416 research outputs found

    Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019)

    Get PDF

    Jointly Embedding Entities and Text with Distant Supervision

    Get PDF
    Learning representations for knowledge base entities and concepts is becoming increasingly important for NLP applications. However, recent entity embedding methods have relied on structured resources that are expensive to create for new domains and corpora. We present a distantly-supervised method for jointly learning embeddings of entities and text from an unnanotated corpus, using only a list of mappings between entities and surface forms. We learn embeddings from open-domain and biomedical corpora, and compare against prior methods that rely on human-annotated text or large knowledge graph structure. Our embeddings capture entity similarity and relatedness better than prior work, both in existing biomedical datasets and a new Wikipedia-based dataset that we release to the community. Results on analogy completion and entity sense disambiguation indicate that entities and words capture complementary information that can be effectively combined for downstream use.Comment: 12 pages; Accepted to 3rd Workshop on Representation Learning for NLP (Repl4NLP 2018). Code at https://github.com/OSU-slatelab/JE

    Evaluating Word Embeddings in Multi-label Classification Using Fine-grained Name Typing

    Full text link
    Embedding models typically associate each word with a single real-valued vector, representing its different properties. Evaluation methods, therefore, need to analyze the accuracy and completeness of these properties in embeddings. This requires fine-grained analysis of embedding subspaces. Multi-label classification is an appropriate way to do so. We propose a new evaluation method for word embeddings based on multi-label classification given a word embedding. The task we use is fine-grained name typing: given a large corpus, find all types that a name can refer to based on the name embedding. Given the scale of entities in knowledge bases, we can build datasets for this task that are complementary to the current embedding evaluation datasets in: they are very large, contain fine-grained classes, and allow the direct evaluation of embeddings without confounding factors like sentence contextComment: 6 pages, The 3rd Workshop on Representation Learning for NLP (RepL4NLP @ ACL2018

    Fine-Grained Entity Typing in Hyperbolic Space

    Full text link
    How can we represent hierarchical information present in large type inventories for entity typing? We study the ability of hyperbolic embeddings to capture hierarchical relations between mentions in context and their target types in a shared vector space. We evaluate on two datasets and investigate two different techniques for creating a large hierarchical entity type inventory: from an expert-generated ontology and by automatically mining type co-occurrences. We find that the hyperbolic model yields improvements over its Euclidean counterpart in some, but not all cases. Our analysis suggests that the adequacy of this geometry depends on the granularity of the type inventory and the way hierarchical relations are inferred.Comment: 12 pages, 4 figures, final version, accepted at the 4th Workshop on Representation Learning for NLP (RepL4NLP), held in conjunction with ACL 201

    An Empirical Analysis of NMT-Derived Interlingual Embeddings and their Use in Parallel Sentence Identification

    Get PDF
    End-to-end neural machine translation has overtaken statistical machine translation in terms of translation quality for some language pairs, specially those with large amounts of parallel data. Besides this palpable improvement, neural networks provide several new properties. A single system can be trained to translate between many languages at almost no additional cost other than training time. Furthermore, internal representations learned by the network serve as a new semantic representation of words -or sentences- which, unlike standard word embeddings, are learned in an essentially bilingual or even multilingual context. In view of these properties, the contribution of the present work is two-fold. First, we systematically study the NMT context vectors, i.e. output of the encoder, and their power as an interlingua representation of a sentence. We assess their quality and effectiveness by measuring similarities across translations, as well as semantically related and semantically unrelated sentence pairs. Second, as extrinsic evaluation of the first point, we identify parallel sentences in comparable corpora, obtaining an F1=98.2% on data from a shared task when using only NMT context vectors. Using context vectors jointly with similarity measures F1 reaches 98.9%.Comment: 11 pages, 4 figure
    corecore