ~p3d }, {~ntd , ~n2d , ~n3d }, Opalm(αd, βd, γd), kmax, εp, εo

Output: ~qh

1 {Tnew} ← Find New Ref. Frame for Thumb // see Algorithm 4.2
2 ~q = ~qt

3 for k ∈ [1, kmax] do
/* Step 1: Calculate pose error */

4
[
~pi, ~ni

]
← Forward Kinematics(~q), (i = t, hp, 2, 3)

5 ~eip = ~pid − ~pi, ~eio ← Get Ori. Error(~nid , ~ni), (i = t, hp, 2, 3)// see equation (4.17)
6 if ‖~eip‖ ≤ εp & ‖~eio‖ ≤ εo, (i = t, 2, 3) then
7 ~qh = ~q, return ~qh

8 end
/* Step 2: Calculate joint movement for each task */

9 Jm ← Get Jacobian Matrix, (m = tp, to, hpo, f2p , f2o , f3p , f3o)
10 ∆~qm ← Inverse Kinematics(~em, Jm)

/* Step 3: Compute nullspace projector */

11 Enlarge Null Space(Jto , {Tnew})// see Section 4.5.3
12

[
Ntp ,Nt,Nt+hpo ,Nt+hpo+ f2p

,Nt+hpo+ f3p

]
← NullSpaceProjector // see Section 4.5.2

/* Step 4: Obtain the total joint movement */

13 ∆~q = ∆~qtp +Ntp∆~qto︸            ︷︷            ︸
Thumb

+Nt∆~qhpo︸   ︷︷   ︸
Palm

+ Nt+hpo∆~q f2p
+Nt+hpo+ f2p

∆~q f2o︸                                  ︷︷                                  ︸
Finger 2

+Nt+hpo∆~q f3p
+Nt+hpo+ f3p

∆~q f3o︸                                  ︷︷                                  ︸
Finger 3

/* Step 5: Update configuration */

14 ~q = ~q + ∆~q
15 end

Figure 4.7: The steps of the Hand-Alignment Phase of IK-TFCC
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are explained in the rest of this section.
Algorithm 4.4: The Hand-Alignment Phase in IK-TFCC

Input : ~qt, {~ptd , ~p2d , ~p3d }, {~ntd , ~n2d , ~n3d }, kmax, εp, εo

Output: ~qh

1 ~q = ~qt

2 for k ∈ [1, kmax] do
/* Step 1: Other fingers’ IK */

3 ~q←Solve Other Fingers’ IK// see section 4.6.1
/* Check pose error */

4
[
~pi, ~ni

]
← Forward Kinematics(~q), (i = t, 2, 3)

5 ~eip = ~pid − ~pi, ~eio ← Get Ori. Error(~nid , ~ni), (i = t, 2, 3)// see equation (4.17)
6 if ‖~eip‖ ≤ εp & ‖~eio‖ ≤ εo, (i = t, 2, 3) then
7 ~qh = ~q, return ~qh

8 end
/* Step 2: Arm-thumb closed chain’s IK */

9 Jcc ←Get Arm-Thumb Closed Chain’s Jacobian Matrix(~q)// see section 4.6.3
10 ~ehpo ←Get Palm’s Rotational Motion// see section 4.6.4
11 ~ehpp ←Get Palm’s Translational Motion// see section 4.6.5
12 ~q←Solve Arm-Thumb Closed Chain’s IK(Jcc, ~ehpo , ~ehpp)// see section 4.6.6

/* Check pose error */

13
[
~pi, ~ni

]
← Forward Kinematics(~q), (i = t, 2, 3)

14 ~eip = ~pid − ~pi, ~eio ← Get Ori. Error(~nid , ~ni), (i = t, 2, 3)// see equation (4.17)
15 if ‖~eip‖ ≤ εp & ‖~eio‖ ≤ εo, (i = t, 2, 3) then
16 ~qh = ~q, return ~qh

17 end
/* Step 3: Thumb-Reaching without palm ori. IK task */

18 ~q←Thumb-Reaching(~q, ~ptd , ~ntd )// see Algorithm 4.1 without palm’s ori. IK

task

/* Check pose error */

19
[
~pi, ~ni

]
← Forward Kinematics(~q), (i = t, 2, 3)

20 ~eip = ~pid − ~pi, ~eio ← Get Ori. Error(~nid , ~ni), (i = t, 2, 3)// see equation (4.17)
21 if ‖~eip‖ ≤ εp & ‖~eio‖ ≤ εo, (i = t, 2, 3) then
22 ~qh = ~q, return ~qh

23 end
24 end

4.6.1 Other Fingers’ IK
Let us consider one finger as an example for further explanation. The axes assignment of
Finger 3 is shown in Fig. 4.5(b). The direction of its contact normal (i.e., Ytip) with respect to
the hand palm can be calculated by the forward kinematics as,

Ytip =
[
−s1s23, c1s23, c23

]>
(4.20)

where s1 = sin(θ1), s23 = sin(θ2 +θ3), c1 = cos(θ1), and c23 = cos(θ2 +θ3) in that θi (i = 1, 2, 3) is
the joint variable of this finger. The value of θ1 and θ2+θ3 can be solved from the desired contact
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normal expressed in the current palm’s frame. The position IK of this finger expressed in the
current palm’s frame is then solved as a problem of constrained nonlinear minimization with
the constraints being the resultant value of θ1 and θ2 + θ3 (denoted as θ1d and θ23d , respectively)
as well as their joint limits,

min
θ2,θ3

∥∥∥hp
~pd −

hp
~pc

∥∥∥2
(4.21)

s.t. θ1 = θ1d , θ2 + θ3 = θ23d

θ2, θ3 ∈ [θimin , θimax] i = 2, 3

where hp
~pd and hp

~pc are the desired and the current contact point of this finger expressed in the
current palm’s frame. We selected the “fmincon” function provided by MATLAB to solve
(4.21) in this work.

4.6.2 The Arm-Thumb Closed Chain
If other fingers’ errors are still unacceptable after the previous step, this means the palm’s
orientation was ill-estimated in the Thumb-Reaching phase, which hampers the achievement
of other fingers’ tasks. To adjust the palm’s pose without interfering with the achieved thumb-
related tasks, we formulate the arm-thumb system as a closed chain (see Fig. 4.2) in which the
palm is the end-effector and the thumb and the arm are the two supporting “legs”. A virtual
revolute joint is attached to the thumb’s tip with the rotation axis aligning with the thumb’s
contact normal such that it acts as the embodiment of the thumb’s functional redundancy. In
the arm-thumb closed-chain formulation, the thumb is controlled reversely (i.e., the thumb’s
tip and the virtual revolute joint are the base and the first joint of this “leg”, respectively).
Otherwise, the thumb’s joints including the virtual revolute joint would not influence the palm’s
pose. By selecting this virtual joint as well as other thumb’s joints as active joints of the arm-
thumb closed chain, we can directly exploit the thumb’s self-motion and functional redundancy
without using null space projection.

4.6.3 Jacobian Formulation of the Arm-Thumb Closed Chain
Following the procedure reviewed in Section 4.2.5, we formulate the Jacobian of the arm-
thumb closed chain as a screw-based body Jacobian as follows. The kinematic constraint in
this closed chain is

Jtr~qt = Jarm~qarm ⇔ [Jtr − Jarm]
[
~q>t ~q

>
arm

]>
= ~0 (4.22)

where Jtr and Jarm are the screw-based body Jacobian of the reversed thumb and the arm,
respectively, and ~qt and ~qarm are the corresponding joint variables. In the case of KUKA-
Barrett system, since the mobility of the arm-thumb closed chain is four calculated by Grübler’s
formula [37], each “leg” of the arm-thumb closed chain must have at least four DOFs otherwise
the end-effector singularity would appear. But the thumb only has three DOFs (including
the virtual joint). To prevent potential end-effector singularities and maintain the kinematic
constraint (4.22), we mathematically consider the 7th joint of KUKA (denoted as qarm7) as part
of ~qt rather than ~qarm.
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Since the mobility of the arm-thumb closed chain is four, four active joints are required.
Although any joints can be chosen as active joints in general, it is suggested to select the joints
whose rotation axes are not coplanar to avoid possible singularities caused by the selection of
active joints [28]. In the current work, we chose the following joints as the active joints of
the arm-thumb closed chain: the virtual revolute joint (qv), the thumb’s 2nd joint (qt2), and the
arm’s 7th and 6th joint (qarm7 and qarm6). After rearranging the joints into the groups of active
joints and passive joints, (4.22) can be written as

[Ha Hp]
[
~q>a ~q

>
p

]>
= ~0⇔ ~qp = −H−1

p Ha︸   ︷︷   ︸
H

~qa (4.23)

where ~qa = [qv, qt2 , qarm7 , qarm6]
> and ~qp = [qt1 , qarm1 , . . . , qarm5]

> are the active and passive joint
variables of the arm-thumb closed chain, respectively, and qti (i = 1, 2) and qarmi (i = 1, . . . , 7)
are the joint variables of the thumb and the arm, respectively. The arm-thumb closed chain’s
Jacobian (Jcc) is then obtained from the arm’s Jacobian (excluding the 7th joint) as,

Jcc = Jarm

[
~h>1 , . . . , ~h

>
5 , ~e

>
6

]>
(4.24)

where ~hi (i = 1, . . . , 5) is the i-th row of the H matrix in (4.23) and ~e6 = [0, 0, 0, 1]. After
constructing the arm-thumb closed chain’s Jacobian matrix, we need to find the palm’s de-
sired motion to minimize other fingers’ errors. We describe the palm’s desired motion by the
difference between its desired and current position and orientation (denoted as ~ehpp and ~ehpo ,
respectively). ~ehpp and ~ehpo are computed from other fingers’ errors.

4.6.4 Calculation of the Palm’s Rotational Motion ~ehpo

Let us denote c
dRhp as the rotation matrix from the palm’s current orientation to its desired

orientation. Suppose other fingers’ orientation errors can be eliminated with the palm’s desired
orientation, we have the following equations,

b
hpRc ·

c
dRhp ·

hp
F2

Rc = b
hpRc ·

hp
F2

Rc ·
c
dRF2 (4.25)

b
hpRc ·

c
dRhp ·

hp
F3

Rc = b
hpRc ·

hp
F3

Rc ·
c
dRF3 (4.26)

where b
hpRc and hp

Fi
Rc are the current rotation matrix from the robot base to the hand palm and

that from the palm to the tip of Finger i (i = 2, 3), respectively. c
dRFi is the rotation matrix

from the current to the desired contact normal of Finger i (denoted as ~nic and ~nid , respectively)
calculated as,

c
dRFi = I3 + ~̂wsin (ζ) + ~̂w2 (1 − cos (ζ)) (4.27)

where ~w = ~nic × ~nid , ~̂w = skew( ~w
‖~w‖ ) in that skew(·) is the operator for calculating the skew-

symmetric matrix from a 3 × 1 vector, and ζ = arccos
(

~nic ·~nid
‖~nic ‖‖~nid ‖

)
, (i = 2, 3). From (4.25) and

(4.26), we can obtain, [
I3

I3

]
︸︷︷︸

A

c
dRhp =

hp
F2

Rc ·
c
dRF2 ·

hp
F2

R>c
hp
F3

Rc ·
c
dRF3 ·

hp
F3

R>c

︸                  ︷︷                  ︸
B

(4.28)
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The least squares solution of (4.28) is c
dRhp = (A>A)−1A>B. To guarantee c

dRhp ∈ SO(3), singular
value decomposition (SVD) is applied. The palm’s rotational motion (~ehpo) is obtained as
~ehpo = unskew

(
log c

dRhp

)
, where unskew(·) is the operator for attaining the corresponding 3× 1

vector from a skew-symmetric matrix.

4.6.5 Calculation of the Palm’s Translational Motion ~ehpp

~ehpp is obtained by averaging the palm’s translational motions for minimizing the errors of
Finger i (denoted as ~ehpip

, i = 2, 3) as

~ehpp =
1
2

2∑
i=1

~ehpip
, ~ehpip

= ~eFip
− ~eFio

×
hp
Fi
~t (4.29)

where ~eFip
and ~eFio

are the position and orientation errors of Finger i (i = 2, 3), and
hp
Fi
~t (i = 2, 3)

is the translation vector from the palm to the fingertip. ~eFip
and ~eFio

(i = 2, 3) are calculated by[
[~eFio

] ~eFip

0 0

]
= log

[
c
dRFi

hp
Fi

R>c
c
d~tFi

0 1

]
(4.30)

where [~eFio
] is the skew-symmetric matrix corresponding to ~eFio

(i = 2, 3), c
dRFi is calculated

from ~nic and ~nid as per (4.27), and
c
d~tFi = ~pid − ~pic in that ~pid and ~pic are the desired and current

contact point of Finger i (i = 2, 3). Note that ~nic , ~nid , ~pic and ~pid are expressed in the palm’s
frame as screw-based body Jacobian is used for the arm-thumb closed chain whose reference
frame is the palm’s frame.

4.6.6 IK of the Arm-Thumb Closed Chain
After obtaining the palm’s desired motions (~ehpp and ~ehpo), we now need to find the joint move-
ments of the arm-thumb closed chain to conduct these motions. For the active joints’ movement
(∆~qa), the weighted damped least-squares method [4] with null space projection is employed.
The position and orientation IK of the arm-thumb closed chain are solved independently and
the resulting joint movements are combined by using null space projection to obtain ∆~qa as
∆~qa = ∆~qap + Nhpp∆~qao , where Nhpp = I − J†ccp Jccp and Jccp are the null space projector of the
palm’s position and the arm-thumb closed chain’s position Jacobian, respectively, and ∆~qap and
∆~qao are the active joints’ movement to minimize ~ehpp and ~ehpo , respectively. After obtaining
∆~qa, we calculate the passive joints’ movement (∆~qp) as per (4.23). It is noteworthy that the
calculated joint movements related to the thumb (including the virtual joint and the arm’s 7th
joint) in ∆~qa and ∆~qp have to take the opposite values of the calculated ones since the thumb is
reversely controlled in the arm-thumb closed chain.

To prevent the arm-thumb closed-chain formulation from collapse, we took two precau-
tions in the weighted damped least-squares method [4]. First, we selected a considerably large
damping factor to limit the joint motions of the arm-thumb closed chain. Second, a large
weighting factor is assigned to the virtual revolute joint since we observed that this virtual joint
affects more on the palm’s motion than other active joints.
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(a) Cup (b) Apple (c) Banana (d) Cracker box

(e) Can (f) Cleanser bottle (g) Bowl (h) Spoon

(i) Power drill (j) Toy plane (k) Lego part (l) Marker

Figure 4.8: Barrett hand configurations for grasping different objects visualized in V-REP [38].

4.7 Numerical Results

To test the performance of the proposed approach, a series of offline numerical tests were
conducted. All the tests are conducted in MATLAB and visualized in V-REP [38]. All data
were acquired using MATLAB r2019b on a personal computer powered by an i5-6400 CPU @
2.70GHz and 16GB RAM. The kinematic model of the KUKA-Barrett system was used during
these experiments (see Appendix B). The unit of position and orientation error are mm and rad,
respectively. The steps of the simulations are listed below,

1. The initial configuration of the KUKA-Barrett system for each run is set as shown in
Fig. 4.4(a).

2. The hand configurations for grasping 12 different objects from the well-known YCB
dataset [39] are found as shown in Fig. 4.8.

3. For each hand configuration, randomly generate 10,000 arm configurations that are uni-
formly distributed within the arm’s joint limits.

4. For each hand configuration with its corresponding 10,000 arm configurations, calculate
the forward kinematics (FK) to generate 10,000 different sets of feasible contact points
and contact normals.
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5. Solve the IK of the integrated KUKA-Barrett system to achieve the contact points and
contact normals calculated in the previous step.

6. Collect and analyze the data.

In the proposed methods (HIK-ArmHand and IK-TFCC), the classic damped least-squares
(DLS) method [34] was employed to solve the IK of each independent task. For HIK-ArmHand,
the damping factor (λ) was set to be 1. For IK-TFCC, the damping factor (λ) was set to be 1
and 150 for the arm-thumb serial and closed chain, respectively. The weighting factor for the
virtual revolute joint was set to be 10 while the factors for other active joints of the arm-thumb
closed chain were set to be 1. For comparison, we implemented the DLS method [34] without
the enhancement of the proposed methods (referred to as “Original DLS” hereafter), and an
error damped Levenberg-Marquardt method [3] (referred to as “EDLM” hereafter). For Orig-
inal DLS [34], the damping factor (λ) was set to be 1. For EDLM [3], the bias matrix in the
damping factor (W̄N) was set as a diagonal matrix with all diagonal entries being 10. To reflect
task priorities and absorb the physical metric difference, the error weighting matrix in EDLM
(WE) was set as a diagonal matrix, where the diagonal entries corresponding to the position
tasks were set as 6 × 10−4, 4 × 10−4, and 2 × 10−4 for Finger 1, 2, and 3, respectively, and the
diagonal entries corresponding to the orientation tasks were set as 5, 3, and 1 for Finger 1, 2,
and 3, respectively. As for other parameters, the maximum number of iterations was set as
10,000 for each run, and the error tolerance for position and orientation was set as 5 mm and
0.0524 rad (3◦), respectively.

The results of the proposed methods (HIK-ArmHand and IK-TFCC), the Original DLS,
and EDLM are summarized in Table 4.2. In this table, “Success Rate” is defined to be the ratio
between the number of solved cases and the total number of cases (i.e., 10,000). For each run,
one case is considered to be solved if the magnitudes of all the fingers’ position and orientation
errors are less than or equal to the error tolerances. The “Average Iterations” and “Average
Time” are the average number of iterations and the average computation time consumed over
all solved cases, respectively. As observed in Table 4.2, the proposed methods (HIK-ArmHand
and IK-TFCC) significantly outperformed the compared methods (Original DLS and EDLM)
in terms of the success rate. The superb performance of the proposed methods stems from
their proper treatments for the two challenges of the integrated arm-hand system’s IK (i.e., the
limited number of solutions in a large search space and the intrinsic conflicts among different
fingers). The proposed Thumb-First strategy enables HIK-ArmHand and IK-TFCC to filter out
numerous impossible solutions and significantly narrow down the search space. For handling
the task conflicts among different fingers, HIK-ArmHand and IK-TFCC followed different
strategies. HIK-ArmHand constructed a task hierarchy and utilized the null space projection
technique to deal with these intrinsic conflicts. Although the hierarchical strategy allows HIK-
ArmHand to manage task conflicts among different fingers, this is only a passive way to utilize
the thumb’s null space. This passive null space exploitation hampered the accomplishment
of other fingers’ tasks, which is reflected by the lower success rate of HIK-ArmHand than
IK-TFCC. In contrast, the arm-thumb closed-chain formulation allows IK-TFCC to actively
utilize the thumb’s null space by controlling the palm as the end-effector of the arm-thumb
closed chain. The active null space exploitation contributes to the accurate achievement of
other fingers’ tasks in IK-TFCC. During the IK solution process, not considering the conflicting
requirements will lead to system oscillation caused by algorithmic singularities and affect the
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convergence speed, or even non-convergence with non-negligible errors. These consequences
are manifested in the unsatisfactory performance of Original DLS and EDLM.

Numerical tests also revealed the limitations of IK-TFCC. The arm-thumb closed-chain
formulation confronts three challenges: (1) the narrow workspace, (2) the unknown range of
the virtual revolute joint, and (3) the numerous singularities. In the current stage, the treatments
for these challenges were relegated to the regularization with large damping and weighting
factors and the compensation of extra thumb-related tasks, respectively. But these treatments
cannot guarantee the stability of the arm-thumb closed chain. Furthermore, although the large
damping and weighting factors refrained the arm-thumb closed chain from unexpected big
motions, it lowered the convergence speed as well, which is manifested by the relatively large
number of iterations listed in Table 4.2. We believe the success rate, accuracy, and efficiency
of IK-TFCC can be further improved after we thoroughly study the workspace, the virtual
revolute joint, and the singularities of the arm-thumb closed chain.

4.8 Conclusions
We proposed two inverse kinematics solutions to achieve fingertip grasps using an integrated
arm-hand system in this chapter. In the proposed approaches (HIK-ArmHand and IK-TFCC),
we applied a human-inspired Thumb-First strategy to narrow down the search space. More
importantly, we proposed two strategies to handle task conflicts among different fingers. In
our first approach (HIK-ArmHand), we proposed to construct a task hierarchy to manage con-
flicting requirements among different fingers using the null space projection technique and a
null space enlargement method. In our second approach (IK-TFCC), we proposed to formulate
the arm-thumb serial chain as a closed chain and attach a virtual revolute joint to the thumb’s
tip as the embodiment of the thumb’s functional redundancy. By selecting the thumb’s joints
including this virtual revolute joint as the active joints in the arm-thumb closed chain, we can
directly control the arm-thumb system’s self-motion and the thumb’s functional redundancy
without using the null space projection technique. This provides a new possibility to control
the self-motion of a robot manipulator. Simulation results manifest the superb performance of
the proposed approaches.

To further improve the performance of our second approach (IK-TFCC), our future works
include the following aspects. The workspace and the singularities of the arm-thumb closed
chain will be thoroughly studied in the future. The range of the virtual revolute joint on the
thumb’s tip with different arm configurations is going to be investigated as well.
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Table 4.2: Comparison between implemented methods

Objects Cup Apple

Methods
HIK

-ArmHand IK-TFCC
Original

DLS EDLM
HIK

-ArmHand IK-TFCC
Original

DLS EDLM

Success Rate (%) 70.77 96.96 13.41 42.37 80.58 95.33 10.35 21.76
Average Time (s) 0.206 0.212 0.139 0.121 0.241 0.253 0.126 0.155
Average Iterations 281.1 170.9 219.8 342.6 276.3 169.7 198.2 438.3

Objects Banana Cracker box

Methods
HIK

-ArmHand IK-TFCC
Original

DLS EDLM
HIK

-ArmHand IK-TFCC
Original

DLS EDLM

Success Rate (%) 77.48 96.77 12.93 44.68 80.18 94.49 9.98 21.91
Average Time (s) 0.243 0.335 0.127 0.126 0.239 0.320 0.139 0.163
Average Iterations 314.3 165.8 211.8 352.3 311.4 184.5 219.2 464.1

Objects Can Cleanser bottle

Methods
HIK

-ArmHand IK-TFCC
Original

DLS EDLM
HIK

-ArmHand IK-TFCC
Original

DLS EDLM

Success Rate (%) 81.08 94.72 9.60 11.37 79.24 96.90 11.06 28.80
Average Time (s) 0.270 0.612 0.153 0.199 0.206 0.329 0.146 0.149
Average Iterations 350.7 215.3 254.1 569.7 268.6 178.8 255.0 425.0

Objects Bowl Spoon

Methods
HIK

-ArmHand IK-TFCC
Original

DLS EDLM
HIK

-ArmHand IK-TFCC
Original

DLS EDLM

Success Rate (%) 72.70 95.96 12.08 50.67 78.05 96.54 13.67 50.55
Average Time (s) 0.228 0.383 0.112 0.109 0.364 0.371 0.110 0.109
Average Iterations 295.7 161.8 207.6 308.0 468.6 179.6 201.0 305.2

Objects Power drill Toy plane

Methods
HIK

-ArmHand IK-TFCC
Original

DLS EDLM
HIK

-ArmHand IK-TFCC
Original

DLS EDLM

Success Rate (%) 77.95 95.78 11.60 42.05 78.83 96.30 11.60 24.00
Average Time (s) 0.261 0.350 0.107 0.142 0.252 0.401 0.143 0.176
Average Iterations 337.7 186.7 196.2 403.9 326.5 186.6 273.5 501.6

Objects Lego part Marker

Methods
HIK

-ArmHand IK-TFCC
Original

DLS EDLM
HIK

-ArmHand IK-TFCC
Original

DLS EDLM

Success Rate (%) 77.03 97.06 13.06 42.99 78.05 96.46 13.67 50.55
Average Time (s) 0.232 0.297 0.103 0.122 0.368 0.351 0.113 0.108
Average Iterations 299.3 168.1 182.5 347.6 468.6 175.9 201.0 305.2
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Chapter 5

Integrated Solution of Grasp Planning
and Inverse Kinematics

5.1 Introduction

Today, intelligent robots are expected to have the ability to interact with the physical world in
which grasping objects is arguably the most important ability that enables such interactions.
Grasping is considered as an entry point into manipulation tasks. The general objective of
robotic grasping is to minimize (counterbalance) the effects of external forces and torques on
the target object (as much as possible) using the robot hand. Depending on how this objective
is achieved, robotic grasps can be roughly labeled as either power grasp or fingertip (precision)
grasp [1]. The focus of this work is on the fingertip grasp.

In robotic grasping, grasp planning is a fundamental topic whose goal is to find a suitable
grasp configuration (contact points + contact normals) on the object’s surface and the corre-
sponding joint configurations for the robotic arm-hand system. Conventional approaches treat
the robotic arm and hand as independent systems due to the complexity of the combined arm-
hand system. That is, only the hand is involved in the grasp planning process with an output
that includes at least one grasp configuration on the object’s surface, and the corresponding
hand configuration including the fingers’ joint configurations the hand palm’s pose (position
+ orientation). The obtained palm pose is then regarded as the target pose of the arm’s end-
effector whose inverse kinematics (IK) is solved to accommodate the hand. In the process of
grasp planning, there are two common approaches for controlling the hand. The first approach
involves positioning the hand at an initial pre-grasp pose, and closing the fingers gradually
until contacts with the object are established [2, 3, 4, 5, 6]. Although this approach does not
require solving the hand’s IK, it can hardly control the exact contact points and normals as
they are obtained after establishing the hand-object contacts. Since fingertip grasping requires
a more precise grasp configuration, the first approach is more suitable when power grasping is
preferred. The second approach involves synthesizing a suitable grasp configuration based on
a grasp quality metric [7, 8, 9, 10, 11], and then obtaining the corresponding hand configura-
tion using the hand’s IK solution [12, 13, 14]. Although the second approach can control the
hand-object contacts precisely, it is difficult to obtain the IK solution for the combined arm-
hand system due to its complexity. Although separate consideration of the arm and the hand
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allows working around the complexity of the arm-hand system, not considering the arm during
grasp planning often makes the planning process inefficient. Significant time and computa-
tion powers are spent on unreachable grasps [15]. To overcome this problem, it is desirable to
concurrently consider the arm and the hand.

The bulk of the literature focusing on concurrent consideration of the grasp and arm mo-
tion planning can be roughly divided into two groups of optimization-based approaches and
sampling-based approaches. The optimization-based approaches, as the name suggests, en-
capsulate the grasp planning and motion planning of the arm into an optimization problem.
Zimmermann et al. [16] proposed a multi-level optimization framework to simultaneously
plan the grasp and arm motion in the context of robotic assembly. Wang et al. [17] proposed
to integrate trajectory optimization with online grasp synthesis and selection, where online
learning techniques were applied to select the desired grasp configuration. Bae et al. [18] pro-
posed a control scheme to simultaneously achieve grasping, position control, and orientation
control of a target object. The final control signal is the superposition of the task signals with
different gains. Mavrakis et al. [19] proposed a solution for the grasp and subsequent manipu-
lation actions using a learning-based grasp planner. Gienger et al. [20] proposed to generate a
series of fluent approaching and grasping motions by combining the techniques for grasp opti-
mization, trajectory optimization, and attractor-based movement representation. Horowitz and
Burdick[21] integrated the problem of grasp planning and arm motion planning as a problem of
trajectory planning by viewing the grasp contact points as parts of the optimization variables.

The sampling-based approaches rely on sampling techniques (e.g., Rapidly-exploring Ran-
dom Trees (RRT) and probabilistic roadmap) for motion planning. Garcı́a et al. [22] aimed
at achieving similar grasping motions as humans using a robotic arm-hand system. To this
end, they captured human grasping motions and used synergies for mapping these motions to
the robotic hand. They used an RRT-based planner for subsequent motion planning. Huh et
al. [23] proposed a constrained RRT-based planning algorithm for grasp and transport tasks.
They proposed the concept of planning margin for grasp planning and an RRT-based planner
for motion planning. Haustein et al. [24] combined a bidirectional RRT-based motion plan-
ning approach with a hierarchical contact optimization process [25] to integrate the problem of
grasp and arm motion planning. Rosell et al. [26] proposed a probabilistic roadmap planner for
an arm-hand system to plan the approaching motion to achieve a grasp configuration, provided
the initial and final joint configuration of the arm-hand system.

In all of the above-mentioned solutions, the robotic arm and the hand are treated as kine-
matically separate systems, as such their IK is sequentially solved in essence. There are two
inherent limitations in the sequential IK solution process. First, the palm pose obtained from
the hand’s IK is not guaranteed to be feasible for the arm. Hence, it is common to obtain
multiple IK solutions for the hand to attain at least one feasible palm pose for the arm. This
approach increases the difficulty of solving the hand’s IK. Second, the error in the hand’s IK
solution is often exacerbated when the arm’s IK solution is obtained in a separate step. To ad-
dress these two issues and obtain a more efficient solution, we consider the robotic arm and the
hand together as one kinematically integrated system. With an integrated arm-hand system, we
aim to simultaneously achieve fingertip grasp planning and IK solution to increase the overall
efficiency of the approach. The current work is built on two previous important results includ-
ing an efficient method for grasp quality evaluation proposed in Chapter 3, and our second IK
solution for the integrated arm-hand system proposed in Chapter 4. To combine the process
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(a) (b)

Figure 5.1: 14 DOFs KUKA-Barrett arm-hand system. (a) KUKA LWR 4+ manipulator and
(b) Barrett hand

(a) (b)

Figure 5.2: (a) The proposed coarse-to-fine strategy: from individual contact points to dexter-
ous fingertip grasp configurations, and (b) the proposed method’s pipeline built up the coarse-
to-fine strategy.

of grasp planning and IK solution, we propose a “coarse-to-fine” strategy to decompose the
process of grasp planning into several phases. The coarse-to-fine strategy is used as guidance
to combine the steps for grasp planning and IK solution into an integrated procedure. By doing
so, the IK solution will include a grasp planning process with the reachability information of
the arm-hand system. This allows us to filter out infeasible grasp configurations and reduce
the grasp planning search space. In this way, the computational burden is dramatically reduced
and the overall efficiency of grasp planning and implementation is increased.

The rest of this paper is structured as follows. Section 5.2 explains the details of the pro-
posed approach. Section 5.3 presents numerical examples to demonstrate the efficiency of the
proposed approach in comparison with a brute-force approach. Finally, section 5.4 concludes
this work.
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(a) (b) (c) (d) (e)

Figure 5.3: The overall procedure of the proposed method. (a) Initial configuration, (b) Out-
come of the Contact Point Analysis phase: possible contact points (blue dots) with associated
contact normals (blue arrows), (c) Outcome of the Thumb Reaching phase, (d) Outcome of the
Initial Grasp Synthesis phase, and (e) Outcome of the Grasp Optimization phase.

5.2 Proposed Approach

5.2.1 Problem Formulation

The current method aims at solving the following problem. Let us assume that a complete
point cloud of a target object is available and the point cloud’s centroid is regarded as the
object’s center of mass. Given such a point cloud, the objective is to plan a suitable fingertip
grasp configuration (contact points + contact normals) on the object’s surface and to solve for
the inverse kinematics (IK) of the arm-hand system to achieve the planned grasp. We assume
the robotic arm and hand are kinematically integrated and the reachability information of the
integrated arm-hand system is a priori unknown. We also assume no initial grasp postures are
provided. We use a KUKA LWR 4+ manipulator and a Barrett hand as an example of the
arm-hand system to exemplify the working principles of our approach. We assume all joints
are controllable. As such, the KUKA-Barrett system is assumed to have 14 controllable DOFs
in total (see Fig. 5.1). The fingers are labelled as Finger 1, 2 and 3 as depicted in Fig. 5.1(b)
and their contact normal directions on the fingertips are denoted as ~ni, (i = 1,2,3). This work
regards Finger 1 as the thumb of Barrett hand.

5.2.2 Method Overview

The proposed approach is structured using a specifically designed “coarse-to-fine” strategy, in
which the process of grasp planning is decomposed into several steps, including individual
analysis of contact points, synthesis of parallel gripper-like grasps (referred to as “parallel
grasps” hereafter), and synthesis of dexterous fingertip grasps (see Fig. 5.2(a)). The IK solution
is integrated into these steps to obtain reachability information which is then used to filter out
infeasible grasps for reducing the computational burden of the algorithm. The corresponding
solution pipeline for the proposed approach is shown in Fig. 5.2(b), and the overall procedure
is listed in Algorithm 5.1 and illustrated in Fig. 5.3.

In this pipeline, assuming a target object’s point cloud (denoted as PC) is given, a suitable
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fingertip grasp configuration (denoted as ~gFG) and its corresponding IK solution of the arm-
hand system (denoted as ~qFG) are concurrently solved through the following four phases: (1)
Contact Point Analysis, (2) Thumb Reaching, (3) Initial Grasp Synthesis, and (4) Grasp Op-
timization. Starting from the point cloud (PC), the Contact Point Analysis phase extracts all
possible contact points and their corresponding contact normals (denoted as

{
~cpi

}
and

{
~cni

}
, for

i = 1, . . . , npc where npc is the number of possible contact points) as depicted in Fig. 5.3(b). For
each point, the potential for establishing a hand-object contact is individually evaluated. Fol-
lowing the Contact Point Analysis phase, the other three phases are iteratively conducted. In
the Thumb Reaching phase, the thumb leads the motion of the arm-hand system and attempts
to reach a contact point with its corresponding contact normal direction (see Fig. 5.3(c)). If the
thumb manages to reach a contact point, the Initial Grasp Synthesis phase begins. In this phase,
the dexterous robotic hand acts as a parallel gripper and attempts to achieve a parallel grasp
with the non-thumb fingers controlled together as a Virtual Finger (see Fig. 5.3(d)). If a parallel
grasp is successfully conducted, the Grasp Optimization phase starts. In this phase, numerous
dexterous fingertip grasps are synthesized based on the achieved parallel grasp. Considering
their feasibility for the arm-hand system, the synthesized grasps are then evaluated to find a
final suitable fingertip grasp (see Fig. 5.3(e)). The details of each phase are explained in the
following sections.

Algorithm 5.1: Overall Procedure
Input : PC
Output: ~gFG, ~qFG

1
[{
~cpi

}
,
{
~cni

}]
←Contact Point Analysis(PC), i = 1, . . . , npc// see Section 5.2.3

2 for ~cpi ∈
{
~cp1, . . . , ~cpnpc

}
, ~cni ∈

{
~cn1, . . . , ~cnnpc

}
do

3 Thumb Reaching// see Section 5.2.4
4 if unreachable then
5 Continue// skip remaining commands
6 end
7 Initial Grasp Synthesis// see Section 5.2.5
8 if unreachable then
9 Continue// skip remaining commands

10 end
11 Grasp Optimization// see Section 5.2.6
12 if quality is good then
13 Return ~g f , ~q f

14 end
15 end

5.2.3 Phase 1: Contact Point Analysis
In this section, we explain the details of the Contact Point Analysis phase and its steps as listed
in Algorithm 5.2. The goal of this phase is to obtain all possible contact points from those in
the object’s point cloud. The algorithm then evaluates each point for establishing a hand-object
contact individually.

To obtain possible contact points (
{
~cpi

}
, i = 1, . . . , npc) the algorithm first down samples

the point cloud using a grid box filter. The size of filer is determined based on the size of
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Figure 5.4: Definition of flatness of the region centered at a contact point: average distance
between neighbor points and the contact plane.

fingertips (denoted as r f ); the bigger the fingertips, the larger the size of the filter box. The
inward normal vectors at these points are regarded as their corresponding contact normals
(
{
~cni

}
, i = 1, . . . , npc). The results from this phase is illustrated in Fig. 5.3(b).

The algorithm then evaluates each selected contact point for establishing a hand-object
contact and assigns a quality score (denoted as si, i = 1, . . . , npc) to that point. The score
consists of two components:

1. A flatness score for each contact point (denoted as s fi , i = 1, . . . , npc) which measures
the flatness of the region being evaluated. s fi is calculated as the average distance be-
tween the points belonging to the same region and the contact plane. The contact plane
is defined using the contact point and its corresponding contact normal (see Fig. 5.4). A
smaller s fi value indicates a flatter region. After calculating s fi for all potential contact
points, they are sorted in an ascending order and their values are normalized to be be-
tween 1 and 0 (i.e., s fi ∈ [0, 1]). As such, a greater normalized value of s fi indicates a
flatter region.

2. A distance score for each contact point (denoted as sdi , i = 1, . . . , npc) which measures
the distance of the contact point to the object’s center of mass CM (estimated by the point
cloud’s centroid). A shorter distance represents a shorter distance between the center of a
grasp configuration (referred to as “grasp center” hereafter) and the CM. It is evident that
a shorter distance between the grasp center and CM results in less effect of the inertial
and gravitational force on the grasp [27]. After calculating sdi for all potential contact
points, they are sorted in an ascending order and normalized to values between 1 and
0 based (i.e., sdi ∈ [0, 1]). As such, a greater normalized value of sdi indicates a closer
contact point to CM.

The quality score for each point si will be calculated using a weighted sum of s fi and sdi ,

si = ω f s fi + ωd sdi , i = 1, . . . , npc (5.1)

where ω f and ωd are weighting factors. At the end of this phase, the possible contact points
with their associated contact normals are ranked based on their quality scores (si) as the most
suitable contact points.
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Algorithm 5.2: The Contact Point Analysis Phase
Input : PC (point cloud)
Output:

{
~cpi

}
,
{
~cni

}
, i = 1, . . . , npc

1 Set Fingertip Size: r f

2 ~pc ←Get Centroid(PC)
/* Step 1: Down-sampling */

3
{
~cpi

}
←Down Sample(PC, r f )

4
{
~cni

}
←Comp Contact Normals(

{
~cpi

}
, PC)

5 for ~cpi ∈
{
~cp1, . . . , ~cpnpc

}
do

/* Step 2: Compute Flatness Score */

6
{
~np

}
←Find Neighbor Points( ~cpi, PC)

7 s fi ←Comp Flatness Score( ~cpi, ~cni,
{
~np

}
)

/* Step 3: Compute Distance Score */

8 sdi = ‖ ~cpi − ~pc‖

9 end
/* Step 4: Normalization */

10
[{

s fi

}
,
{
sdi

}]
←Normalize(

{
s fi

}
,
{
sdi

}
)

/* Step 5: Compute Quality Scores */

11 si = ω f s fi + ωd sdi , i = 1, . . . , npc

/* Step 6: Rank Contact Points */

12
[{
~cpi

}
,
{
~cni

}]
←Rank(

{
~cpi

}
,
{
~cni

}
, {si})

5.2.4 Phase 2: Thumb Reaching
After obtaining potential contact points, the Thumb Reaching phase begins. The goal of this
phase is to check the reachability of the contact points and their associated contact normals for
the thumb. Essentially, each run of the Thumb Reaching phase is a coarse reachability test for a
group of grasps having the same contact point for the thumb. The contact point reached by the
thumb (referred to as “thumb-reached contact point” hereafter) is the seed point for the search
during the following two phases, i.e., the Initial Grasp Synthesis phase and the Grasp Optimiza-
tion phase. In these phases, all grasps with the same thumb-reached contact point are assessed.
If a contact point is unreachable for the thumb, the group of grasps having this point as their
contact point for the thumb will be considered unfeasible and will be discarded, reducing the
computational burden.

The Thumb Reaching phase contains three tasks (from the highest priority to the lowest
priority):

(1) The first task is to reach a contact point using the thumb. We refer to this task as “thumb
position IK” or tp.

(2) The second task is to achieve the corresponding contact normal with the thumb. We
refer to this task as “thumb orientation IK” or to.

(3) The third task is to align the palm with the major axis of the object. We refer to this
task as “palm orientation IK” or hpo. The object’s major axis (denoted as ~m) is the axis along
the longest dimension of the object. The alignment with the object’s major axis is a human-
inspired strategy. It has been shown that humans tend to align the palm with the object’s major
axis (if any) [28, 29, 30], and when the palm is aligned with the major axis of the object the
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grasp is significantly more robust than those without such an alignment [28]. In this phase,
the thumb-related tasks (tp and to) are accurately achieved while the palm orientation task is
conducted to achieve the best possible results.

The details of the Thumb Reaching phase is presented in Algorithm 5.3. The input argu-
ments include the initial configuration (~q0), the object’s major axis (~m), and all possible contact
points and the corresponding contact normals ( ~cpi and ~cni, i = 1, . . . , npc), respectively. The
output arguments include the Thumb-Reaching arm-hand configuration (denoted as ~qTR) and the
thumb-reached contact point and contact normal (denoted as ~cpTR and ~cnTR, respectively). The
algorithm uses the null space projection technique to maintain the task priorities and reduce the
task errors until either satisfactory error results are achieved or the maximum number of itera-
tions is reached. To do this, the IK solution is obtained for the serial chain composed of the arm
and the thumb, and the Jacobian matrices are formulated using the Denavit-Hartenberg (DH)
method. The joint movements for achieving the involved tasks (denoted as ∆~q j, j = tp, to, hpo)
are solved independently. The individual joint movements are then combined to obtain the
system joint movement (denoted as ∆~q) using successive null space projection.

In the Thumb Reaching phase, the position and orientation error (denoted as ~ep and ~eo,
respectively) are defined as,

~ep , ~pd − ~pc, ~eo , ϕ
~nc × ~nd

‖~nc × ~nd‖
(5.2)

where ~pc and ~pd are the current and desired position vector, ~nc and ~nd are the current and
desired direction vector, and ϕ = 2 · arctan2 (‖U‖,‖V‖) is the angle between ~nc and ~nd, in that
U = ‖~nd‖~nc − ‖~nc‖~nd and V = ‖~nd‖~nc + ‖~nc‖~nd [31][32]. In each run of the Thumb Reaching
phase, one potential contact point ( ~cpi, i = 1, . . . , npc) and its corresponding contact normals
( ~cni) are regarded as the thumb’s desired position and direction vector, and the object’s major
axis (~m) is regarded as the hand palm’s desired direction vector.

5.2.5 Phase 3: Initial Grasp Synthesis

If the thumb can reach a contact point and its corresponding contact normal, the Initial Grasp Syn-
thesis phase begins. Essentially, the Initial Grasp Synthesis phase is a finer reachability test
than the Thumb Reaching phase for the group of grasps that have the same contact point for
the thumb. The goal of this phase is to synthesize an initial grasp configuration using the
thumb-reached contact point and check if an initial (two-contact) grasp can be achieved. If no
grasp is feasible, a full fingertip grasp with all fingers for the selected thumb-reached contact
point will not be feasible either. In this case, this selected contact point and its corresponding
group of grasps will be discarded. The Thumb Reaching phase will initiate another search
iteration.

In this phase, Finger 2 and 3 are moved identically to each other to behave as one Virtual
Finger (VF). The VF is a functional concept that combines two or more fingers to apply force
in a similar direction [33]. The concept of VF was originally proposed in 1980s [34] and has
been studied and applied in many grasp applications [35, 36, 37, 38]. We construct a VF using
Finger 2 and 3. To this effect, we disabled the abduction motion of Finger 2 and 3 (i.e., the
3rd DOF of the Barrett hand as shown in Fig. 5.1(b)) to force the Barrett hand to behave as a
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Algorithm 5.3: The Thumb Reaching Phase
Input : ~q0,

{
~cpi

}
,
{
~cni

}
(i = 1, . . . , npc)

Output: ~qTR, ~cpTR, ~cnTR

1 Set parameters: kmax (max iteration number), εp, εo (IK error tolerances)
2 ~m←Get Object’s Major Axis
3 ~q = ~q0

4 for ~cpi ∈
{
~cp1, . . . , ~cpnpc

}
, ~cni ∈

{
~cn1, . . . , ~cnnpc

}
do

5 for k ∈ [1, kmax] do
/* Step 1: Check convergence */

6
[
~etp , ~eto , ~ehpo

]
←Get IK Errors// see (5.2)

7 if all tasks are achieved then
8 ~qTR = ~q, ~cpTR = ~cpi, ~cnTR = ~cni

9 Return ~qTR, ~cpTR, ~cnTR

10 end
/* Step 2: Solve IK */

11
[
Jtp , Jto , Jhpo

]
← Get Jacobian Matrix

12 ∆~q j ← Inverse Kinematics(~e j, J j), ( j = tp, to, hpo)
/* Step 3: Get null space projectors */

13 N j = I − J†j J j, ( j = tp, to)
/* Step 4: Get system joint movement */

14 ∆~q = ∆~qtp +Ntp∆~qto +NtpNto∆~qhpo

/* Step 5: Update configuration */

15 ~q = ~q + ∆~q
16 end
17 end

Figure 5.5: The virtual finger composed of Finger 2 and 3 of Barrett hand.
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parallel gripper. In addition, we used the middle points of the joint positions of Finger 2 and
3 as the VF’s joint positions as shown in Fig. 5.5. The joint motions of the VF are equally
mapped to Finger 2 and 3.

The Initial Grasp Synthesis phase contains two tasks (from the higher to the lower priority):
(1) The first task is to reach the contact point using the VF. We refer to this task as the “VF
position IK” task or vp. (2) The second task is to achieve the corresponding contact normal
using the VF. We refer to this task as the “VF orientation IK” task or vo. The VF contact point
(denoted as ~cpv) is considered to be at the intersection of the extended thumb-reached contact
normal ( ~cnTR) and the opposite side of the object. The VF contact normal (denoted as ~cnv) is
the same as ~cnTR except in opposite direction (i.e., ~cnv = − ~cnTR).

The details of the Initial Grasp Synthesis phase are presented in Algorithm 5.4. The input
arguments include the object’s point cloud (PC), the Thumb-Reaching arm-hand configuration
(~qTR), and the thumb-reached contact point and contact normal ( ~cpTR and ~cnTR). The output
argument is the arm-hand configuration that achieves the initial grasp configuration (referred
to as “Initial-Grasping arm-hand configuration” hereafter denoted as ~qIG).

The algorithm repeats until the two involved tasks are achieved or the maximum number
of iterations is reached. During the IK solution, the arm-thumb serial chain is controlled as a
closed chain, and a virtual revolute joint is attached to the thumb’s tip to embody the thumb’s
functional redundancy. This novel approach was proposed in Chapter 4. The Jacobian matrix of
the arm-thumb closed chain (denoted as Jcc) is a screw-based body Jacobian and is formulated
following the procedure presented in [39]. Please refer to Chapter 4 for the detailed formulation
of Jcc and the IK of the hybrid parallel-serial mechanism (i.e., the arm-thumb closed chain + the
VF). Note that a larger error tolerance should be used in this phase since the VF is a conceptual
mechanism, and its contact point and contact normal are estimated from the thumb-reached
contact point and contact normal.

Algorithm 5.4: The Initial Grasp Synthesis Phase
Input : PC, ~qTR, ~cpTR, ~cnTR

Output: ~qIG

1 Set parameters: kmax (max iteration number), εp, εo (IK error tolerances)
2 ~q = ~qTR

/* Find VF’s contact point */

3 ~cpv ←Find VF’s Contact Point(PC, ~cpTR, ~cnTR)
4 ~cnv = − ~cnTR

5 for k ∈ [1, kmax] do
/* Step 1: Check convergence */

6 if all tasks are achieved then
7 ~qIG = ~q, Return ~qIG

8 end
/* Step 2: Jacobian formulation */

9 Jcc ←Get Arm-Thumb Closed Chain’s Jacobian Matrix(~q)// see Chapter 4
/* Step 3: Inverse kinematics */

10 ∆~q←Inverse Kinematics(Jcc)// see Chapter 4
/* Step 4: Update configuration */

11 ~q = ~q + ∆~q
12 end
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5.2.6 Phase 4: Grasp Optimization
If an initial grasp is successfully achieved by the arm-hand system, the Grasp Optimization
phase begins. In this phase, the abduction motion of Barrett hand (i.e., the 3rd DOF shown in
Fig. 5.1(b)) is enabled, and Finger 2 and 3 move independently to allow the Barrett hand to
regain its dexterous motions for fingertip grasps. The goal of the Grasp Optimization phase is
to synthesize dexterous fingertip grasps based on the thumb-reached contact point and obtain a
reachable grasp with satisfactory quality. In essence, the Grasp Optimization phase acts as the
finest assessment of the reachability and quality of the grasps sharing the same thumb contact
point. As a consequence, the Grasp Optimization phase requires the most computational power
among all phases. If no suitable grasp is found, the Thumb Reaching phase will start again to
initiate another search iteration. The Grasp Optimization phase contains four stages that in-
clude: (1) Initial Grasp Evaluation, (2) Neighboring Grasp Synthesis, (3) Grasp Qualification,
and (4) Reachability Test. The details of these stages are presented in what follows.

In the beginning, the Initial Grasp Evaluation stage is conducted to evaluate the quality of
the initial grasp configuration (denoted as ~gIG). The initial grasp, ~gIG is composed of the thumb-
reached contact point and contact normal ( ~cpTR and ~cnTR), and the points on the object’s surface
closest to the current fingertip locations of the Initial-Grasping arm-hand configuration (~qIG)
and their corresponding contact normals. If the initial grasp’s quality is greater than or equal
to the preset quality threshold (denoted as tQ), the remaining stages will be skipped and ~gIG and
~qIG are returned as the final output.

To assess the quality of a grasp configuration a scaled version of Q-distance [40] is used.
Q-distance is essentially an object-based quality metric whose definition only considers the
contact points and their corresponding contact normals on the object’s surface without the
consideration of the reachability of the arm-hand system. To overcome this limitation, we
scale the value of Q-distance to include the reachability information as follows. Let us denote
the scaled and unscaled value of Q-distance for a grasp configuration as Qscaled and Qunscaled,
respectively. Qscaled is obtained by scaling Qunscaled with the IK solution’s accuracy of the grasp
configuration, i.e.,

Qscaled =

∑nc
i=1

(
ωip + ωio

)
2nc

× Qunscaled (5.3a)

ωip = 1 −
eip

εQ
p
, ωio = 1 −

eio

εQ
o

i = 1, . . . , nc (5.3b)

where Qunscaled is obtained using the approach presented in Chapter 3, eip and eio (i = 1, . . . , nc)
are the position and orientation error of the i-th contact point and contact normal, nc is the num-
ber of contact points in a grasp configuration, and εQ

p and εQ
o are the preset error threshold for

position and orientation, respectively. When the errors (eip and eio) are less than the thresholds
(εQ

p and εQ
o ), the weighting factors (ωip andωio) are positive indicating the corresponding contact

point and contact normal positively contribute to the grasp quality. Otherwise, the infeasible
contact point and contact normal negatively contribute to the grasp quality.

If the initial grasp’s quality is unsatisfactory, the Neighboring Grasp Synthesis stage begins
to synthesize numerous other grasps nearby the initial grasp (~gIG). The neighboring grasps are
defined as the grasp configurations having the same thumb-reached contact point but different
nearby contact points for other fingers (see Fig. 5.6 as an example). In this stage, the contact
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Figure 5.6: Neighbor grasps of the initial grasp. The red dot (arrow) denotes the thumb’s
contact point (normal). The blue dots (arrows) denote the possible contact points (normals) for
other fingers.

points for other fingers are selected such that their corresponding contact normals form an ob-
tuse angle with the thumb-reached contact normal ( ~cnTR). Based on their distances to the current
fingertip positions of Finger 2 and 3, these points and their corresponding contact normals are
regarded as the candidate grasp configurations for Finger 2 or 3, and their combinations with
the thumb-reached contact point and contact normal ( ~cpTR and ~cnTR) constitute all neighboring
grasps of the initial grasp (denoted as

{
~gi
}
, i = 1, . . . , nng where nng is the number of neigh-

boring grasps). Before entering the next stage, the qualities of all neighboring grasps (
{
~gi
}
) are

assessed and a tentative quality score is assigned to each grasp (denoted as {tqi}, i = 1, . . . , nng).
The score includes two components,

1. A distance score (denoted as tqdi) that measures the distance between the grasp center and
the object’s center of mass (CM). The grasp center is the center point of the contact points
in a grasp configuration (denoted as ~gi), and the object’s CM is estimated using the point
cloud’s centroid. After calculating the grasp-center-to-CM distance for all neighboring
grasps, they are sorted in ascending order and normalized to values between 1 and 0, or
tqdi . As such a greater value of tqdi indicates a closer grasp center to the object’s CM.

2. An area score (denoted as tqai) that measures the grasp triangle’s area. It has been shown
that in a 3-contact grasp, a larger triangle formed by the contact points is likely to be more
robust [41, 42]. After calculating the grasp triangle’s area for all neighboring grasps,
they are sorted in descending order and normalized to values between 1 and 0, or tqai .
A greater value of tqai indicates a larger area of the grasp triangle hence, a more robust
grasp.

tqi is calculated as a weighted sum of tqdi and tqai ,

tqi = ωdtqdi + ωatqai , i = 1, . . . , nng (5.4)

whereωd andωa are weighting factors. Before entering the following stages,
{
~gi
}

(i = 1, . . . , nng)
is ranked based on {tqi} to provide a search direction for the following stages such that the
grasps with higher tentative quality scores would be tested first. Note that the selection of



102 Chapter 5. Integrated Solution of Grasp Planning and Inverse Kinematics

weighting factors (ωd and ωa) is relatively trivial since {tqi} only provides a search direction
and the grasp quality is evaluated by a scaled version of Q-distance as per (5.3).

After synthesizing all neighboring grasps, the Grasp Qualification stage is conducted to
decide whether a grasp configuration is qualified for performing reachability assessment. We
propose four Qualification Tests (QTs) to screen neighboring grasps, and only those grasps
that pass all QTs are qualified for performing the following reachability assessment. The QTs
will seep us through the process since it is very time-consuming to assess the reachability for
all neighboring grasps. The four QTs are sequentially performed and are listed in the order
conducted in the following,

QT.1 Rank test. The goal of QT.1 is to check if a grasp matrix (G6×3nc) has full row rank (i.e.,
rank (G) = 6) since this is a necessary condition for a grasp being force-closure. If the
result of QT.1 is positive, QT.2 would be conducted. Otherwise, a grasp configuration
would be labeled as “unqualified” and discarded.

QT.2 Force-closure test. The goal of QT.2 is to check if a grasp configuration is force-closure.
A grasp is force-closure if and only if the corresponding grasp matrix has full row rank
and its null space (denoted as Null (G)) is not empty [43]. According to the null space’s
definition, Null (G) is non-empty if there exists at least one set of forces applied through
the grasp configuration that generates a zero wrench while satisfying the Coulomb fric-
tion law. We formulated the problem of force-closure determination as a second-order
cone programming (SOCP) feasibility problem, i.e.,

find ~f =
[
~f >1 , . . . , ~f

>
nc

]>
(5.5a)

s.t. ‖G ~f ‖ ≤ εw (5.5b)

~fi =
[
fi1 , fi2 , fin

]> , √
f 2
i1

+ f 2
i2
≤ µ fin (5.5c)

fin ≥ ε f , i = 1, . . . , nc (5.5d)

where ~f is an augmented force vector constructed by stacking all forces applied to the
contact points ( ~fi, i = 1, . . . , nc), (5.5b) is the constraint for generating a negligible
wrench vector in that εw is a small scalar (e.g., 1 × 10−9), (5.5c) is the Coulomb fric-
tion constraint in that µ is the tangential friction coefficient, and finally (5.5d) limits the
lower bound of the normal force components to avoid the trivial solution fin = 0 for
G ~f = ~06×1 in that ε f is a small scalar (e.g., 1 × 10−3). If the result of QT.2 is positive,
QT.3 will be conducted. Otherwise, a grasp configuration is labeled as “unqualified” and
discarded.

QT.3 Upper bound test. The goal of QT.3 is to check if the upper bound of Q-distance (denoted
as uQ) is greater than or equal to the preset quality threshold (tQ). uQ is obtained as
follows. As derived in Chapter 3, the unscaled value of Q-distance (Qunscaled) is obtained

as the smaller value between
√

2
(
d1 f + d1t

)
and

√
2
(
d2 f + d2t

)
, namely,

Qunscaled ≤

√
2
(
d1 f + d1t

)
Qunscaled ≤

√
2
(
d2 f + d2t

) (5.6)
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Furthermore, a grasp configuration is deemed to be force-closure after passing QT.2,
which means the wrench space origin is inside the grasp wrench space (i.e., ~06×1 ∈ WL∞).
Since WL∞ =

⊕nc

i=1 Fi ×
⊕nc

i=1 Ti, we can obtain

~06×1 ∈ WL∞ ⇐⇒
~06×1 ∈

 nc⊕
i=1

Fi ×

nc⊕
i=1

Ti

⇐⇒
~03×1 ∈

⊕nc

i=1 Fi

~03×1 ∈
⊕nc

i=1 Ti
(5.7)

Thus, the value of d1t and d2 f are theoretically zero,

d1t = min
~t1∈

⊕nc
i=1 Ti

1
2
~t>1~t1 = 0 (5.8)

d2 f = min
~f2∈

⊕nc
i=1 Fi

1
2
~f >2 ~f2 = 0 (5.9)

After substituting (5.8) and (5.9) into (5.6), we have,Qunscaled ≤
√

2d1 f

Qunscaled ≤
√

2d2t
(5.10)

Therefore,
√

2d1 f or
√

2d2t can both be regarded as a tight upper bound of Qunscaled (uQ).
If the result of QT.3 is positive (i.e., uQ ≥ tQ), QT.4 would be conducted. Otherwise,
there is no need to calculate the unscaled value of Q-distance (Qunscaled), and a grasp
configuration would be labeled as “unqualified’ and discarded.

QT.4 Q-distance test. The goal of QT.4 is to check if the unscaled value of Q-distance
(Qunscaled) is greater than or equal to the preset quality threshold (tQ). The value of
Qunscaled is calculated using our work proposed in Chapter 3. One can obtain Qunscaled ≥

Qscaled since Qunscaled is scaled to obtain Qscaled as per (5.3) in the following stage. That
is, Qunscaled is an upper bound of Qscaled. Thus, if Qunscaled < tQ, Qscaled must be less than
tQ, and there is no need to assess the reachability of this grasp configuration. If the result
of QT.4 is positive, the final stage of the Reachability Test will be conducted.

If a grasp configuration passes all QTs, the Reachability Test stage is conducted to assess
the reachability of the grasp by solving the arm-hand system’s IK. The tasks involved in the
Reachability Test stage are: (1) maintaining the thumb-reached contact point and contact nor-
mal ( ~cpTR and ~cnTR ), and (2) achieving the designated contact points and contact normals for
other fingers (Finger 2 and 3 of the Barrett hand). To achieve these tasks, we use the results
from our previous work proposed in Chapter 4. Specifically, the arm-thumb serial chain is for-
mulated as a closed chain, and a virtual revolute joint is attached at the thumb’s tip to embody
the thumb’s functional redundancy. The arm-hand closed chain and other fingers are controlled
separately such that the arm-hand system is used as a hybrid parallel-serial mechanism. Please
refer to [44] for more details on solving the IK of this hybrid system. Next, the accuracy of the
IK solution is used to scale the value of Q-distance (i.e., Qunscaled) to obtain the quality of this
grasp (i.e., Qscaled) as per (5.3). If Qscaled is greater than or equal to the preset quality thresh-
old (tQ), the corresponding grasp configuration and IK solution would be returned as the final
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output. Otherwise, the Grasp Qualification stage would be conducted again to find another
qualified grasp for reachability assessment.

The details of the Grasp Optimization phase is presented in Algorithm 5.5. The input ar-
guments include the Initial-Grasping configuration (~qIG), the thumb-reached contact point and
contact normal ( ~cpTR and ~cnTR), respectively, all possible contact points and contact normals
found in the Contact Point Analysis phase (

{
~cpi

}
and

{
~cni

}
, for i = 1, . . . , nc), and the pre-

set threshold for grasp quality (tQ). The output arguments include a suitable fingertip grasp
configuration (~gFG) and its corresponding IK solution of the arm-hand system (~qFG).

Algorithm 5.5: The Grasp Optimization Phase
Input : ~qIG, ~cpTR, ~cnTR,

{
~cpi

}
,
{
~cni

}
(i = 1, . . . , nc), tQ

Output: ~gFG, ~qFG

/* Stage 1: Initial Grasp Evaluation */

1 ~gIG ←Find Initial Grasp Config(~qIG, ~cpTR, ~cnTR

{
~cpi

}
,
{
~cni

}
)

2 QIG
scaled ←Quality Evaluation(~gIG)// see (5.3)

3 if QIG
scaled ≥ tQ then

4 ~gFG = ~gIG, ~qFG = ~qIG

5 Return ~gFG, ~qFG

6 end
/* Stage 2: Neighbor Grasp Synthesis */

7
{
~g j

}
←Find Neighbor Grasps(~qIG, ~cpTR, ~cnTR,

{
~cpi

}
,
{
~cni

}
), j = 1, . . . , nng

8 for ~g j ∈ [~g1, . . . , ~gnng] do
/* Stage 3: Grasp Qualification */

9 Qualification Tests(~g j)// QT.1--QT.4
10 if Grasp is qualified then

/* Stage 4: Reachability Test */

11
[
~q j, ~ep, ~eo

]
←Arm-Hand’s IK(~g j, ~qIG)// see Chapter 4

12 Q j
scaled ←Quality Evaluation(~g j, ~ep, ~eo)// see (5.3)

13 if Q j
scaled ≥ tQ then

14 ~gFG = ~g j, ~qFG = ~q j

15 Return ~gFG, ~qFG

16 end
17 end
18 end

5.3 Numerical Examples

In this section, we present some numerical examples to show the efficiency of the proposed
approach, in comparison with a brute-force approach which sequentially solves the problem of
grasp planning and IK solution. We tested the proposed approach with four objects including an
apple, a speaker box, a wine bottle, and a cup (see Fig. 5.7). Each object was placed at several
different locations on a table with the upright pose (see Fig. 5.8). The initial configuration of
the arm-hand system was set as shown in Fig. 5.8 in each run.
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(a) Apple (b) Speaker (c) Bottle (d) Cup

Figure 5.7: Tested objects

5.3.1 Implementation Details

We implemented the proposed method in MATLAB and demonstrated it in VREP [45]. All
numerical tests were conducted using MATLAB r2019b on a laptop computer powered by an
i5-5200U CPU @2.20GHz with 12GB RAM. The force-closure test as per (5.5) in QT.2 was
performed using “SeDuMi” algorithm [46] implemented with “YALMIP” [47]. For the calcu-
lation of Q-distance, our quality evaluation method [48] was employed, where the calculation
of d1t and d2 f were also done using “SeDuMi” algorithm [46] implemented with “YALMIP”
[47] in MATLAB. The calculation of d1 f and d2t were done using MATLAB built-in function
“fmincon” implemented with “YALMIP”. SeDuMi and fmincon were used with their default
settings in “YALMIP”. For solving the IK of the integrated arm-hand system, our second IK al-
gorithm (IK-TFCC) proposed in Chapter 4 was employed where an error damped Levenberg-
Marquardt method [49] (referred to as “EDLM”) was implemented to solve the IK of each
involved task.

The parameters involved in the proposed approach were set as in Table 5.1. In the Contact
Point Analysis phase, the fingertip size was set to 20mm for obtaining possible contact points.
The weight for the flatness score and distance score were set as 2 and 1, respectively, when
evaluating the potentials of individual contact points for establishing hand-object contact. In
the Thumb Reaching phase, the maximum iteration number was set to 100, and the error toler-
ances for position and orientation were set to 5mm and 5◦, respectively, during the IK solution.
The IK of involved tasks was solved using EDLM [49] in which the error weighting matrix
was set to be a diagonal matrix and the bias matrix used when damping the joints was set to be
a diagonal matrix with all diagonal entries being 1× 10−6. In the Initial Grasp Synthesis phase,
the maximum iteration number was 300, and the error tolerances for position and orientation
were 10mm and 10◦, respectively. The weighting factor was set to be 10 for the virtual revolute
joint and 1 for other joints during the IK solution. The IK of the arm-thumb closed chain was
solved using EDLM [49] in which the error weighting matrix was set to be a diagonal matrix
and the bias matrix was set as a diagonal matrix with all diagonal entries being 2 × 105. In
the Grasp Optimization phase, the parameters involved in the IK solution were set the same as
those used in the Initial Grasp Synthesis phase. The weight for the distance score and the area
score were both 1 when calculating the tentative grasp quality for the neighboring grasps of
the initial grasp configuration. The friction coefficient (µ) was set to 0.5 when calculating the
value of Q-distance. The error thresholds for the position and orientation were set to 20mm
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(a) An apple at different locations on the table (b) A speaker at different locations on the table

(c) A wine bottle at different locations on the
table (d) A cup at different locations on the table

Figure 5.8: The simulation set-up for the tested objects
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Table 5.1: Parameter Settings in the Proposed Approach

Phase 1: Contact Point Analysis
Fingertip size
(r f ): 20mm

Weight for flatness
scores (ω f ): 2

Weight for distance
scores (ωd): 1

Phase 2: Thumb Reaching
Maximum iteration
numbers (kmax): 100

Position error
tolerance (εp): 5mm

Orientation error
tolerance (εo): 5◦

Bias matrix
(W̄N): 1 × 10−6 × I

Error weighting
matrix (WE): I

Phase 3: Initial Grasp Synthesis
Maximum iteration
numbers (kmax): 300

Position error
tolerance (εp): 10mm

Orientation error
tolerance (εo): 10◦

Weighting factor for the
virtual revolute joint: 10

Bias matrix
(W̄N): 2 × 105 × I

Error weighting
matrix (WE): I

Phase 4: Grasp Optimization
Maximum iteration
numbers (kmax): 300

Position error
tolerance (εp): 5mm

Orientation error
tolerance (εo): 5◦

Weighting factor for the
virtual revolute joint: 10

Bias matrix
(W̄N): 2 × 105 × I

Error weighting
matrix (WE): I

Friction coefficient (µ): 0.5
Position error

threshold (εQ
p): 20mm

Orientation error
threshold (εQ

o ): 26.5◦

Weight for disance
scores (ωd): 1

Weight for area
scores (ωa): 1

Quality threshold
(tQ): 2.5 × 10−4

and 26.5◦, respectively, when scaling the value of Q-distance to obtain the quality of a grasp.
The quality threshold was set to 2.5 × 10−4 for determining whether a grasp configuration and
its corresponding arm-hand configuration were satisfactory.

5.3.2 Compared approach
The proposed approach was compared with a brute-force approach (see Algorithm 5.6) to show
its efficiency. For a partial comparison, the brute-force approach was also implemented using
our previously proposed methods about grasp quality evaluation proposed in Chapter 3 and our
second IK algorithm (IK-TFCC) proposed in Chapter 4. The brute-force approach sequentially
solves the problems of grasp configuration synthesis, grasp quality evaluation, and IK of the
integrated arm-hand system.

The details of the implemented brute-force approach are listed in Algorithm 5.6. First, we
assume a point cloud of the target object is (PC) is given, and all possible contact points and
contact normals on the object’s surface (

{
~cpi

}
and

{
~cni

}
, i = 1, . . . , npc) are extracted according

to the fingertip size (r f ) using the same method described before. In the second step, all possible
grasp configurations are synthesized from

{
~cpi

}
and

{
~cni

}
. There are npc × (npc − 1) × (npc − 2)

candidate grasps in total since one point can be regarded as the contact point for different
fingers. Then, the remaining steps are iteratively conducted until a suitable fingertip grasp
configuration (~gFG) and the joint configuration of the arm-hand system (~qFG) are obtained. In
the third and fourth steps, the force-closure test as per (5.5) and Q-distance calculation [48] are
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Table 5.2: Parameter settings in the brute-force approach

Step 1: Contact Point Extraction
Fingertip size (r f ): 20mm

Step 3&4: Force-Closure Test & Q-Distance Calculation
Friction coefficient

(µ): 0.5
Quality Threshold
(tQ): 2.5 × 10−4

Step 5: IK solution
Maximum iteration
number (kmax): 600

Position error
tolerance (εp): 5mm

Orientation error
tolerance (εo): 5◦

Bias matrix
(W̄N): 2 × 105 × I

Error weighting
matrix (WE): I

Weighting factor for the
virtual revolute joint: 10

Step 6: Grasp Quality Evaluation
Quality threshold
(tQ): 2.5 × 10−4

Position error threshold
(εQ

p ): 20mm
Orientation error threshold

(εQ
o ): 26.5◦

performed. The process of the IK solution is carried out in the fifth step for those force-closure
grasp configurations whose Q-distance values are greater than or equal to the quality threshold
(tQ). In the sixth step, the accuracy of the IK solution is used to scale the Q-distance value to
obtain the grasp quality (Qscaled). The algorithm is terminated if Qscaled ≥ tQ. The parameters
involved in the brute-force approach were set as listed in Table 5.2.

5.3.3 Results

The numerical results are summarized in Table 5.3 and 5.4. As noticed, our proposed approach
outperforms the brute-force approach in terms of computational efficiency. This improved ef-
ficiency stems from the following reasons that constitute the core contributions of our work.
First, a tremendous amount of infeasible grasps were discarded using a few failed reachability
tests in the Thumb Reaching phase and the Initial Grasp Synthesis phase. Second, the initial
grasp achieved in the Initial Grasp Synthesis phase could be returned as the solution if its qual-
ity was satisfactory. In this case, there is no need to conduct the Grasp Optimization phase,
the most time-consuming phase of the proposed approach. Third, the search directions were
provided in the proposed approach using individual point analysis in the Contact Point Anal-
ysis phase and the tentative quality evaluation in the Grasp Optimization phase such that the
grasps with higher potentials were evaluated first. This accelerated the search process to some
extent. Fourth, the four Qualification Tests performed in the Grasp Optimization phase filtered
out a large number of unqualified grasps to minimize the computational burden of reachability
assessment. In comparison, the brute-force approach was not as efficient in filtering out un-
suitable grasps except for a few that were identified using the force-closure test and Q-distance
values. It is clear that the brute-force approach requires spending significant computational
power on evaluating grasps that render to be unfeasible in the end. By identifying and elim-
inating unfeasible grasp early on, we were able to recoup computation time and enhance the
efficiency of our algorithm. It is important to note that all successful grasps obtained using our
approach or the brute-force have similar if not identical grasp quality. This shows that our pro-
posed elimination approach does not affect the effectiveness of the algorithm in terms of finding
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Algorithm 5.6: The Brute-Force Approach
Input : PC
Output: ~gFG, ~qFG

/* Step 1: Contact Point Extraction */

1
{
~cpi

}
←Down Sample(PC, r f ), i = 1, . . . , npc

2
{
~cni

}
←Comp Contact Normals(

{
~cpi

}
, PC)

/* Step 2: Fingertip Grasp Synthesis */

3
{
~g j

}
←Synthesize Fingertip Grasps(

{
~cpi

}
,
{
~cni

}
), j = 1, . . . , ng

4 for ~g j ∈ [~g1, . . . , ~gng] do
/* Step 3: Force-closure test */

5 if ~g j is not force-closure then
6 Continue// skip remaining commands
7 end

/* Step 4: Q-distance calculation */
8 Qunscaled ←Comp Q-distance(~g j)// see Chapter 3
9 if Qunscaled < tQ then

10 Continue
11 end

/* Step 5: IK Solution */

12
[
~q j, ~e j

]
←Inverse Kinematics(~g j)// see Chapter 4

/* Step 6: Grasp Quality Evaluation */

13 Qscaled ←Quality Evaluation(Qunscaled, ~e j)// see (5.3)
14 if Qscaled ≥ tQ then
15 ~gFG = ~g j, ~qFG = ~q j

16 Return ~gFG, ~qFG

17 end
18 end

Table 5.3: Results of the Proposed Approach

Objects
success #

total #
Average comp. time
of success cases (s)

Apple 5/5 156.26
Speaker 4/5 148.46
Bottle 5/5 839.86
Cup 5/5 255.74

Table 5.4: Results of the Brute-Force Approach

Objects
success #

total #
Average comp. time
of success cases (s)

Apple 5/5 28652.12
Speaker 5/5 5757.03
Bottle 5/5 40409.41
Cup 3/5 86201.61
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a successful grasp. Arguably, the grasp configuration obtained using our approach tends to be
more human-like as it follows the human natural tendency for using a leading thumb. Ta-
bles 5.3 and 5.4 compare the results for similar grasp examples obtained using our proposed
approach and the brute-force approach. The results are visually demonstrated in Fig. 5.9. Note
that the final results in Fig. 5.9 are expected to vary with different initial configurations since
the objective of our current is to find a grasp configuration and the corresponding IK solution
without additional constraints.

5.3.4 Limitations and Future Works

Our numerical tests revealed some of the limitations and future enhancements needed in our
proposed approach. Collision detection is not currently used during the IK solution. As a
consequence, the final arm-hand configuration cannot be guaranteed to be collision-free (see
Fig. 5.9(g) as an example). Since the compared brute-force approach was built using the same
IK algorithm, it suffered from the same issue (see Fig. 5.9(h) as an example).

To improve the proposed approach, our future work should include the following works.
Collision detection needs to be added to the IK solution to guarantee collision-free joint con-
figurations during the search of the configuration space. This will eliminate robot-environment
collisions and hand-object penetrations at the expense of additional computational burden. Mo-
tion planning should also be included in the IK solution to generate a smooth trajectory for the
arm-hand system. To further improve the efficiency of the algorithm, a prediction module can
be added to the Grasp Optimization phase in order to predict the reachability of a grasp config-
uration before solving the arm-hand system’s IK. By doing so, one can exploit the reachability
information revealed during testing an unfeasible grasp to be used in other phases. To this end,
the representation and the prediction of the reachability of integrated arm-hand systems need
to be studied.

5.4 Conclusions

In conclusion, we proposed a unified solution for the grasp planning and inverse kinematics
(IK) problems of integrated arm-hand systems with much-improved efficiency. The proposed
solution did not use reachability information. To achieve the results, we designed a coarse-to-
fine strategy to divide the grasp planning process into several phases and incorporated the IK
solution with grasp planning using this coarse-to-fine strategy. This allowed us to lessen the
difficulties of the IK solution of integrated arm-hand systems, and, more importantly, to use
the reachability information revealed during the grasp planning phase. By utilizing the discov-
ered reachability information, a large number of unfeasible grasp candidates can be eliminated
from the search space which in turn will reduce the computational burden substantially. To
support this claim, numerical examples demonstrated the efficiency of the proposed approach
in comparison with a brute-force approach that sequentially solved similar grasp planning and
IK problems.

Future works include adding collision detection into the IK solution to avoid hand-object
penetration and obstacle collision, including motion planning, and adding a prediction module
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(a) Apple: proposed approach (b) Apple: brute-force approach

(c) Speaker: proposed approach (d) Speaker: brute-force approach

(e) Cup: proposed approach (f) Cup: brute-force approach

(g) Bottle: proposed approach (collision hap-
pened)

(h) Bottle: brute-force approach (collision hap-
pened)

Figure 5.9: Grasp examples found by the proposed approach and the brute-force approach
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to the Grasp Optimization phase to predict the reachability of a grasp configuration before
solving for the IK solution of the arm-hand system.
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Chapter 6

Conclusion

In this chapter, we present the summary of contributions in this thesis and propose several
directions of research which may benefit future researchers.

6.1 Summary of Contributions

In this thesis, we investigated several topics related to autonomous fingertip grasping, including
hand-eye calibration for stereo cameras, efficient grasp quality evaluation, inverse kinematics
(IK) of robotic arm-hand systems, and simultaneous achievement of grasp planning and IK
solution.

In Chapter 2, we studied the problem of hand-eye calibration for stereo cameras and found
out that accurate calibration can be achieved by formulating the hand-eye calibration problem
as a point set matching problem. We proposed two solutions based on the point set matching
formulation. Our first solution (“GD-SE(3)”) is a gradient descent-based solution working on
the Special Euclidean group SE(3). Although GD-SE(3) offered better calibration results than
conventional hand-eye calibration methods, it requires longer computational time than other
implemented algorithms due to the integrated estimation of translation and rotation. To in-
crease the computational efficiency without sacrificing the calibration accuracy, we proposed
our second solution (“HI-SO(3)R3”) working on manifold SO(3)×R3 with a decoupling fea-
ture between the rotational and translational estimation error. Experiments showed that better
calibration results were obtained by the proposed solutions, while our second solution (“HI-
SO(3)R3”) offered a fast convergence speed in addition.

In Chapter 3, we studied the problem of grasp quality evaluation and proposed a new
method to calculate a popular grasp quality metric (often referred to as Q-distance). Geo-
metrically, Q-distance is defined to be the minimum distance between the wrench space origin
(~06×1) and the boundary of grasp wrench space (GWS). The core challenge associated with
Q-distance is to determine the boundary of GWS. To address this challenge, we mathemati-
cally derived the exact expression of the boundary of GWS by following geometric principles.
By doing so, the value of Q-distance was efficiently calculated using the typical least-square
approach and off-the-shelf optimization algorithms.

In Chapter 4, we studied the inverse kinematics (IK) of robotic arm-hand systems. We
regarded the robotic arm and hand as an integrated system to avoid the inherent disadvantages
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when solving the IK of the arm-hand system in sequence. We proposed a human-inspired
Thumb-First strategy which significantly reduced the IK search space. Base on the Thumb-
First strategy, we presented two IK solutions for integrated arm-hand systems. Our first solution
constructed a task hierarchy to handle task conflicts among different fingers with the null space
projection technique and a null space enlargement method. Our second solution formulated the
arm-thumb serial chain as a closed chain. In the arm-thumb closed chain, a virtual revolute joint
was attached at the thumb’s tip to embody the thumb’s functional redundancy. By doing so, the
self-motion of the arm-thumb system and the thumb’s functional redundancy can be directly
controlled, which provides a new possibility to exploit the null space of a robot manipulator.
Comprehensive numerical tests manifested the advantages of the two proposed solutions.

We noticed that it is inefficient to solve the problems of grasp planning and inverse kinemat-
ics (IK) in sequence after investigating the related topics in the previous chapters. Intending
to increase the overall efficiency, in Chapter 5, we proposed an integrated approach for the
problems of grasp planning and inverse kinematics (IK) without the aid of a-priori reachability
information. For this purpose, we first designed a coarse-to-fine strategy to decompose the
process of grasp planning into several phases. We then shuffled the IK solution process into the
process of grasp planning by following the special-designed coarse-to-fine strategy. By doing
so, the difficulty of solving the IK of integrated arm-hand systems is reduced, and, more im-
portantly, reachability information is revealed during the grasp planning process. We utilized
the discovered reachability information to filter out a tremendous amount of unsuitable grasp
candidates, which significantly reduced the search space and saved considerable computational
power.

6.2 Future Works
To continue the work presented in this thesis, several problems are worth to be investigated to
overcome the limitations of the proposed algorithms.

6.2.1 Hand-Eye Calibration as Point Set Matching
Although the proposed point set matching formulation achieved better calibration results in
Chapter 2, it requires the robot manipulator to contact the calibration device to obtain the
measurements in the robot coordinate system. A solution to release this requirement would
significantly extend the application scenarios of the proposed point set matching formulation.
In addition, one can extend the works in Chapter 2 from stereo cameras to monocular (or single)
cameras with the help of the techniques about depth estimation using monocular cameras (e.g.,
[1, 2, 3, 4]).

6.2.2 Efficient Grasp Quality Calculation
In Chapter 3, we calculated the well-known grasp quality metric proposed by Ferrari and Canny
[5] as typical least-squares problems by employing off-the-shelf optimization algorithms, based
on the proposed boundary formulation of grasp wrench space. However, the formulated least-
square problems are nonlinear due to the inclusion of trigonometric functions, and it is not
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guaranteed to obtain the global optimum by employing generic solvers. To alleviate this short-
coming, further investigation is suggested in the direction of nonlinear global optimizations
with trigonometric functions. In addition, the tangential friction coefficient (µ) is assumed to
be constant over the object’s surface in the current work, which may not hold in reality. To
increase the realistic value, it is suggested to consider a non-constant friction coefficient, for
instance, consider different values of µ for different directions or consider µ as a function of
the surface curvature.

6.2.3 Arm-Hand Systems as Hybrid Parallel-Serial Systems
Although the proposed arm-thumb closed-chain formulation achieved a satisfactory success
rate for solving the inverse kinematics of integrated arm-hand systems, there remain several
problems of this virtual closed-chain formulation. The workspace and singularities of the arm-
thumb closed chain with different arm configurations remain unknown. In addition, the range
of the virtual revolute joint on the thumb’s tip needs to be investigated. A solution to the above-
mentioned problems can provide new possibilities for controlling the motion of multi-branched
robotic mechanisms.

6.2.4 Integrated Grasp Planning and Inverse Kinematics Solution
Although the proposed approach significantly improved the overall efficiency of grasp planning
and IK solution of integrated arm-hand systems, there remains space for improvement. First,
adding a collision detection module to the proposed approach is suggested. With the help of
collision detection techniques, the proposed approach would be able to avoid hand-object pen-
etration and obstacle collision so that it could handle objects with complex shapes and grasping
tasks in crowded scenarios. Also, the proposed solution would be more integral by including
motion planning in the IK solution process such that the IK solution and a smooth trajectory
would be simultaneously returned. In addition, the efficiency of the proposed approach can be
further improved by adding a prediction module in the phase of Grasp Optimization to predict
the reachability of a grasp configuration before conducting the IK solution operation. By doing
so, we can exploit the reachability information revealed from the tested but unsatisfied grasps
to the maximum extent.
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Appendix A

Boundary of Cartesian Product of Two
Closed Sets

Given two closed sets (A and B) in two topological spaces (X and Y), we have A ⊆ X and
B ⊆ Y . The boundary of the Cartesian product of A and B, bd (A × B) is equal to [bd (A) × B]∪
[A × bd (B)].

Proof Since A and B are closed sets, their Cartesian product (A × B) is also closed. One can
obtain

bd (A × B) = A × B − int (A × B) (A.1)

where int (A × B) denotes the interior points of A × B. Since int (A × B) = intA × intB where
intA and intB are the interior of A and B, respectively, one can obtain

bd (A × B) = A × B − intA × intB (A.2)
= (A × B) ∩ (intA × intB)c (A.3)

where we make use of the fact that S 1 − S 2 = S 1 ∩ (S 2)c for two sets S 1 and S 2, in that (·)c is
the complement of a set. Since A ⊆ X and B ⊆ Y , one can obtain

(intA × intB)c =
[
(intA)c

× Y
]
∪

[
X × (intB)c] (A.4)

Substitute (A.4) into (A.3), one have

bd (A × B) = (A × B) ∩
{[

(intA)c
× Y

]
∪

[
X × (intB)c]} (A.5)

=
{
(A × B) ∩

[
(intA)c

× Y
]}
∪

{
(A × B) ∩

[
X × (intB)c]} (A.6)

Since (S 1 ∩ S 2) × (S 3 ∩ S 4) = (S 1 × S 3) ∩ (S 2 × S 4) where S i (i = 1, 2, 3, 4) are sets, one can
finally obtain

bd (A × B) =
{[

A ∩ (intA)c]
× (B ∩ Y)

}
∪

{
(A ∩ X) ×

[
B ∩ (intB)c]} (A.7)

= [bd (A) × B] ∪ [A × bd (B)] (A.8)

This completes the proof.
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Appendix B

Kinematics of the KUKA-Barrett
Arm-Hand System

In this thesis, the arm-hand system composed of a KUKA lightweight robot (LWR) 4+ manip-
ulator and the Barrett hand is used as an example of arm-hand systems to explain the work-
ing principles of the proposed methods. The KUKA LWR 4+ manipulator has 7 degrees-of-
freedom (DOFs) as shown in Figure. B.1(a). The Barrett hand also has 7 joints as shown in
Figure. B.1(b). Although the Barrett hand only has 4 controllable joints in reality, we assume
the 7 joints are all controllable such that the KUKA-Barrett system has 14 DOFs in total. The
coordinate system assignment for the KUKA-Barrett system is shown in Figure. B.2. The De-
navit Hartenberg (DH) parameters of the KUKA-Barrett system are shown in Table B.1, B.2,
B.3, and B.4. Note that the abduction motion of Finger 2 and 3 (i.e., the third DOF of Barrett
hand shown in Fig. B.1(b)) is controlled by one joint (denoted as θab). Forward kinematics and
Jacobian matrix are computed using MATLAB.

B.1 Forward Kinematics
In this section, we present the symbolic expressions of fingertip positions and contact normal
directions. The joint variables of the KUKA manipulator are denoted as θai (i = 1, . . . , 7)
corresponding to the 7 DOFs as shown in Fig. B.2(a). As for the Barrett hand, the joint variables

Table B.1: DH parameters of the arm in the KUKA-Barrett system (from the robot base to the
hand palm)

Link α (rad) a (mm) θ (rad) d (mm)
1 π

2 0 θa1 d1 = 310
2 -π2 0 θa2 0
3 -π2 0 θa3 d2 = 400
4 π

2 0 θa4 0
5 π

2 0 θa5 d3 = 390
6 -π2 0 θa6 0
7 0 0 θa7 d4 + dep = 78 + 79.5
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(a) KUKA LWR 4+ manipulator (b) Barrett hand

Figure B.1: KUKA-Barrett arm-hand system’s degrees of freedom.

(a) The arm including the hand palm

(b) Finger 1 and 3 of the hand

(c) Finger 2 of the hand

Figure B.2: The coordinate system assignment for the KUKA-Barrett arm-hand system.
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Table B.2: DH parameters of Finger 1 in the KUKA-Barrett system (from the hand palm to the
fingertip)

Link α (rad) a (mm) θ (rad) d (mm)
1 π

2 d f11 = 50 π
2 0

2 0 d f12 = 70 θ f11 0
3 0 d f13 = 58 θ f12 0

Table B.3: DH parameters of Finger 2 in the KUKA-Barrett system (from the hand palm to the
fingertip)

Link α (rad) a (mm) θ (rad) d (mm)
1 0 dp f = 25 0 0
2 π

2 d f21 = 50 θab −
π
2 0

3 0 d f22 = 70 θ f22 0
4 0 d f23 = 58 θ f23 0

Table B.4: DH parameters of Finger 3 in the KUKA-Barrett system (from the hand palm to the
fingertip)

Link α (rad) a (mm) θ (rad) d (mm)
1 π −dp f = −25 0 0
2 −π2 d f31 = 50 θab + π

2 0
3 0 d f32 = 70 θ f32 0
4 0 d f33 = 58 θ f33 0
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of Finger 1 are denoted as θ f11 and θ f12 corresponding to the 2nd and 1st DOF of the Barrett
hand as shown in Fig. B.2(b). The abduction motion of Finger 2 and 3 (i.e., the 3rd DOF of
the Barrett hand as shown in Fig. B.2(b)) is represented by θab. The rest of joint variables of
Finger 2 and 3 are denoted as θ f22 , and θ f23 , θ f32 , and θ f33 corresponding to the 6th, 7th, 4th, and
5th DOF of the Barrett hand as shown in Fig. B.2(b), respectively.

The transformation matrix connecting the adjacent links (i.e., the DH matrix) is calculated
as,

i−1
i T =


cos θi − sin θiαi sin θi sinαi ai cos θi

sin θi cos θi cosαi − cos θi sinαi ai sin θi

0 sinαi cos θi di

0 0 0 1

 (B.1)

After multiplying the transformations computed from Table B.1, one can obtain the trans-
formation matrix relating the robot base frame to the hand palm frame (denoted as b

hpT ). Sim-
ilarly, one can obtain the transformation matrices relating the hand palm frame to the frame at
the tips of Finger 1, 2, and 3 from Table B.2, B.3, and B.4, respectively (denoted as hp

f1
T , hp

f2
T ,

and hp
f3

T , respectively). Then, the transformation matrices relating the robot base frame to the
frames at fingertips can be obtained as,

b
f1T = b

hpT hp
f1

T (B.2)
b
f2T = b

hpT hp
f2

T (B.3)
b
f3T = b

hpT hp
f3

T (B.4)

The position vectors and the y-axis vectors obtained from these matrices are the positions and
contact normal directions of the fingertips expressed in the robot base frame. The symbolic
results are provided in what follows.

For Finger 1, its fingertip position (denoted as ~p f1) is calculated as,

~p f1(1) = (cθa7(sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) − cθa5(cθa3 sθa1 + cθa1cθa2 sθa3))
+ sθa7(sθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2) + cθa6(cθa5(cθa4(sθa1 sθa3

− cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1 + cθa1cθa2 sθa3))))(d f11 + d f12cθ f11

+ d f13cθ f11cθ f12 − d f13 sθ f11 sθ f12) − (cθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
− sθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1

+ cθa1cθa2 sθa3)))(d f12 sθ f11 + d f13cθ f11 sθ f12 + d f13cθ f12 sθ f11) − d3(sθa4(sθa1 sθa3

− cθa1cθa2cθa3) + cθa1cθa4 sθa2) − (d4 + dep)(cθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3)
+ cθa1cθa4 sθa2) − sθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
+ sθa5(cθa3 sθa1 + cθa1cθa2 sθa3))) − d2cθa1 sθa2

~p f1(2) = d3(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2) − (cθa7(sθa5(cθa4(cθa1 sθa3

+ cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) − cθa5(cθa1cθa3 − cθa2 sθa1 sθa3))
+ sθa7(sθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2) + cθa6(cθa5(cθa4(cθa1 sθa3

+ cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3 − cθa2 sθa1 sθa3))))(d f11 + d f12cθ f11

+ d f13d f13cθ f11cθ f12 − d f13 sθ f11 sθ f12) + (cθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1)
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− cθa4 sθa1 sθa2) − sθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4)
+ sθa5(cθa1cθa3 − cθa2 sθa1 sθa3)))(d f12 sθ f11 + d f13cθ f11 sθ f12 + d f13cθ f12 sθ f11)
+ (d4 + dep)(cθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2)
− sθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4)
+ sθa5(cθa1cθa3 − cθa2 sθa1 sθa3))) − d2sθa1 sθa2

~p f1(3) = d1 + d3(cθa2cθa4 + cθa3 sθa2 sθa4) + (cθa7(sθa5(cθa2 sθa4 − cθa3cθa4 sθa2) − cθa5 sθa2 sθa3)
+ sθa7(cθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5) − sθa6(cθa2cθa4

+ cθa3 sθa2 sθa4)))(d f11 + d f12cθ f11 + d f13cθ f11cθ f12 − d f13 sθ f11 sθ f12) + d2cθa2

+ (sθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5) + cθa6(cθa2cθa4

+ cθa3 sθa2 sθa4))(d f12 sθ f11 + d f13cθ f11 sθ f12 + d f13cθ f12 sθ f11)
+ (d4 + dep)(sθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5)
+ cθa6(cθa2cθa4 + cθa3 sθa2 sθa4))

where s and c stand for sin and cos, respectively. And its contact normal direction (denoted as
~n f1) is calculated as,

~n f1(1) = − (cθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2) − sθa6(cθa5(cθa4(sθa1 sθa3

− cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1 + cθa1cθa2 sθa3)))(cθ f11cθ f12

− sθ f11 sθ f12) − (cθa7(sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) − cθa5(cθa3 sθa1

+ cθa1cθa2 sθa3)) + sθa7(sθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
+ cθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1

+ cθa1cθa2 sθa3))))(cθ f11 sθ f12 + cθ f12 sθ f11)
~n f1(2) = (cθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2) − sθa6(cθa5(cθa4(cθa1 sθa3

+ cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3 − cθa2 sθa1 sθa3)))(cθ f11cθ f12

− sθ f11 sθ f12) + (cθ f11 sθ f12 + cθ f12 sθ f11)(cθa7(sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1)
+ sθa1 sθa2 sθa4) − cθa5(cθa1cθa3 − cθa2 sθa1 sθa3)) + sθa7(sθa6(sθa4(cθa1 sθa3

+ cθa2cθa3 sθa1) − cθa4 sθa1 sθa2) + cθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1)
+ sθa1 sθa2 sθa4) + sθa5(cθa1cθa3 − cθa2 sθa1 sθa3))))

~n f1(3) = (sθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5) + cθa6(cθa2cθa4

+ cθa3 sθa2 sθa4))(cθ f11cθ f12 − sθ f11 sθ f12) − (cθa7(sθa5(cθa2 sθa4 − cθa3cθa4 sθa2)
− cθa5 sθa2 sθa3) + sθa7(cθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5)
− sθa6(cθa2cθa4 + cθa3 sθa2 sθa4)))(cθ f11 sθ f12 + cθ f12 sθ f11)

For Finger 2, its fingertip position (denoted as ~p f2) is calculated as,

~p f2(1) = (cθa7(sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) − cθa5(cθa3 sθa1

+ cθa1cθa2 sθa3)) + sθa7(sθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
+ cθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1

+ cθa1cθa2 sθa3))))(−d f21cθab − d f22cθ f22cθab − d f23cθ f22cθ f23cθab + d f23 sθ f22 sθ f23cθab

− (cθa7(sθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2) + cθa6(cθa5(cθa4(sθa1 sθa3
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− cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1 + cθa1cθa2 sθa3)))
− sθa7(sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) − cθa5(cθa3 sθa1

+ cθa1cθa2 sθa3)))(dp f + d f21 sθab + d f22cθ f22 sθab + d f23cθ f22cθ f23 sθab

− d f23 sθabsθ f22 sθ f23) − (cθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
− sθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1

+ cθa1cθa2 sθa3)))(d f22 sθ f22 + d f23cθ f22 sθ f23 + d f23cθ f23 sθ f22) − d3(sθa4(sθa1 sθa3

− cθa1cθa2cθa3) + cθa1cθa4 sθa2) − (d4 + dep)(cθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3)
+ cθa1cθa4 sθa2) − sθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
+ sθa5(cθa3 sθa1 + cθa1cθa2 sθa3))) − d2cθa1 sθa2

~p f2(2) = d3(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2) − (cθa7(sθa5(cθa4(cθa1 sθa3

+ cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) − cθa5(cθa1cθa3 − cθa2 sθa1 sθa3))
+ sθa7(sθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2) + cθa6(cθa5(cθa4(cθa1 sθa3

+ cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3 − cθa2 sθa1 sθa3))))(−d f21cθab

− d f22cθ f22cθab − d f23cθ f22cθ f23cθab + d f23 sθ f22 sθ f23cθab + (cθa6(sθa4(cθa1 sθa3

+ cθa2cθa3 sθa1) − cθa4 sθa1 sθa2) − sθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1)
+ sθa1 sθa2 sθa4) + sθa5(cθa1cθa3 − cθa2 sθa1 sθa3)))(d f22 sθ f22 + d f23cθ f22 sθ f23

+ d f23cθ f23 sθ f22) + (cθa7(sθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2)
+ cθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3

− cθa2 sθa1 sθa3))) − sθa7(sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4)
− cθa5(cθa1cθa3 − cθa2 sθa1 sθa3)))(dp f + d f21 sθab + d f22cθ f22 sθab + d f23cθ f22cθ f23 sθab

− d f23 sθabsθ f22 sθ f23) + (d4 + dep)(cθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2)
− sθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3

− cθa2 sθa1 sθa3))) − d2sθa1 sθa2

~p f2(3) = d1 + (d4 + dep)(sθa6(sθa2 sθa3 sθa5 + cθa2cθa5 sθa4 − cθa3cθa4cθa5 sθa2) + cθa6(cθa2cθa4

+ cθa3 sθa2 sθa4)) + d3(cθa2cθa4 + cθa3 sθa2 sθa4) + (d f23 s(θ f22 + θ f23)
+ d f22 sθ f22)(sθa6(sθa2 sθa3 sθa5 + cθa2cθa5 sθa4 − cθa3cθa4cθa5 sθa2) + cθa6(cθa2cθa4

+ cθa3 sθa2 sθa4)) + d2cθa2 − (sθa7(cθa5 sθa2 sθa3 − cθa2 sθa4 sθa5 + cθa3cθa4 sθa2 sθa5)
+ cθa7(cθa6(sθa2 sθa3 sθa5 + cθa2cθa5 sθa4 − cθa3cθa4cθa5 sθa2) − sθa6(cθa2cθa4

+ cθa3 sθa2 sθa4)))(dp f + d f21 sθab + d f22cθ f22 sθab + d f23cθ f22cθ f23 sθab

− d f23 sθ f22 sθ f23 sθab) + cθab(cθa7(cθa5 sθa2 sθa3 − cθa2 sθa4 sθa5

+ cθa3cθa4 sθa2 sθa5) − sθa7(cθa6(sθa2 sθa3 sθa5 + cθa2cθa5 sθa4 − cθa3cθa4cθa5 sθa2)
− sθa6(cθa2cθa4 + cθa3 sθa2 sθa4)))(d f21 + d f23c(θ f22 + θ f23) + d f22cθ f22)

And its contact normal direction (denoted as ~n f2) is calculated as,

~n f2(1) = (cθ f22 sθabsθ f23 + cθ f23 sθabsθ f22)(cθa7(sθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
+ cθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1

+ cθa1cθa2 sθa3))) − sθa7(sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
− cθa5(cθa3 sθa1 + cθa1cθa2 sθa3))) − (cθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
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− sθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1

+ cθa1cθa2 sθa3)))(cθ f22cθ f23 − sθ f22 sθ f23) + (cθ f22 sθ f23cθab

+ cθ f23 sθ f22cθab)(cθa7(sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
− cθa5(cθa3 sθa1 + cθa1cθa2 sθa3)) + sθa7(sθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3)
+ cθa1cθa4 sθa2) + cθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
+ sθa5(cθa3 sθa1 + cθa1cθa2 sθa3))))

~n f2(2) = (cθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2) − sθa6(cθa5(cθa4(cθa1 sθa3

+ cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3 − cθa2 sθa1 sθa3)))(cθ f22cθ f23

− sθ f22 sθ f23) − (cθ f22 sθabsθ f23 + cθ f23 sθabsθ f22)(cθa7(sθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1)
− cθa4 sθa1 sθa2) + cθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4)
+ sθa5(cθa1cθa3 − cθa2 sθa1 sθa3))) − sθa7(sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1)
+ sθa1 sθa2 sθa4) − cθa5(cθa1cθa3 − cθa2 sθa1 sθa3))) − (cθ f22 sθ f23cθab

+ cθ f23 sθ f22cθab)(cθa7(sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4)
− cθa5(cθa1cθa3 − cθa2 sθa1 sθa3)) + sθa7(sθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1)
− cθa4 sθa1 sθa2) + cθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4)
+ sθa5(cθa1cθa3 − cθa2 sθa1 sθa3))))

~n f2(3) = (sθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5) + cθa6(cθa2cθa4

+ cθa3 sθa2 sθa4))(cθ f22cθ f23 − sθ f22 sθ f23) − (cθa7(sθa5(cθa2 sθa4 − cθa3cθa4 sθa2)
− cθa5 sθa2 sθa3) + sθa7(cθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5)
+ sθa6(cθa2cθa4 + cθa3 sθa2 sθa4)))(cθ f22 sθ f23cθab + cθ f23 sθ f22cθab) − (cθ f22 sθabsθ f23

+ cθ f23 sθabsθ f22)(sθa7(sθa5(cθa2 sθa4 − cθa3cθa4 sθa2) − cθa5 sθa2 sθa3)
− cθa7(cθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5)
− sθa6(cθa2cθa4 + cθa3 sθa2 sθa4)))

For Finger 3, its fingertip position (denoted as ~p f3) is calculated as,

~p f3(1) = − (cθa7(sθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2) + cθa6(cθa5(cθa4(sθa1 sθa3

− cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1 + cθa1cθa2 sθa3)))
− sθa7(sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) − cθa5(cθa3 sθa1

+ cθa1cθa2 sθa3)))(−d f31 sθab − dp f − d f32cθ f32 sθab − d f33cθ f32cθ f33 sθab

+ d f33 sθabsθ f32 sθ f33) − (cθa7(sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
− cθa5(cθa3 sθa1 + cθa1cθa2 sθa3)) + sθa7(sθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3)
+ cθa1cθa4 sθa2) + cθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
+ sθa5(cθa3 sθa1 + cθa1cθa2 sθa3))))(d f31cθab + d f32cθ f32cθab + d f33cθ f32cθ f33cθab

− d f33 sθ f32 sθ f33cθab) − (cθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
− sθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1

+ cθa1cθa2 sθa3)))(d f32 sθ f32 + d f33cθ f32 sθ f33 + d f33cθ f33 sθ f32) − d3(sθa4(sθa1 sθa3

− cθa1cθa2cθa3) + cθa1cθa4 sθa2) − (d4 + dep)(cθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3)
+ cθa1cθa4 sθa2) − sθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
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+ sθa5(cθa3 sθa1 + cθa1cθa2 sθa3))) − d2cθa1 sθa2

~p f3(2) = (cθa7(sθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2) + cθa6(cθa5(cθa4(cθa1 sθa3

+ cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3 − cθa2 sθa1 sθa3)))
− sθa7(sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) − cθa5(cθa1cθa3

− cθa2 sθa1 sθa3)))(−d f31 sθab − dp f − d f32cθ f32 sθab − d f33cθ f32cθ f33 sθab

+ d f33 sθabsθ f32 sθ f33) + (cθa7(sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4)
− cθa5(cθa1cθa3 − cθa2 sθa1 sθa3)) + sθa7(sθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1)
− cθa4 sθa1 sθa2) + cθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4)
+ sθa5(cθa1cθa3 − cθa2 sθa1 sθa3))))(d f31cθab + d f32cθ f32cθab + d f33cθ f32cθ f33 sθab

− d f33 sθ f32 sθ f33cθab) + d3(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2)
+ (cθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2) − sθa6(cθa5(cθa4(cθa1 sθa3

+ cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3 − cθa2 sθa1 sθa3)))(d f32 sθ f32

+ d f33cθ f32 sθ f33 + d f33cθ f33 sθ f32) + (d4 + dep)(cθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1)
− cθa4 sθa1 sθa2) − sθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4)
+ sθa5(cθa1cθa3 − cθa2 sθa1 sθa3))) − d2sθa1 sθa2

~p f3(3) = d1 + (d4 + dep)(sθa6(sθa2 sθa3 sθa5 + cθa2cθa5 sθa4 − cθa3cθa4cθa5 sθa2) + cθa6(cθa2cθa4

+ cθa3 sθa2 sθa4)) + d3(cθa2cθa4 + cθa3 sθa2 sθa4) + (d f33 s(θ f32 + θ f33)
+ d f32 sθ f32)(sθa6(sθa2 sθa3 sθa5 + cθa2cθa5 sθa4 − cθa3cθa4cθa5 sθa2) + cθa6(cθa2cθa4

+ cθa3 sθa2 sθa4)) + d2cθa2 + (sθa7(cθa5 sθa2 sθa3 − cθa2 sθa4 sθa5 + cθa3cθa4 sθa2 sθa5)
+ cθa7(cθa6(sθa2 sθa3 sθa5 + cθa2cθa5 sθa4 − cθa3cθa4cθa5 sθa2) − sθa6(cθa2cθa4

+ cθa3 sθa2 sθa4)))(dp f + d f31 sθab + d f32cθ f32 sθab + d f33cθ f32cθ f33 sθab

− d f33 sθ f32 sθ f33 sθab) + cθab(cθa7(cθa5 sθa2 sθa3 − cθa2 sθa4 sθa5 + cθa3cθa4 sθa2 sθa5)
− sθa7(cθa6(sθa2 sθa3 sθa5 + cθa2cθa5 sθa4 − cθa3cθa4cθa5 sθa2) − sθa6(cθa2cθa4

+ cθa3 sθa2 sθa4)))(d f31 + d f33c(θ f32 + θ f33) + d f32cθ f32)

And its contact normal direction (denoted as ~n f3) is calculated as,

~n f3(1) = (−cθ f32 sθabsθ f33 − cθ f33 sθabsθ f32)(cθa7(sθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3)
+ cθa1cθa4 sθa2) + cθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
+ sθa5(cθa3 sθa1 + cθa1cθa2 sθa3))) − sθa7(sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3)
− cθa1 sθa2 sθa4) − cθa5(cθa3 sθa1 + cθa1cθa2 sθa3))) − (cθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3)
+ cθa1cθa4 sθa2) − sθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
+ sθa5(cθa3 sθa1 + cθa1cθa2 sθa3)))(cθ f32cθ f33 − sθ f32 sθ f33) + (cθ f32 sθ f33cθab

+ cθ f33 sθ f32cθab)(cθa7(sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
− cθa5(cθa3 sθa1 + cθa1cθa2 sθa3)) + sθa7(sθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3)
+ cθa1cθa4 sθa2) + cθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
+ sθa5(cθa3 sθa1 + cθa1cθa2 sθa3))))

~n f3(2) = (cθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2) − sθa6(cθa5(cθa4(cθa1 sθa3

+ cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3 − cθa2 sθa1 sθa3)))(cθ f32cθ f33
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− sθ f32 sθ f33) − (−cθ f32 sθabsθ f33 − cθ f33 sθabsθ f32)(cθa7(sθa6(sθa4(cθa1 sθa3

+ cθa2cθa3 sθa1) − cθa4 sθa1 sθa2) + cθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1)
+ sθa1 sθa2 sθa4) + sθa5(cθa1cθa3 − cθa2 sθa1 sθa3))) − sθa7(sθa5(cθa4(cθa1 sθa3

+ cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) − cθa5(cθa1cθa3 − cθa2 sθa1 sθa3))) − (cθ f32 sθ f33cθab

+ cθ f33 sθ f32cθab)(cθa7(sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4)
− cθa5(cθa1cθa3 − cθa2 sθa1 sθa3)) + sθa7(sθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1)
− cθa4 sθa1 sθa2) + cθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4)
+ sθa5(cθa1cθa3 − cθa2 sθa1 sθa3))))

~n f3(3) = (cθa7(sθa5(cθa2 sθa4 − cθa3cθa4 sθa2) − cθa5 sθa2 sθa3) + sθa7(cθa6(cθa5(cθa2 sθa4

− cθa3cθa4 sθa2) + sθa2 sθa3 sθa5) − sθa6(cθa2cθa4 + cθa3 sθa2 sθa4)))(cθ f32 sθ f33cθab

+ cθ f33 sθ f32cθab) − (−cθ f32 sθabsθ f33 − cθ f33 sθabsθ f32)(sθa7(sθa5(cθa2 sθa4

− cθa3cθa4 sθa2) − cθa5 sθa2 sθa3) − cθa7(cθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2)
+ sθa2 sθa3 sθa5) − sθa6(cθa2cθa4 + cθa3 sθa2 sθa4))) + (sθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2)
+ sθa2 sθa3 sθa5) + cθa6(cθa2cθa4 + cθa3 sθa2 sθa4))(cθ f32cθ f33 − sθ f32 sθ f33)

B.2 Jacobian Matrix
The Jacobian matrix of KUKA-Barrett arm-hand system (denoted as JAH) is constructed from
the Jacobian matrices of the arm and the fingers following the procedure in [1]. The Jacobian
matrix representing the palm’s velocity in the robot base frame (denoted as bJhp) can be ob-
tained from Table B.1. And the Jacobian matrices representing the fingertips’ velocities in the
palm frame can be obtained from Table B.2, B.3, and B.4 (denoted as hpJ f1 ,

hpJ f2 , and hpJ f3 ,
respectively). JAH is constructed as,

JAH =


G1 ·

bJhp R̄ · hpJ f1 06×3 06×3

G2 ·
b Jhp 06×2 R̄ · hpJ f2 06×3

G3 ·
b Jhp 06×2 06×3 R̄ · hpJ f3

 (B.5)

Gi =

 I3 −skew
(

hp
fi
~t
)

03×3 I3

 (i = 1, 2, 3), R̄ =

 b
hpR 03×3

03×3
b
hpR


where skew(·) is the operator for calculating the skew-symmetric matrix from a 3 × 1 vector,
hp
fi
~t is the translation vector from the hand palm (hp) to the fingertip ( fi, i = 1, 2, 3), and b

hpR is
the orientation of the hand palm (hp) with respect to the robot base frame (b). Note, since the
abduction motion of Finger 2 and 3 is controlled by one joint, the columns of JAH corresponding
to this abduction joint should be combined into one column and the other column should be
deleted. The symbolic expressions of the entries of JAH are listed in the following.

JAH (1, 1) = d2sθa1 sθa2 − d f12cθ f11 − d3(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2)
− (d4 + dep)(cθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2)
− sθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3

− cθa2 sθa1 sθa3))) − d f13cθ f11cθ f12 − d f11 + d f13 sθ f11 sθ f12
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JAH (1, 2) = − cθa1((d4 + dep)(sθa6(sθa2 sθa3 sθa5 + cθa2cθa5 sθa4 − cθa3cθa4cθa5 sθa2)
+ cθa6(cθa2cθa4 + cθa3 sθa2 sθa4)) + d3(cθa2cθa4 + cθa3 sθa2 sθa4) + d2cθa2)
− cθa1(d f13 s(θ f11 + θ f12) + d f12 sθ f11)

JAH (1, 3) = cθa1cθa2cθa3 sθa5 sθa6(d4 + dep) − sθa1 sθa2(d f13 s(θ f11 + θ f12) + d f12 sθ f11)
− d3cθa3 sθa1 sθa4 − cθa3cθa6 sθa1 sθa4(d4 + dep) − sθa1 sθa3 sθa5 sθa6(d4 + dep)
− d3cθa1cθa2 sθa3 sθa4 − cθa1cθa2cθa6 sθa3 sθa4(d4 + dep) − cθa2(d f11 + d f13c(θ f11

+ θ f12) + d f12cθ f11) + cθa3cθa4cθa5 sθa1 sθa6(d4 + dep)
+ cθa1cθa2cθa4cθa5 sθa3 sθa6(d4 + dep)

JAH (1, 4) = (cθa1cθa3 − cθa2 sθa1 sθa3)(d3(cθa2cθa4 + cθa3 sθa2 sθa4)
+ (d4 + dep)(sθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5) + cθa6(cθa2cθa4

+ cθa3 sθa2 sθa4))) + (cθa1cθa3 − cθa2 sθa1 sθa3)(d f12 sθ f11 + d f13cθ f11 sθ f12

+ d f13cθ f12 sθ f11) + sθa2 sθa3(d3(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2)
+ (d4 + dep)(cθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2)
− sθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3

− cθa2 sθa1 sθa3)))) + sθa2 sθa3(d f11 + d f12cθ f11 + d f13cθ f11cθ f12

− d f13 sθ f11 sθ f12)
JAH (1, 5) = (d f13 s(θ f11 + θ f12) + d f12 sθ f11)(cθa1 sθa3 sθa4 − cθa4 sθa1 sθa2 + cθa2cθa3 sθa1 sθa4)

− (cθa2cθa4 + cθa3 sθa2 sθa4)(d f11 + d f13c(θ f11 + θ f12) + d f12cθ f11)
+ sθa6(d4 + dep)(cθa3cθa5 sθa1 + cθa1cθa2cθa5 sθa3 + cθa1 sθa2 sθa4 sθa5

− cθa4 sθa1 sθa3 sθa5 + cθa1cθa2cθa3cθa4 sθa5)
JAH (1, 6) = (sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) − cθa5(cθa1cθa3

− cθa2 sθa1 sθa3))(d f12 sθ f11 + d f13cθ f11 sθ f12 + d f13cθ f12 sθ f11) + (sθa5(cθa2 sθa4

− cθa3cθa4 sθa2) − cθa5 sθa2 sθa3)(d f11 + d f12cθ f11 + d f13cθ f11cθ f12 − d f13 sθ f11 sθ f12)
+ (sθa5(cθa2 sθa4 − cθa3cθa4 sθa2) − cθa5 sθa2 sθa3)(d4 + dep)(cθa6(sθa4(cθa1 sθa3

+ cθa2cθa3 sθa1) − cθa4 sθa1 sθa2) − sθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1)
+ sθa1 sθa2 sθa4) + sθa5(cθa1cθa3 − cθa2 sθa1 sθa3))) + (d4 + dep)(sθa5(cθa4(cθa1 sθa3

+ cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) − cθa5(cθa1cθa3

− cθa2 sθa1 sθa3))(sθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5)
+ cθa6(cθa2cθa4 + cθa3 sθa2 sθa4))

JAH (1, 7) = (cθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2) − sθa6(cθa5(cθa4(cθa1 sθa3

+ cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3 − cθa2 sθa1 sθa3)))(d f12 sθ f11

+ d f13cθ f11 sθ f12 + d f13cθ f12 sθ f11) − (sθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2)
+ sθa2 sθa3 sθa5) + cθa6(cθa2cθa4 + cθa3 sθa2 sθa4))(d f11 + d f12cθ f11 + d f13cθ f11cθ f12

− d f13 sθ f11 sθ f12)
JAH (1, 8) = − (cθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2) − sθa6(cθa5(cθa4(sθa1 sθa3

− cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1 + cθa1cθa2 sθa3)))(d f13c(θ f11 + θ f12)
+ d f12cθ f11) − (d f13 s(θ f11 + θ f12) + d f12 sθ f11)(cθa7(sθa5(cθa4(sθa1 sθa3
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− cθa1cθa2cθa3) − cθa1 sθa2 sθa4) − cθa5(cθa3 sθa1 + cθa1cθa2 sθa3))
+ sθa7(sθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
+ cθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3)
− cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1 + cθa1cθa2 sθa3))))

JAH (1, 9) = − d f13 s(θ f11 + θ f12)(cθa7(sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
− cθa5(cθa3 sθa1 + cθa1cθa2 sθa3)) + sθa7(sθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3)
+ cθa1cθa4 sθa2) + cθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
+ sθa5(cθa3 sθa1 + cθa1cθa2 sθa3)))) − d f13c(θ f11 + θ f12)(cθa6(sθa4(sθa1 sθa3

− cθa1cθa2cθa3) + cθa1cθa4 sθa2) − sθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3)
− cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1 + cθa1cθa2 sθa3)))

JAH (1, 10) = JAH (1, 11) = JAH (1, 12) = JAH (1, 13) = JAH (1, 14) = 0
JAH (2, 1) = − d3(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2) − (d4 + dep)(cθa6(sθa4(sθa1 sθa3

− cθa1cθa2cθa3) + cθa1cθa4 sθa2) − sθa6(cθa5(cθa4(sθa1 sθa3

− cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1 + cθa1cθa2 sθa3))) − d2cθa1 sθa2

JAH (2, 2) = − sθa1((d4 + dep)(sθa6(sθa2 sθa3 sθa5 + cθa2cθa5 sθa4 − cθa3cθa4cθa5 sθa2)
+ cθa6(cθa2cθa4 + cθa3 sθa2 sθa4)) + d3(cθa2cθa4 + cθa3 sθa2 sθa4) + d2cθa2)
− sθa1(d f13 s(θ f11 + θ f12) + d f12 sθ f11)

JAH (2, 3) = cθa1 sθa2(d f13 s(θ f11 + θ f12) + d f12 sθ f11) + d3cθa1cθa3 sθa4 + cθa1 sθa3 sθa5 sθa6(d4

+ dep) − d3cθa2 sθa1 sθa3 sθa4 + cθa1cθa3cθa6 sθa4(d4 + dep)
− cθa1cθa3cθa4cθa5 sθa6(d4 + dep) − cθa2cθa6 sθa1 sθa3 sθa4(d4 + dep)
+ cθa2cθa3 sθa1 sθa5 sθa6(d4 + dep) + cθa2cθa4cθa5 sθa1 sθa3 sθa6(d4 + dep)

JAH (2, 4) = (cθa3 sθa1 + cθa1cθa2 sθa3)(d3(cθa2cθa4 + cθa3 sθa2 sθa4) + (d4

+ dep)(sθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5) + cθa6(cθa2cθa4

+ cθa3 sθa2 sθa4))) + (cθa3 sθa1 + cθa1cθa2 sθa3)(d f12 sθ f11 + d f13cθ f11 sθ f12

+ d f13cθ f12 sθ f11) + sθa2 sθa3(d3(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
+ (d4 + dep)(cθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
− sθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1

+ cθa1cθa2 sθa3))))
JAH (2, 5) = (d f13 s(θ f11 + θ f12) + d f12 sθ f11)(sθa1 sθa3 sθa4 + cθa1cθa4 sθa2 − cθa1cθa2cθa3 sθa4)

+ sθa6(d4 + dep)(cθa2cθa5 sθa1 sθa3 − cθa1cθa3cθa5 + cθa1cθa4 sθa3 sθa5

+ sθa1 sθa2 sθa4 sθa5 + cθa2cθa3cθa4 sθa1 sθa5)
JAH (2, 6) = (sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) − cθa5(cθa3 sθa1

+ cθa1cθa2 sθa3))(d f12 sθ f11 + d f13cθ f11 sθ f12 + d f13cθ f12 sθ f11) + (sθa5(cθa2 sθa4

− cθa3cθa4 sθa2) − cθa5 sθa2 sθa3)(d4 + dep)(cθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3)
+ cθa1cθa4 sθa2) − sθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
+ sθa5(cθa3 sθa1 + cθa1cθa2 sθa3))) + (d4 + dep)(sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3)
− cθa1 sθa2 sθa4) − cθa5(cθa3 sθa1 + cθa1cθa2 sθa3))(sθa6(cθa5(cθa2 sθa4
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− cθa3cθa4 sθa2) + sθa2 sθa3 sθa5) + cθa6(cθa2cθa4 + cθa3 sθa2 sθa4))
JAH (2, 7) = (cθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2) − sθa6(cθa5(cθa4(sθa1 sθa3

− cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1 + cθa1cθa2 sθa3)))(d f12 sθ f11

+ d f13cθ f11 sθ f12 + d f13cθ f12 sθ f11)
JAH (2, 8) = (d f13c(θ f11 + θ f12) + d f12cθ f11)(cθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2)

− sθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3

− cθa2 sθa1 sθa3))) + (d f13 s(θ f11 + θ f12) + d f12 sθ f11)(cθa7(sθa5(cθa4(cθa1 sθa3

+ cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) − cθa5(cθa1cθa3 − cθa2 sθa1 sθa3))
+ sθa7(sθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2)
+ cθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3

− cθa2 sθa1 sθa3))))
JAH (2, 9) = d f13 s(θ f11 + θ f12)(cθa7(sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4)

− cθa5(cθa1cθa3 − cθa2 sθa1 sθa3)) + sθa7(sθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1)
− cθa4 sθa1 sθa2) + cθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4)
+ sθa5(cθa1cθa3 − cθa2 sθa1 sθa3)))) + d f13c(θ f11 + θ f12)(cθa6(sθa4(cθa1 sθa3

+ cθa2cθa3 sθa1) − cθa4 sθa1 sθa2) − sθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1)
+ sθa1 sθa2 sθa4) + sθa5(cθa1cθa3 − cθa2 sθa1 sθa3)))

JAH (2, 10) = JAH (2, 11) = JAH (2, 12) = JAH (2, 13) = JAH (2, 14) = 0
JAH (3, 1) = 0
JAH (3, 2) = sθa1(d f11 + d f13c(θ f11 + θ f12) + d f12cθ f11) − d2sθa2 − d3cθa4 sθa2 − cθa4cθa6 sθa2(d4

+ dep) + d3cθa2cθa3 sθa4 + cθa2 sθa3 sθa5 sθa6(d4 + dep) − cθa5 sθa2 sθa4 sθa6(d4 + dep)
+ cθa2cθa3cθa6 sθa4(d4 + dep) − cθa2cθa3cθa4cθa5 sθa6(d4 + dep)

JAH (3, 3) = − sθa2(d3sθa3 sθa4 + cθa6 sθa3 sθa4(d4 + dep) − cθa3 sθa5 sθa6(d4 + dep)
− cθa4cθa5 sθa3 sθa6(d4 + dep)) − cθa1 sθa2(d f11 + d f13c(θ f11 + θ f12) + d f12cθ f11)

JAH (3, 4) = d3cθa3cθa4 sθa2 − d3cθa2 sθa4 − cθa2cθa6 sθa4(d4 + dep) − (cθa3 sθa1

+ cθa1cθa2 sθa3)(d f11 + d f13c(θ f11 + θ f12) + d f12cθ f11) + cθa3cθa4cθa6 sθa2(d4 + dep)
+ cθa2cθa4cθa5 sθa6(d4 + dep) + cθa3cθa5 sθa2 sθa4 sθa6(d4 + dep)

JAH (3, 5) = sθa6(d4 + dep)(cθa5 sθa2 sθa3 − cθa2 sθa4 sθa5 + cθa3cθa4 sθa2 sθa5) − (sθa1 sθa3 sθa4

+ cθa1cθa4 sθa2 − cθa1cθa2cθa3 sθa4)(d f11 + d f13c(θ f11 + θ f12) + d f12cθ f11)
JAH (3, 6) = (sθa5(cθa1 sθa2 sθa4 − cθa4 sθa1 sθa3 + cθa1cθa2cθa3cθa4) + cθa5(cθa3 sθa1

+ cθa1cθa2 sθa3))(d f11 + d f13c(θ f11 + θ f12) + d f12cθ f11) − (d4 + dep)(cθa2cθa4 sθa6

− cθa2cθa5cθa6 sθa4 + cθa3 sθa2 sθa4 sθa6 − cθa6 sθa2 sθa3 sθa5 + cθa3cθa4cθa5cθa6 sθa2)
JAH (3, 7) = − (cθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2) − sθa6(cθa5(cθa4(sθa1 sθa3

− cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1 + cθa1cθa2 sθa3)))(d f11 + d f12cθ f11

+ d f13cθ f11cθ f12 − d f13 sθ f11 sθ f12)
JAH (3, 8) = (d f13c(θ f11 + θ f12) + d f12cθ f11)(sθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5)

+ cθa6(cθa2cθa4 + cθa3 sθa2 sθa4)) − (cθa7(sθa5(cθa2 sθa4 − cθa3cθa4 sθa2)
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− cθa5 sθa2 sθa3) + sθa7(cθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5)
− sθa6(cθa2cθa4 + cθa3 sθa2 sθa4)))(d f13 s(θ f11 + θ f12) + d f12 sθ f11)

JAH (3, 9) = d f13c(θ f11 + θ f12)(sθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5) + cθa6(cθa2cθa4

+ cθa3 sθa2 sθa4)) − d f13 s(θ f11 + θ f12)(cθa7(sθa5(cθa2 sθa4 − cθa3cθa4 sθa2)
− cθa5 sθa2 sθa3) + sθa7(cθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5)
− sθa6(cθa2cθa4 + cθa3 sθa2 sθa4)))

JAH (3, 10) = JAH (3, 11) = JAH (3, 12) = JAH (3, 13) = JAH (3, 14) = 0
JAH (4, 1) = 0
JAH (4, 2) = sθa1

JAH (4, 3) = − cθa1 sθa2

JAH (4, 4) = − cθa3 sθa1 − cθa1cθa2 sθa3

JAH (4, 5) = − sθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1cθa4 sθa2

JAH (4, 6) = cθa5(cθa3 sθa1 + cθa1cθa2 sθa3) − sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
JAH (4, 7) = sθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1

+ cθa1cθa2 sθa3)) − cθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
JAH (4, 8) = sθa7(sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) − cθa5(cθa3 sθa1

+ cθa1cθa2 sθa3)) − cθa7(sθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
+ cθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1

+ cθa1cθa2 sθa3)))
JAH (4, 9) = sθa7(sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) − cθa5(cθa3 sθa1

+ cθa1cθa2 sθa3)) − cθa7(sθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
+ cθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1

+ cθa1cθa2 sθa3)))
JAH (4, 10) = JAH (4, 11) = JAH (4, 12) = JAH (4, 13) = JAH (4, 14) = 0
JAH (5, 1) = 0
JAH (5, 2) = − cθa1

JAH (5, 3) = − sθa1 sθa2

JAH (5, 4) = cθa1cθa3 − cθa2 sθa1 sθa3

JAH (5, 5) = sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2

JAH (5, 6) = sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) − cθa5(cθa1cθa3 − cθa2 sθa1 sθa3)
JAH (5, 7) = cθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2) − sθa6(cθa5(cθa4(cθa1 sθa3

+ cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3 − cθa2 sθa1 sθa3))
JAH (5, 8) = cθa7(sθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2) + cθa6(cθa5(cθa4(cθa1 sθa3

+ cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3 − cθa2 sθa1 sθa3)))
− sθa7(sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) − cθa5(cθa1cθa3

− cθa2 sθa1 sθa3))
JAH (5, 9) = cθa7(sθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2) + cθa6(cθa5(cθa4(cθa1 sθa3
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+ cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3 − cθa2 sθa1 sθa3)))
− sθa7(sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) − cθa5(cθa1cθa3

− cθa2 sθa1 sθa3))
JAH (5, 10) = JAH (5, 11) = JAH (5, 12) = JAH (5, 13) = JAH (5, 14) = 0
JAH (6, 1) = 1
JAH (6, 2) = 0
JAH (6, 3) = cθa2

JAH (6, 4) = − sθa2 sθa3

JAH (6, 5) = cθa2cθa4 + cθa3 sθa2 sθa4

JAH (6, 6) = cθa5 sθa2 sθa3 − sθa5(cθa2 sθa4 − cθa3cθa4 sθa2)
JAH (6, 7) = sθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5) + cθa6(cθa2cθa4 + cθa3 sθa2 sθa4)
JAH (6, 8) = sθa7(sθa5(cθa2 sθa4 − cθa3cθa4 sθa2) − cθa5 sθa2 sθa3) − cθa7(cθa6(cθa5(cθa2 sθa4

− cθa3cθa4 sθa2) + sθa2 sθa3 sθa5) − sθa6(cθa2cθa4 + cθa3 sθa2 sθa4))
JAH (6, 9) = sθa7(sθa5(cθa2 sθa4 − cθa3cθa4 sθa2) − cθa5 sθa2 sθa3) − cθa7(cθa6(cθa5(cθa2 sθa4

− cθa3cθa4 sθa2) + sθa2 sθa3 sθa5) − sθa6(cθa2cθa4 + cθa3 sθa2 sθa4))
JAH (6, 10) = JAH (6, 11) = JAH (6, 12) = JAH (6, 13) = JAH (6, 14) = 0
JAH (7, 1) = d2sθa1 sθa2 − d3(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2) − (d4

+ dep)(cθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2) − sθa6(cθa5(cθa4(cθa1 sθa3

+ cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3 − cθa2 sθa1 sθa3))) + d f22cθ f22cθab

+ d f21cθab + d f23cθ f22cθ f23cθab − d f23 sθ f22 sθ f23cθab

JAH (7, 2) = − cθa1((d4 + dep)(sθa6(sθa2 sθa3 sθa5 + cθa2cθa5 sθa4 − cθa3cθa4cθa5 sθa2)
+ cθa6(cθa2cθa4 + cθa3 sθa2 sθa4)) + d3(cθa2cθa4 + cθa3 sθa2 sθa4) + d2cθa2)
− cθa1(d f23 s(θ f22 + θ f23) + d f22 sθ f22)

JAH (7, 3) = cθa2cθab(d f21 + d f23c(θ f22 + θ f23) + d f22cθ f22) − sθa1 sθa2(d f23 s(θ f22 + θ f23)
+ d f22 sθ f22) − d3cθa3 sθa1 sθa4 − cθa3cθa6 sθa1 sθa4(d4 + dep)
− sθa1 sθa3 sθa5 sθa6(d4 + dep) − d3cθa1cθa2 sθa3 sθa4 − cθa1cθa2cθa6 sθa3 sθa4(d4

+ dep) + cθa1cθa2cθa3 sθa5 sθa6(d4 + dep) + cθa3cθa4cθa5 sθa1 sθa6(d4 + dep)
+ cθa1cθa2cθa4cθa5 sθa3 sθa6(d4 + dep)

JAH (7, 4) = (cθa1cθa3 − cθa2 sθa1 sθa3)(d f23 s(θ f22 + θ f23) + d f22 sθ f22) + (cθa1cθa3

− cθa2 sθa1 sθa3)((d4 + dep)(sθa6(sθa2 sθa3 sθa5 + cθa2cθa5 sθa4 − cθa3cθa4cθa5 sθa2)
+ cθa6(cθa2cθa4 + cθa3 sθa2 sθa4)) + d3(cθa2cθa4 + cθa3 sθa2 sθa4))
+ sθa2 sθa3(d3(cθa1 sθa3 sθa4 − cθa4 sθa1 sθa2 + cθa2cθa3 sθa1 sθa4) + (d4

+ dep)(cθa6(cθa1 sθa3 sθa4 − cθa4 sθa1 sθa2 + cθa2cθa3 sθa1 sθa4)
− sθa6(cθa5(sθa1 sθa2 sθa4 + cθa1cθa4 sθa3 + cθa2cθa3cθa4 sθa1) + sθa5(cθa1cθa3

− cθa2 sθa1 sθa3)))) − cθabsθa2 sθa3(d f21 + d f23c(θ f22 + θ f23) + d f22cθ f22)
JAH (7, 5) = (d f23 s(θ f22 + θ f23) + d f22 sθ f22)(cθa1 sθa3 sθa4 − cθa4 sθa1 sθa2 + cθa2cθa3 sθa1 sθa4)

+ sθa6(d4 + dep)(cθa3cθa5 sθa1 + cθa1cθa2cθa5 sθa3 + cθa1 sθa2 sθa4 sθa5
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− cθa4 sθa1 sθa3 sθa5 + cθa1cθa2cθa3cθa4 sθa5) + cθab(cθa2cθa4 + cθa3 sθa2 sθa4)(d f21

+ d f23c(θ f22 + θ f23) + d f22cθ f22)
JAH (7, 6) = (sθa5(cθa2 sθa4 − cθa3cθa4 sθa2) − cθa5 sθa2 sθa3)(−d f21cθab − d f22cθ f22cθab

− d f23cθ f22cθ f23cθab + d f23 sθ f22 sθ f23cθab) + (sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1)
+ sθa1 sθa2 sθa4) − cθa5(cθa1cθa3 − cθa2 sθa1 sθa3))(d f22 sθ f22 + d f23cθ f22 sθ f23

+ d f23cθ f23 sθ f22) + (sθa5(cθa2 sθa4 − cθa3cθa4 sθa2) − cθa5 sθa2 sθa3)(d4

+ dep)(cθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2) − sθa6(cθa5(cθa4(cθa1 sθa3

+ cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3 − cθa2 sθa1 sθa3))) + (d4

+ dep)(sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) − cθa5(cθa1cθa3

− cθa2 sθa1 sθa3))(sθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5) + cθa6(cθa2cθa4

+ cθa3 sθa2 sθa4))
JAH (7, 7) = (d f23 s(θ f22 + θ f23) + d f22 sθ f22)(cθa6(cθa1 sθa3 sθa4 − cθa4 sθa1 sθa2 + cθa2cθa3 sθa1 sθa4)

− sθa6(cθa5(sθa1 sθa2 sθa4 + cθa1cθa4 sθa3 + cθa2cθa3cθa4 sθa1) + sθa5(cθa1cθa3

− cθa2 sθa1 sθa3))) + cθab(sθa6(sθa2 sθa3 sθa5 + cθa2cθa5 sθa4 − cθa3cθa4cθa5 sθa2)
+ cθa6(cθa2cθa4 + cθa3 sθa2 sθa4))(d f21 + d f23c(θ f22 + θ f23) + d f22cθ f22)

JAH (7, 8) = JAH (7, 9) = 0
JAH (7, 10) = sθab(cθa7(sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) − cθa5(cθa3 sθa1

+ cθa1cθa2 sθa3)) + sθa7(sθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
+ cθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1

+ cθa1cθa2 sθa3))))(d f21 + d f23c(θ f22 + θ f23) + d f22cθ f22)
− cθab(cθa7(sθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
+ cθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1

+ cθa1cθa2 sθa3))) − sθa7(sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
− cθa5(cθa3 sθa1 + cθa1cθa2 sθa3)))(d f21 + d f23c(θ f22 + θ f23) + d f22cθ f22)

JAH (7, 11) = cθab(d f23 s(θ f22 + θ f23) + d f22 sθ f22)(cθa7(sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3)
− cθa1 sθa2 sθa4) − cθa5(cθa3 sθa1 + cθa1cθa2 sθa3)) + sθa7(sθa6(sθa4(sθa1 sθa3

− cθa1cθa2cθa3) + cθa1cθa4 sθa2) + cθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3)
− cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1 + cθa1cθa2 sθa3)))) − (cθa6(sθa4(sθa1 sθa3

− cθa1cθa2cθa3) + cθa1cθa4 sθa2) − sθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3)
− cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1 + cθa1cθa2 sθa3)))(d f23c(θ f22 + θ f23) + d f22cθ f22)
+ sθab(d f23 s(θ f22 + θ f23) + d f22 sθ f22)(cθa7(sθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3)
+ cθa1cθa4 sθa2) + cθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
+ sθa5(cθa3 sθa1 + cθa1cθa2 sθa3))) − sθa7(sθa5(cθa4(sθa1 sθa3

− cθa1cθa2cθa3) − cθa1 sθa2 sθa4) − cθa5(cθa3 sθa1 + cθa1cθa2 sθa3)))
JAH (7, 12) = d f23 s(θ f22 + θ f23)sθab(cθa7(sθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)

+ cθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1

+ cθa1cθa2 sθa3))) − sθa7(sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
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− cθa5(cθa3 sθa1 + cθa1cθa2 sθa3))) − d f23c(θ f22 + θ f23)(cθa6(sθa4(sθa1 sθa3

− cθa1cθa2cθa3) + cθa1cθa4 sθa2) − sθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3)
− cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1 + cθa1cθa2 sθa3)))
+ d f23 s(θ f22 + θ f23)cθab(cθa7(sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
− cθa5(cθa3 sθa1 + cθa1cθa2 sθa3)) + sθa7(sθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3)
+ cθa1cθa4 sθa2) + cθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
+ sθa5(cθa3 sθa1 + cθa1cθa2 sθa3))))

JAH (7, 13) = JAH (7, 14) = 0
JAH (8, 1) = dp f + d f21 sθab − d3(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2) − (d4

+ dep)(cθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2) − sθa6(cθa5(cθa4(sθa1 sθa3

− cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1 + cθa1cθa2 sθa3))) + d f22cθ f22 sθab

− d2cθa1 sθa2 + d f23cθ f22cθ f23 sθab − d f23 sθabsθ f22 sθ f23

JAH (8, 2) = − sθa1((d4 + dep)(sθa6(sθa2 sθa3 sθa5 + cθa2cθa5 sθa4 − cθa3cθa4cθa5 sθa2)
+ cθa6(cθa2cθa4 + cθa3 sθa2 sθa4)) + d3(cθa2cθa4 + cθa3 sθa2 sθa4) + d2cθa2)
− sθa1(d f23 s(θ f22 + θ f23) + d f22 sθ f22)

JAH (8, 3) = cθa2(dp f + d f21 sθab + d f22cθ f22 sθab + d f23cθ f22cθ f23 sθab − d f23 sθ f22 sθ f23 sθab)
+ cθa1 sθa2(d f23 s(θ f22 + θ f23) + d f22 sθ f22) + d3cθa1cθa3 sθa4 + cθa1 sθa3 sθa5 sθa6(d4

+ dep) − d3cθa2 sθa1 sθa3 sθa4 + cθa1cθa3cθa6 sθa4(d4 + dep)
− cθa1cθa3cθa4cθa5 sθa6(d4 + dep) − cθa2cθa6 sθa1 sθa3 sθa4(d4 + dep)
+ cθa2cθa3 sθa1 sθa5 sθa6(d4 + dep) + cθa2cθa4cθa5 sθa1 sθa3 sθa6(d4 + dep)

JAH (8, 4) = (cθa3 sθa1 + cθa1cθa2 sθa3)(d3(cθa2cθa4 + cθa3 sθa2 sθa4) + (d4

+ dep)(sθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5) + cθa6(cθa2cθa4

+ cθa3 sθa2 sθa4))) + (cθa3 sθa1 + cθa1cθa2 sθa3)(d f22 sθ f22 + d f23cθ f22 sθ f23

+ d f23cθ f23 sθ f22) + sθa2 sθa3(d3(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
+ (d4 + dep)(cθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
− sθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1

+ cθa1cθa2 sθa3)))) − sθa2 sθa3(dp f + d f21 sθab + d f22cθ f22 sθab + d f23cθ f22cθ f23 sθab

− d f23 sθabsθ f22 sθ f23)
JAH (8, 5) = (d f23 s(θ f22 + θ f23) + d f22 sθ f22)(sθa1 sθa3 sθa4 + cθa1cθa4 sθa2 − cθa1cθa2cθa3 sθa4)

+ (cθa2cθa4 + cθa3 sθa2 sθa4)(dp f + d f21 sθab + d f22cθ f22 sθab + d f23cθ f22cθ f23 sθab

− d f23 sθ f22 sθ f23 sθab) + sθa6(d4 + dep)(cθa2cθa5 sθa1 sθa3 − cθa1cθa3cθa5

+ cθa1cθa4 sθa3 sθa5 + sθa1 sθa2 sθa4 sθa5 + cθa2cθa3cθa4 sθa1 sθa5)
JAH (8, 6) = (sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) − cθa5(cθa3 sθa1

+ cθa1cθa2 sθa3))(d f22 sθ f22 + d f23cθ f22 sθ f23 + d f23cθ f23 sθ f22) − (sθa5(cθa2 sθa4

− cθa3cθa4 sθa2) − cθa5 sθa2 sθa3)(dp f + d f21 sθab + d f22cθ f22 sθab + d f23cθ f22cθ f23 sθab

− d f23 sθabsθ f22 sθ f23) + (sθa5(cθa2 sθa4 − cθa3cθa4 sθa2) − cθa5 sθa2 sθa3)(d4

+ dep)(cθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2) − sθa6(cθa5(cθa4(sθa1 sθa3
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− cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1 + cθa1cθa2 sθa3))) + (d4

+ dep)(sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) − cθa5(cθa3 sθa1

+ cθa1cθa2 sθa3))(sθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5) + cθa6(cθa2cθa4

+ cθa3 sθa2 sθa4))
JAH (8, 7) = (sθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5) + cθa6(cθa2cθa4

+ cθa3 sθa2 sθa4))(dp f + d f21 sθab + d f22cθ f22 sθab + d f23cθ f22cθ f23 sθab

− d f23 sθabsθ f22 sθ f23) + (cθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
− sθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1

+ cθa1cθa2 sθa3)))(d f22 sθ f22 + d f23cθ f22 sθ f23 + d f23cθ f23 sθ f22)
JAH (8, 8) = JAH (8, 9) = 0

JAH (8, 10) = cθab(cθa7(sθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2)
+ cθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3

− cθa2 sθa1 sθa3))) − sθa7(sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4)
− cθa5(cθa1cθa3 − cθa2 sθa1 sθa3)))(d f21 + d f23c(θ f22 + θ f23) + d f22cθ f22)
− sθab(cθa7(sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) − cθa5(cθa1cθa3

− cθa2 sθa1 sθa3)) + sθa7(sθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2)
+ cθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3

− cθa2 sθa1 sθa3))))(d f21 + d f23c(θ f22 + θ f23) + d f22cθ f22)
JAH (8, 11) = (d f23c(θ f22 + θ f23) + d f22cθ f22)(cθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2)

− sθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3

− cθa2 sθa1 sθa3))) − cθab(d f23 s(θ f22 + θ f23) + d f22 sθ f22)(cθa7(sθa5(cθa4(cθa1 sθa3

+ cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) − cθa5(cθa1cθa3 − cθa2 sθa1 sθa3))
+ sθa7(sθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2) + cθa6(cθa5(cθa4(cθa1 sθa3

+ cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3 − cθa2 sθa1 sθa3))))
− sθab(d f23 s(θ f22 + θ f23) + d f22 sθ f22)(cθa7(sθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1)
− cθa4 sθa1 sθa2) + cθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4)
+ sθa5(cθa1cθa3 − cθa2 sθa1 sθa3))) − sθa7(sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1)
+ sθa1 sθa2 sθa4) − cθa5(cθa1cθa3 − cθa2 sθa1 sθa3)))

JAH (8, 12) = d f23c(θ f22 + θ f23)(cθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2)
− sθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3

− cθa2 sθa1 sθa3))) − d f23 s(θ f22 + θ f23)cθab(cθa7(sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1)
+ sθa1 sθa2 sθa4) − cθa5(cθa1cθa3 − cθa2 sθa1 sθa3)) + sθa7(sθa6(sθa4(cθa1 sθa3

+ cθa2cθa3 sθa1) − cθa4 sθa1 sθa2) + cθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1)
+ sθa1 sθa2 sθa4) + sθa5(cθa1cθa3 − cθa2 sθa1 sθa3))))
− d f23 s(θ f22 + θ f23)sθab(cθa7(sθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2)
+ cθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3

− cθa2 sθa1 sθa3))) − sθa7(sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4)
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− cθa5(cθa1cθa3 − cθa2 sθa1 sθa3)))
JAH (8, 13) = JAH (8, 14) = 0
JAH (9, 1) = 0
JAH (9, 2) = cθa1(dp f + d f21 sθab + d f22cθ f22 sθab + d f23cθ f22cθ f23 sθab − d f23 sθ f22 sθ f23 sθab)

− d2sθa2 − d3cθa4 sθa2 − cθabsθa1(d f21 + d f23c(θ f22 + θ f23) + d f22cθ f22)
− cθa4cθa6 sθa2(d4 + dep) + d3cθa2cθa3 sθa4 + cθa2 sθa3 sθa5 sθa6(d4 + dep)
− cθa5 sθa2 sθa4 sθa6(d4 + dep) + cθa2cθa3cθa6 sθa4(d4 + dep)
− cθa2cθa3cθa4cθa5 sθa6(d4 + dep)

JAH (9, 3) = sθa1 sθa2(dp f + d f21 sθab + d f22cθ f22 sθab + d f23cθ f22cθ f23 sθab − d f23 sθ f22 sθ f23 sθab)
− sθa2(d3sθa3 sθa4 + cθa6 sθa3 sθa4(d4 + dep) − cθa3 sθa5 sθa6(d4 + dep)
− cθa4cθa5 sθa3 sθa6(d4 + dep)) + cθa1cθabsθa2(d f21 + d f23c(θ f22 + θ f23) + d f22cθ f22)

JAH (9, 4) = cθab(cθa3 sθa1 + cθa1cθa2 sθa3)(d f21 + d f23c(θ f22 + θ f23) + d f22cθ f22) − (cθa1cθa3

− cθa2 sθa1 sθa3)(dp f + d f21 sθab + d f22cθ f22 sθab + d f23cθ f22cθ f23 sθab

− d f23 sθ f22 sθ f23 sθab) − d3cθa2 sθa4 − cθa2cθa6 sθa4(d4 + dep) + d3cθa3cθa4 sθa2

+ cθa3cθa4cθa6 sθa2(d4 + dep) + cθa2cθa4cθa5 sθa6(d4 + dep)
+ cθa3cθa5 sθa2 sθa4 sθa6(d4 + dep)

JAH (9, 5) = cθab(sθa1 sθa3 sθa4 + cθa1cθa4 sθa2 − cθa1cθa2cθa3 sθa4)(d f21 + d f23c(θ f22 + θ f23)
+ d f22cθ f22) − (cθa1 sθa3 sθa4 − cθa4 sθa1 sθa2 + cθa2cθa3 sθa1 sθa4)(dp f + d f21 sθab

+ d f22cθ f22 sθab + d f23cθ f22cθ f23 sθab − d f23 sθ f22 sθ f23 sθab) + sθa6(d4

+ dep)(cθa5 sθa2 sθa3 − cθa2 sθa4 sθa5 + cθa3cθa4 sθa2 sθa5)
JAH (9, 6) = − (d4 + dep)(cθa2cθa4 sθa6 − cθa2cθa5cθa6 sθa4 + cθa3 sθa2 sθa4 sθa6 − cθa6 sθa2 sθa3 sθa5

+ cθa3cθa4cθa5cθa6 sθa2) − (sθa5(sθa1 sθa2 sθa4 + cθa1cθa4 sθa3 + cθa2cθa3cθa4 sθa1)
− cθa5(cθa1cθa3 − cθa2 sθa1 sθa3))(dp f + d f21 sθab + d f22cθ f22 sθab + d f23cθ f22cθ f23 sθab

− d f23 sθ f22 sθ f23 sθab) − cθab(sθa5(cθa1 sθa2 sθa4 − cθa4 sθa1 sθa3 + cθa1cθa2cθa3cθa4)
+ cθa5(cθa3 sθa1 + cθa1cθa2 sθa3))(d f21 + d f23c(θ f22 + θ f23) + d f22cθ f22)

JAH (9, 7) = cθab(cθa6(sθa1 sθa3 sθa4 + cθa1cθa4 sθa2 − cθa1cθa2cθa3 sθa4) + sθa6(cθa5(cθa1 sθa2 sθa4

− cθa4 sθa1 sθa3 + cθa1cθa2cθa3cθa4) − sθa5(cθa3 sθa1 + cθa1cθa2 sθa3)))(d f21

+ d f23c(θ f22 + θ f23) + d f22cθ f22) − (cθa6(cθa1 sθa3 sθa4 − cθa4 sθa1 sθa2

+ cθa2cθa3 sθa1 sθa4) − sθa6(cθa5(sθa1 sθa2 sθa4 + cθa1cθa4 sθa3 + cθa2cθa3cθa4 sθa1)
+ sθa5(cθa1cθa3 − cθa2 sθa1 sθa3)))(dp f + d f21 sθab + d f22cθ f22 sθab

+ d f23cθ f22cθ f23 sθab − d f23 sθ f22 sθ f23 sθab)
JAH (9, 8) = JAH (9, 9) = 0

JAH (9, 10) = cθab(sθa7(sθa5(cθa2 sθa4 − cθa3cθa4 sθa2) − cθa5 sθa2 sθa3) − cθa7(cθa6(cθa5(cθa2 sθa4

− cθa3cθa4 sθa2) + sθa2 sθa3 sθa5) − sθa6(cθa2cθa4 + cθa3 sθa2 sθa4)))(d f21

+ d f23c(θ f22 + θ f23) + d f22cθ f22) + sθab(cθa7(sθa5(cθa2 sθa4 − cθa3cθa4 sθa2)
− cθa5 sθa2 sθa3) + sθa7(cθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5)
− sθa6(cθa2cθa4 + cθa3 sθa2 sθa4)))(d f21 + d f23c(θ f22 + θ f23) + d f22cθ f22)
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JAH (9, 11) = (d f23c(θ f22 + θ f23) + d f22cθ f22)(sθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5)
+ cθa6(cθa2cθa4 + cθa3 sθa2 sθa4)) + cθab(cθa7(sθa5(cθa2 sθa4 − cθa3cθa4 sθa2)
− cθa5 sθa2 sθa3) + sθa7(cθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5)
− sθa6(cθa2cθa4 + cθa3 sθa2 sθa4)))(d f23 s(θ f22 + θ f23) + d f22 sθ f22)
− sθab(sθa7(sθa5(cθa2 sθa4 − cθa3cθa4 sθa2) − cθa5 sθa2 sθa3)
− cθa7(cθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5) − sθa6(cθa2cθa4

+ cθa3 sθa2 sθa4)))(d f23 s(θ f22 + θ f23) + d f22 sθ f22)
JAH (9, 12) = d f23c(θ f22 + θ f23)(sθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5)

+ cθa6(cθa2cθa4 + cθa3 sθa2 sθa4)) + d f23 s(θ f22 + θ f23)cθab(cθa7(sθa5(cθa2 sθa4

− cθa3cθa4 sθa2) − cθa5 sθa2 sθa3) + sθa7(cθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2)
+ sθa2 sθa3 sθa5) − sθa6(cθa2cθa4 + cθa3 sθa2 sθa4)))
− d f23 s(θ f22 + θ f23)sθab(sθa7(sθa5(cθa2 sθa4 − cθa3cθa4 sθa2) − cθa5 sθa2 sθa3)
− cθa7(cθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5) − sθa6(cθa2cθa4

+ cθa3 sθa2 sθa4)))
JAH (9, 13) = JAH (9, 14) = 0
JAH (10, 1) = 0
JAH (10, 2) = sθa1

JAH (10, 3) = − cθa1 sθa2

JAH (10, 4) = − cθa3 sθa1 − cθa1cθa2 sθa3

JAH (10, 5) = − sθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1cθa4 sθa2

JAH (10, 6) = cθa5(cθa3 sθa1 + cθa1cθa2 sθa3) − sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
JAH (10, 7) = sθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1

+ cθa1cθa2 sθa3)) − cθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
JAH (10, 8) = JAH (10, 9) = 0

JAH (10, 10) = sθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1

+ cθa1cθa2 sθa3)) − cθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
JAH (10, 11) = cθab(cθa7(sθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)

+ cθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1

+ cθa1cθa2 sθa3))) − sθa7(sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
− cθa5(cθa3 sθa1 + cθa1cθa2 sθa3))) − sθab(cθa7(sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3)
− cθa1 sθa2 sθa4) − cθa5(cθa3 sθa1 + cθa1cθa2 sθa3)) + sθa7(sθa6(sθa4(sθa1 sθa3

− cθa1cθa2cθa3) + cθa1cθa4 sθa2) + cθa6(cθa5(cθa4(sθa1 sθa3

− cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1 + cθa1cθa2 sθa3))))
JAH (10, 12) = cθab(cθa7(sθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)

+ cθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1

+ cθa1cθa2 sθa3))) − sθa7(sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
− cθa5(cθa3 sθa1 + cθa1cθa2 sθa3))) − sθab(cθa7(sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3)
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− cθa1 sθa2 sθa4) − cθa5(cθa3 sθa1 + cθa1cθa2 sθa3)) + sθa7(sθa6(sθa4(sθa1 sθa3

− cθa1cθa2cθa3) + cθa1cθa4 sθa2) + cθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3)
− cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1 + cθa1cθa2 sθa3))))

JAH (10, 13) = JAH (10, 14) = 0
JAH (11, 1) = 0
JAH (11, 2) = − cθa1

JAH (11, 3) = − sθa1 sθa2

JAH (11, 4) = cθa1cθa3 − cθa2 sθa1 sθa3

JAH (11, 5) = sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2

JAH (11, 6) = sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) − cθa5(cθa1cθa3 − cθa2 sθa1 sθa3)
JAH (11, 7) = cθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2) − sθa6(cθa5(cθa4(cθa1 sθa3

+ cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3 − cθa2 sθa1 sθa3))
JAH (11, 8) = JAH (11, 9) = 0

JAH (11, 10) = cθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2) − sθa6(cθa5(cθa4(cθa1 sθa3

+ cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3 − cθa2 sθa1 sθa3))
JAH (11, 11) = sθab(cθa7(sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) − cθa5(cθa1cθa3

− cθa2 sθa1 sθa3)) + sθa7(sθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2)
+ cθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3

− cθa2 sθa1 sθa3)))) − cθab(cθa7(sθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2)
+ cθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3

− cθa2 sθa1 sθa3))) − sθa7(sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4)
− cθa5(cθa1cθa3 − cθa2 sθa1 sθa3)))

JAH (11, 12) = sθab(cθa7(sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) − cθa5(cθa1cθa3

− cθa2 sθa1 sθa3)) + sθa7(sθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2)
+ cθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3

− cθa2 sθa1 sθa3)))) − cθab(cθa7(sθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2)
+ cθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3

− cθa2 sθa1 sθa3))) − sθa7(sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4)
− cθa5(cθa1cθa3 − cθa2 sθa1 sθa3)))

JAH (11, 13) = JAH (11, 14) = 0
JAH (12, 1) = 1
JAH (12, 2) = 0
JAH (12, 3) = cθa2

JAH (12, 4) = − sθa2 sθa3

JAH (12, 5) = cθa2cθa4 + cθa3 sθa2 sθa4

JAH (12, 6) = cθa5 sθa2 sθa3 − sθa5(cθa2 sθa4 − cθa3cθa4 sθa2)
JAH (12, 7) = sθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5) + cθa6(cθa2cθa4 + cθa3 sθa2 sθa4)
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JAH (12, 8) = JAH (12, 9) = 0
JAH (12, 10) = sθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5) + cθa6(cθa2cθa4 + cθa3 sθa2 sθa4)
JAH (12, 11) = − cθab(sθa7(sθa5(cθa2 sθa4 − cθa3cθa4 sθa2) − cθa5 sθa2 sθa3)

− cθa7(cθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5) − sθa6(cθa2cθa4

+ cθa3 sθa2 sθa4))) − sθab(cθa7(sθa5(cθa2 sθa4 − cθa3cθa4 sθa2) − cθa5 sθa2 sθa3)
+ sθa7(cθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5) − sθa6(cθa2cθa4

+ cθa3 sθa2 sθa4)))
JAH (12, 12) = − cθab(sθa7(sθa5(cθa2 sθa4 − cθa3cθa4 sθa2) − cθa5 sθa2 sθa3) − cθa7(cθa6(cθa5(cθa2 sθa4

− cθa3cθa4 sθa2) + sθa2 sθa3 sθa5) − sθa6(cθa2cθa4 + cθa3 sθa2 sθa4)))
− sθab(cθa7(sθa5(cθa2 sθa4 − cθa3cθa4 sθa2) − cθa5 sθa2 sθa3) + sθa7(cθa6(cθa5(cθa2 sθa4

− cθa3cθa4 sθa2) + sθa2 sθa3 sθa5) − sθa6(cθa2cθa4 + cθa3 sθa2 sθa4)))
JAH (12, 13) = JAH (12, 14) = 0
JAH (13, 1) = d f31cθab − d3(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2) − (d4

+ dep)(cθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2)
− sθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3

− cθa2 sθa1 sθa3))) + d f32cθ f32cθab + d2sθa1 sθa2 + d f33cθ f32cθ f33cθab

− d f33 sθ f32 sθ f33cθab

JAH (13, 2) = − cθa1((d4 + dep)(sθa6(sθa2 sθa3 sθa5 + cθa2cθa5 sθa4 − cθa3cθa4cθa5 sθa2)
+ cθa6(cθa2cθa4 + cθa3 sθa2 sθa4)) + d3(cθa2cθa4 + cθa3 sθa2 sθa4) + d2cθa2)
− cθa1(d f33 s(θ f32 + θ f33) + d f32 sθ f32)

JAH (13, 3) = cθa2cθab(d f31 + d f33c(θ f32 + θ f33) + d f32cθ f32) − sθa1 sθa2(d f33 s(θ f32 + θ f33)
+ d f32 sθ f32) − d3cθa3 sθa1 sθa4 − cθa3cθa6 sθa1 sθa4(d4 + dep)
− sθa1 sθa3 sθa5 sθa6(d4 + dep) − d3cθa1cθa2 sθa3 sθa4

− cθa1cθa2cθa6 sθa3 sθa4(d4 + dep) + cθa1cθa2cθa3 sθa5 sθa6(d4 + dep)
+ cθa3cθa4cθa5 sθa1 sθa6(d4 + dep) + cθa1cθa2cθa4cθa5 sθa3 sθa6(d4 + dep)

JAH (13, 4) = (cθa1cθa3 − cθa2 sθa1 sθa3)(d f33 s(θ f32 + θ f33) + d f32 sθ f32) + (cθa1cθa3

− cθa2 sθa1 sθa3)((d4 + dep)(sθa6(sθa2 sθa3 sθa5 + cθa2cθa5 sθa4

− cθa3cθa4cθa5 sθa2) + cθa6(cθa2cθa4 + cθa3 sθa2 sθa4)) + d3(cθa2cθa4

+ cθa3 sθa2 sθa4)) + sθa2 sθa3(d3(cθa1 sθa3 sθa4 − cθa4 sθa1 sθa2

+ cθa2cθa3 sθa1 sθa4) + (d4 + dep)(cθa6(cθa1 sθa3 sθa4 − cθa4 sθa1 sθa2

+ cθa2cθa3 sθa1 sθa4) − sθa6(cθa5(sθa1 sθa2 sθa4 + cθa1cθa4 sθa3

+ cθa2cθa3cθa4 sθa1) + sθa5(cθa1cθa3 − cθa2 sθa1 sθa3)))) − cθabsθa2 sθa3(d f31

+ d f33c(θ f32 + θ f33) + d f32cθ f32)
JAH (13, 5) = (d f33 s(θ f32 + θ f33) + d f32 sθ f32)(cθa1 sθa3 sθa4 − cθa4 sθa1 sθa2 + cθa2cθa3 sθa1 sθa4)

+ sθa6(d4 + dep)(cθa3cθa5 sθa1 + cθa1cθa2cθa5 sθa3 + cθa1 sθa2 sθa4 sθa5

− cθa4 sθa1 sθa3 sθa5 + cθa1cθa2cθa3cθa4 sθa5) + cθab(cθa2cθa4 + cθa3 sθa2 sθa4)(d f31

+ d f33c(θ f32 + θ f33) + d f32cθ f32)
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JAH (13, 6) = (sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) − cθa5(cθa1cθa3

− cθa2 sθa1 sθa3))(d f32 sθ f32 + d f33cθ f32 sθ f33 + d f33cθ f33 sθ f32) − (sθa5(cθa2 sθa4

− cθa3cθa4 sθa2) − cθa5 sθa2 sθa3)(d f31cθab + d f32cθ f32cθab + d f33cθ f32cθ f33cθab

− d f33 sθ f32 sθ f33cθab) + (sθa5(cθa2 sθa4 − cθa3cθa4 sθa2) − cθa5 sθa2 sθa3)(d4

+ dep)(cθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2)
− sθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3

− cθa2 sθa1 sθa3))) + (d4 + dep)(sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1)
+ sθa1 sθa2 sθa4) − cθa5(cθa1cθa3 − cθa2 sθa1 sθa3))(sθa6(cθa5(cθa2 sθa4

− cθa3cθa4 sθa2) + sθa2 sθa3 sθa5) + cθa6(cθa2cθa4 + cθa3 sθa2 sθa4))
JAH (13, 7) = (d f33 s(θ f32 + θ f33) + d f32 sθ f32)(cθa6(cθa1 sθa3 sθa4 − cθa4 sθa1 sθa2

+ cθa2cθa3 sθa1 sθa4) − sθa6(cθa5(sθa1 sθa2 sθa4 + cθa1cθa4 sθa3

+ cθa2cθa3cθa4 sθa1) + sθa5(cθa1cθa3 − cθa2 sθa1 sθa3))) + cθab(sθa6(sθa2 sθa3 sθa5

+ cθa2cθa5 sθa4 − cθa3cθa4cθa5 sθa2) + cθa6(cθa2cθa4 + cθa3 sθa2 sθa4))(d f31

+ d f33c(θ f32 + θ f33) + d f32cθ f32)
JAH (13, 8) = JAH (13, 9) = 0

JAH (13, 10) = cθab(cθa7(sθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
+ cθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1

+ cθa1cθa2 sθa3))) − sθa7(sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
− cθa5(cθa3 sθa1 + cθa1cθa2 sθa3)))(d f31 + d f33c(θ f32 + θ f33) + d f32cθ f32)
+ sθab(cθa7(sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) − cθa5(cθa3 sθa1

+ cθa1cθa2 sθa3)) + sθa7(sθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
+ cθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1

+ cθa1cθa2 sθa3))))(d f31 + d f33c(θ f32 + θ f33) + d f32cθ f32)
JAH (13, 11) = JAH (13, 12) = 0
JAH (13, 13) = cθab(d f33 s(θ f32 + θ f33) + d f32 sθ f32)(cθa7(sθa5(cθa4(sθa1 sθa3

− cθa1cθa2cθa3) − cθa1 sθa2 sθa4) − cθa5(cθa3 sθa1 + cθa1cθa2 sθa3))
+ sθa7(sθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
+ cθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1

+ cθa1cθa2 sθa3)))) − (cθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
− sθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1

+ cθa1cθa2 sθa3)))(d f33c(θ f32 + θ f33) + d f32cθ f32) − sθab(d f33 s(θ f32 + θ f33)
+ d f32 sθ f32)(cθa7(sθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
+ cθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1

+ cθa1cθa2 sθa3))) − sθa7(sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
− cθa5(cθa3 sθa1 + cθa1cθa2 sθa3)))

JAH (13, 14) = d f33 s(θ f32 + θ f33)cθab(cθa7(sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
− cθa5(cθa3 sθa1 + cθa1cθa2 sθa3)) + sθa7(sθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3)
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+ cθa1cθa4 sθa2) + cθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
+ sθa5(cθa3 sθa1 + cθa1cθa2 sθa3)))) − d f33 s(θ f32 + θ f33)sθab(cθa7(sθa6(sθa4(sθa1 sθa3

− cθa1cθa2cθa3) + cθa1cθa4 sθa2) + cθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3)
− cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1 + cθa1cθa2 sθa3))) − sθa7(sθa5(cθa4(sθa1 sθa3

− cθa1cθa2cθa3) − cθa1 sθa2 sθa4) − cθa5(cθa3 sθa1 + cθa1cθa2 sθa3)))
− d f33c(θ f32 + θ f33)(cθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
− sθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
+ sθa5(cθa3 sθa1 + cθa1cθa2 sθa3)))

JAH (14, 1) = d f31 sθab − dp f − d3(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2) − (d4

+ dep)(cθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
− sθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1

+ cθa1cθa2 sθa3))) + d f32cθ f32 sθab − d2cθa1 sθa2 + d f33cθ f32cθ f33 sθab

− d f33 sθabsθ f32 sθ f33

JAH (14, 2) = − sθa1((d4 + dep)(sθa6(sθa2 sθa3 sθa5 + cθa2cθa5 sθa4 − cθa3cθa4cθa5 sθa2)
+ cθa6(cθa2cθa4 + cθa3 sθa2 sθa4)) + d3(cθa2cθa4 + cθa3 sθa2 sθa4) + d2cθa2)
− sθa1(d f33 s(θ f32 + θ f33) + d f32 sθ f32)

JAH (14, 3) = cθa1 sθa2(d f33 s(θ f32 + θ f33) + d f32 sθ f32) − cθa2(dp f + d f31 sθab + d f32cθ f32 sθab

+ d f33cθ f32cθ f33 sθab − d f33 sθ f32 sθ f33 sθab) + d3cθa1cθa3 sθa4 + cθa1 sθa3 sθa5 sθa6(d4

+ dep) − d3cθa2 sθa1 sθa3 sθa4 + cθa1cθa3cθa6 sθa4(d4 + dep)
− cθa1cθa3cθa4cθa5 sθa6(d4 + dep) − cθa2cθa6 sθa1 sθa3 sθa4(d4 + dep)
+ cθa2cθa3 sθa1 sθa5 sθa6(d4 + dep) + cθa2cθa4cθa5 sθa1 sθa3 sθa6(d4 + dep)

JAH (14, 4) = (cθa3 sθa1 + cθa1cθa2 sθa3)(d3(cθa2cθa4 + cθa3 sθa2 sθa4) + (d4

+ dep)(sθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5) + cθa6(cθa2cθa4

+ cθa3 sθa2 sθa4))) + (cθa3 sθa1 + cθa1cθa2 sθa3)(d f32 sθ f32 + d f33cθ f32 sθ f33

+ d f33cθ f33 sθ f32) + sθa2 sθa3(d3(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
+ (d4 + dep)(cθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
− sθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1

+ cθa1cθa2 sθa3)))) − sθa2 sθa3(d f31 sθab − dp f + d f32cθ f32 sθab

+ d f33cθ f32cθ f33 sθab − d f33 sθabsθ f32 sθ f33)
JAH (14, 5) = (d f33 s(θ f32 + θ f33) + d f32 sθ f32)(sθa1 sθa3 sθa4 + cθa1cθa4 sθa2 − cθa1cθa2cθa3 sθa4)

− (cθa2cθa4 + cθa3 sθa2 sθa4)(dp f + d f31 sθab + d f32cθ f32 sθab + d f33cθ f32cθ f33 sθab

− d f33 sθ f32 sθ f33 sθab) + sθa6(d4 + dep)(cθa2cθa5 sθa1 sθa3 − cθa1cθa3cθa5

+ cθa1cθa4 sθa3 sθa5 + sθa1 sθa2 sθa4 sθa5 + cθa2cθa3cθa4 sθa1 sθa5)
JAH (14, 6) = (sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) − cθa5(cθa3 sθa1

+ cθa1cθa2 sθa3))(d f32 sθ f32 + d f33cθ f32 sθ f33 + d f33cθ f33 sθ f32) − (sθa5(cθa2 sθa4

− cθa3cθa4 sθa2) − cθa5 sθa2 sθa3)(d f31 sθab − dp f + d f32cθ f32 sθab

+ d f33cθ f32cθ f33 sθab − d f33 sθabsθ f32 sθ f33) + (sθa5(cθa2 sθa4 − cθa3cθa4 sθa2)
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− cθa5 sθa2 sθa3)(d4 + dep)(cθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
− sθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1

+ cθa1cθa2 sθa3))) + (d4 + dep)(sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3)
− cθa1 sθa2 sθa4) − cθa5(cθa3 sθa1 + cθa1cθa2 sθa3))(sθa6(cθa5(cθa2 sθa4

− cθa3cθa4 sθa2) + sθa2 sθa3 sθa5) + cθa6(cθa2cθa4 + cθa3 sθa2 sθa4))
JAH (14, 7) = (cθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2) − sθa6(cθa5(cθa4(sθa1 sθa3

− cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1 + cθa1cθa2 sθa3)))(d f32 sθ f32

+ d f33cθ f32 sθ f33 + d f33cθ f33 sθ f32) + (sθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2)
+ sθa2 sθa3 sθa5) + cθa6(cθa2cθa4 + cθa3 sθa2 sθa4))(d f31 sθab − dp f + d f32cθ f32 sθab

+ d f33cθ f32cθ f33 sθab − d f33 sθabsθ f32 sθ f33)
JAH (14, 8) = JAH (14, 9) = 0

JAH (14, 10) = − cθab(cθa7(sθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2)
+ cθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3

− cθa2 sθa1 sθa3))) − sθa7(sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4)
− cθa5(cθa1cθa3 − cθa2 sθa1 sθa3)))(d f31 + d f33c(θ f32 + θ f33) + d f32cθ f32)
− sθab(cθa7(sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) − cθa5(cθa1cθa3

− cθa2 sθa1 sθa3)) + sθa7(sθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2)
+ cθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3

− cθa2 sθa1 sθa3))))(d f31 + d f33c(θ f32 + θ f33) + d f32cθ f32)
JAH (14, 11) = JAH (14, 12) = 0
JAH (14, 13) = (d f33c(θ f32 + θ f33) + d f32cθ f32)(cθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1)

− cθa4 sθa1 sθa2) − sθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4)
+ sθa5(cθa1cθa3 − cθa2 sθa1 sθa3))) − cθab(d f33 s(θ f32 + θ f33)
+ d f32 sθ f32)(cθa7(sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4)
− cθa5(cθa1cθa3 − cθa2 sθa1 sθa3)) + sθa7(sθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1)
− cθa4 sθa1 sθa2) + cθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4)
+ sθa5(cθa1cθa3 − cθa2 sθa1 sθa3)))) + sθab(d f33 s(θ f32 + θ f33)
+ d f32 sθ f32)(cθa7(sθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2)
+ cθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3

− cθa2 sθa1 sθa3))) − sθa7(sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4)
− cθa5(cθa1cθa3 − cθa2 sθa1 sθa3)))

JAH (14, 14) = d f33c(θ f32 + θ f33)(cθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2)
− sθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3

− cθa2 sθa1 sθa3))) − d f33 s(θ f32 + θ f33)cθab(cθa7(sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1)
+ sθa1 sθa2 sθa4) − cθa5(cθa1cθa3 − cθa2 sθa1 sθa3)) + sθa7(sθa6(sθa4(cθa1 sθa3

+ cθa2cθa3 sθa1) − cθa4 sθa1 sθa2) + cθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1)
+ sθa1 sθa2 sθa4) + sθa5(cθa1cθa3 − cθa2 sθa1 sθa3))))
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+ d f33 s(θ f32 + θ f33)sθab(cθa7(sθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2)
+ cθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3

− cθa2 sθa1 sθa3))) − sθa7(sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4)
− cθa5(cθa1cθa3 − cθa2 sθa1 sθa3)))

JAH (15, 1) = 0
JAH (15, 2) = d3cθa2cθa3 sθa4 − d2sθa2 − d3cθa4 sθa2 − cθabsθa1(d f31 + d f33c(θ f32 + θ f33)

+ d f32cθ f32) − cθa4cθa6 sθa2(d4 + dep) − cθa1(dp f + d f31 sθab + d f32cθ f32 sθab

+ d f33cθ f32cθ f33 sθab − d f33 sθ f32 sθ f33 sθab) + cθa2 sθa3 sθa5 sθa6(d4 + dep)
− cθa5 sθa2 sθa4 sθa6(d4 + dep) + cθa2cθa3cθa6 sθa4(d4 + dep)
− cθa2cθa3cθa4cθa5 sθa6(d4 + dep)

JAH (15, 3) = cθa1cθabsθa2(d f31 + d f33c(θ f32 + θ f33) + d f32cθ f32) − sθa1 sθa2(dp f + d f31 sθab

+ d f32cθ f32 sθab + d f33cθ f32cθ f33 sθab − d f33 sθ f32 sθ f33 sθab) − sθa2(d3sθa3 sθa4

+ cθa6 sθa3 sθa4(d4 + dep) − cθa3 sθa5 sθa6(d4 + dep) − cθa4cθa5 sθa3 sθa6(d4 + dep))
JAH (15, 4) = (cθa1cθa3 − cθa2 sθa1 sθa3)(dp f + d f31 sθab + d f32cθ f32 sθab + d f33cθ f32cθ f33 sθab

− d f33 sθ f32 sθ f33 sθab) + cθab(cθa3 sθa1 + cθa1cθa2 sθa3)(d f31 + d f33c(θ f32 + θ f33)
+ d f32cθ f32) − d3cθa2 sθa4 − cθa2cθa6 sθa4(d4 + dep) + d3cθa3cθa4 sθa2

+ cθa3cθa4cθa6 sθa2(d4 + dep) + cθa2cθa4cθa5 sθa6(d4 + dep)
+ cθa3cθa5 sθa2 sθa4 sθa6(d4 + dep)

JAH (15, 5) = (cθa1 sθa3 sθa4 − cθa4 sθa1 sθa2 + cθa2cθa3 sθa1 sθa4)(dp f + d f31 sθab

+ d f32cθ f32 sθab + d f33cθ f32cθ f33 sθab − d f33 sθ f32 sθ f33 sθab) + cθab(sθa1 sθa3 sθa4

+ cθa1cθa4 sθa2 − cθa1cθa2cθa3 sθa4)(d f31 + d f33c(θ f32 + θ f33) + d f32cθ f32)
+ sθa6(d4 + dep)(cθa5 sθa2 sθa3 − cθa2 sθa4 sθa5 + cθa3cθa4 sθa2 sθa5)

JAH (15, 6) = (sθa5(sθa1 sθa2 sθa4 + cθa1cθa4 sθa3 + cθa2cθa3cθa4 sθa1) − cθa5(cθa1cθa3

− cθa2 sθa1 sθa3))(dp f + d f31 sθab + d f32cθ f32 sθab + d f33cθ f32cθ f33 sθab

− d f33 sθ f32 sθ f33 sθab) − (d4 + dep)(cθa2cθa4 sθa6 − cθa2cθa5cθa6 sθa4

+ cθa3 sθa2 sθa4 sθa6 − cθa6 sθa2 sθa3 sθa5 + cθa3cθa4cθa5cθa6 sθa2)
− cθab(sθa5(cθa1 sθa2 sθa4 − cθa4 sθa1 sθa3 + cθa1cθa2cθa3cθa4) + cθa5(cθa3 sθa1

+ cθa1cθa2 sθa3))(d f31 + d f33c(θ f32 + θ f33) + d f32cθ f32)
JAH (15, 7) = (cθa6(cθa1 sθa3 sθa4 − cθa4 sθa1 sθa2 + cθa2cθa3 sθa1 sθa4) − sθa6(cθa5(sθa1 sθa2 sθa4

+ cθa1cθa4 sθa3 + cθa2cθa3cθa4 sθa1) + sθa5(cθa1cθa3 − cθa2 sθa1 sθa3)))(dp f

+ d f31 sθab + d f32cθ f32 sθab + d f33cθ f32cθ f33 sθab − d f33 sθ f32 sθ f33 sθab)
+ cθab(cθa6(sθa1 sθa3 sθa4 + cθa1cθa4 sθa2 − cθa1cθa2cθa3 sθa4)
+ sθa6(cθa5(cθa1 sθa2 sθa4 − cθa4 sθa1 sθa3 + cθa1cθa2cθa3cθa4)
− sθa5(cθa3 sθa1 + cθa1cθa2 sθa3)))(d f31 + d f33c(θ f32 + θ f33) + d f32cθ f32)

JAH (15, 8) = JAH (15, 9) = 0
JAH (15, 10) = sθab(cθa7(sθa5(cθa2 sθa4 − cθa3cθa4 sθa2) − cθa5 sθa2 sθa3)

+ sθa7(cθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5) − sθa6(cθa2cθa4
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+ cθa3 sθa2 sθa4)))(d f31 + d f33c(θ f32 + θ f33) + d f32cθ f32) − cθab(sθa7(sθa5(cθa2 sθa4

− cθa3cθa4 sθa2) − cθa5 sθa2 sθa3) − cθa7(cθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2)
+ sθa2 sθa3 sθa5) − sθa6(cθa2cθa4 + cθa3 sθa2 sθa4)))(d f31

+ d f33c(θ f32 + θ f33) + d f32cθ f32)
JAH (15, 11) = JAH (15, 12) = 0
JAH (15, 13) = (d f33c(θ f32 + θ f33) + d f32cθ f32)(sθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2)

+ sθa2 sθa3 sθa5) + cθa6(cθa2cθa4 + cθa3 sθa2 sθa4)) + cθab(cθa7(sθa5(cθa2 sθa4

− cθa3cθa4 sθa2) − cθa5 sθa2 sθa3) + sθa7(cθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2)
+ sθa2 sθa3 sθa5) − sθa6(cθa2cθa4 + cθa3 sθa2 sθa4)))(d f33 s(θ f32 + θ f33) + d f32 sθ f32)
+ sθab(sθa7(sθa5(cθa2 sθa4 − cθa3cθa4 sθa2) − cθa5 sθa2 sθa3)
− cθa7(cθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5) − sθa6(cθa2cθa4

+ cθa3 sθa2 sθa4)))(d f33 s(θ f32 + θ f33) + d f32 sθ f32)
JAH (15, 14) = d f33c(θ f32 + θ f33)(sθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5)

+ cθa6(cθa2cθa4 + cθa3 sθa2 sθa4)) + d f33 s(θ f32 + θ f33)cθab(cθa7(sθa5(cθa2 sθa4

− cθa3cθa4 sθa2) − cθa5 sθa2 sθa3) + sθa7(cθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2)
+ sθa2 sθa3 sθa5) − sθa6(cθa2cθa4 + cθa3 sθa2 sθa4)))
+ d f33 s(θ f32 + θ f33)sθab(sθa7(sθa5(cθa2 sθa4 − cθa3cθa4 sθa2) − cθa5 sθa2 sθa3)
− cθa7(cθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5)
− sθa6(cθa2cθa4 + cθa3 sθa2 sθa4)))

JAH (16, 1) = 0
JAH (16, 2) = sθa1

JAH (16, 3) = − cθa1 sθa2

JAH (16, 4) = − cθa3 sθa1 − cθa1cθa2 sθa3

JAH (16, 5) = − sθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1cθa4 sθa2

JAH (16, 6) = cθa5(cθa3 sθa1 + cθa1cθa2 sθa3) − sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
JAH (16, 7) = sθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1

+ cθa1cθa2 sθa3)) − cθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
JAH (16, 8) = JAH (16, 9) = 0

JAH (16, 10) = cθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2) − sθa6(cθa5(cθa4(sθa1 sθa3

− cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1 + cθa1cθa2 sθa3))
JAH (16, 11) = JAH (16, 12) = 0
JAH (16, 13) = cθab(cθa7(sθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)

+ cθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1

+ cθa1cθa2 sθa3))) − sθa7(sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
− cθa5(cθa3 sθa1 + cθa1cθa2 sθa3))) − c(thetaab + pi/2)(cθa7(sθa5(cθa4(sθa1 sθa3

− cθa1cθa2cθa3) − cθa1 sθa2 sθa4) − cθa5(cθa3 sθa1 + cθa1cθa2 sθa3))
+ sθa7(sθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
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+ cθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
+ sθa5(cθa3 sθa1 + cθa1cθa2 sθa3))))

JAH (16, 14) = cθab(cθa7(sθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
+ cθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4) + sθa5(cθa3 sθa1

+ cθa1cθa2 sθa3))) − sθa7(sθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
− cθa5(cθa3 sθa1 + cθa1cθa2 sθa3))) + sθab(cθa7(sθa5(cθa4(sθa1 sθa3

− cθa1cθa2cθa3) − cθa1 sθa2 sθa4) − cθa5(cθa3 sθa1 + cθa1cθa2 sθa3))
+ sθa7(sθa6(sθa4(sθa1 sθa3 − cθa1cθa2cθa3) + cθa1cθa4 sθa2)
+ cθa6(cθa5(cθa4(sθa1 sθa3 − cθa1cθa2cθa3) − cθa1 sθa2 sθa4)
+ sθa5(cθa3 sθa1 + cθa1cθa2 sθa3))))

JAH (17, 1) = 0
JAH (17, 2) = − cθa1

JAH (17, 3) = − sθa1 sθa2

JAH (17, 4) = cθa1cθa3 − cθa2 sθa1 sθa3

JAH (17, 5) = sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2

JAH (17, 6) = sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) − cθa5(cθa1cθa3 − cθa2 sθa1 sθa3)
JAH (17, 7) = cθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2) − sθa6(cθa5(cθa4(cθa1 sθa3

+ cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3 − cθa2 sθa1 sθa3))
JAH (17, 8) = JAH (17, 9) = 0

JAH (17, 10) = sθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3

− cθa2 sθa1 sθa3)) − cθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2)
JAH (17, 11) = JAH (17, 12) = 0
JAH (17, 13) = − sθab(cθa7(sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) − cθa5(cθa1cθa3

− cθa2 sθa1 sθa3)) + sθa7(sθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2)
+ cθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3

− cθa2 sθa1 sθa3)))) − cθab(cθa7(sθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1)
− cθa4 sθa1 sθa2) + cθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4)
+ sθa5(cθa1cθa3 − cθa2 sθa1 sθa3))) − sθa7(sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1)
+ sθa1 sθa2 sθa4) − cθa5(cθa1cθa3 − cθa2 sθa1 sθa3)))

JAH (17, 14) = − cθab(cθa7(sθa6(sθa4(cθa1 sθa3 + cθa2cθa3 sθa1) − cθa4 sθa1 sθa2)
+ cθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4) + sθa5(cθa1cθa3

− cθa2 sθa1 sθa3))) − sθa7(sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1) + sθa1 sθa2 sθa4)
− cθa5(cθa1cθa3 − cθa2 sθa1 sθa3))) − sθab(cθa7(sθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1)
+ sθa1 sθa2 sθa4) − cθa5(cθa1cθa3 − cθa2 sθa1 sθa3)) + sθa7(sθa6(sθa4(cθa1 sθa3

+ cθa2cθa3 sθa1) − cθa4 sθa1 sθa2) + cθa6(cθa5(cθa4(cθa1 sθa3 + cθa2cθa3 sθa1)
+ sθa1 sθa2 sθa4) + sθa5(cθa1cθa3 − cθa2 sθa1 sθa3))))

JAH (18, 1) = 1
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JAH (18, 2) = 0
JAH (18, 3) = cθa2

JAH (18, 4) = − sθa2 sθa3

JAH (18, 5) = cθa2cθa4 + cθa3 sθa2 sθa4

JAH (18, 6) = cθa5 sθa2 sθa3 − sθa5(cθa2 sθa4 − cθa3cθa4 sθa2)
JAH (18, 7) = sθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5) + cθa6(cθa2cθa4 + cθa3 sθa2 sθa4)
JAH (18, 8) = JAH (18, 9) = 0

JAH (18, 10) = − sθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5)
− cθa6(cθa2cθa4 + cθa3 sθa2 sθa4)

JAH (18, 11) = JAH (18, 12) = 0
JAH (18, 13) = sθab(cθa7(sθa5(cθa2 sθa4 − cθa3cθa4 sθa2) − cθa5 sθa2 sθa3)

+ sθa7(cθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5)
− sθa6(cθa2cθa4 + cθa3 sθa2 sθa4))) − s(thetaab + pi/2)(sθa7(sθa5(cθa2 sθa4

− cθa3cθa4 sθa2) − cθa5 sθa2 sθa3) − cθa7(cθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2)
+ sθa2 sθa3 sθa5) − sθa6(cθa2cθa4 + cθa3 sθa2 sθa4)))

JAH (18, 14) = sθab(cθa7(sθa5(cθa2 sθa4 − cθa3cθa4 sθa2) − cθa5 sθa2 sθa3)
+ sθa7(cθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5) − sθa6(cθa2cθa4

+ cθa3 sθa2 sθa4))) − cθab(sθa7(sθa5(cθa2 sθa4 − cθa3cθa4 sθa2) − cθa5 sθa2 sθa3)
− cθa7(cθa6(cθa5(cθa2 sθa4 − cθa3cθa4 sθa2) + sθa2 sθa3 sθa5)
− sθa6(cθa2cθa4 + cθa3 sθa2 sθa4)))
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