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Abstract

Learning representations for knowledge

base entities and concepts is becoming

increasingly important for NLP applica-

tions. However, recent entity embed-

ding methods have relied on structured re-

sources that are expensive to create for

new domains and corpora. We present

a distantly-supervised method for jointly

learning embeddings of entities and text

from an unnanotated corpus, using only a

list of mappings between entities and sur-

face forms. We learn embeddings from

open-domain and biomedical corpora, and

compare against prior methods that rely on

human-annotated text or large knowledge

graph structure. Our embeddings cap-

ture entity similarity and relatedness better

than prior work, both in existing biomed-

ical datasets and a new Wikipedia-based

dataset that we release to the community.

Results on analogy completion and entity

sense disambiguation indicate that entities

and words capture complementary infor-

mation that can be effectively combined

for downstream use.

1 Introduction

Distributed representations of knowledge base en-

tities and concepts have become key elements of

many recent NLP systems, for applications from

document ranking (Jimeno-Yepes and Berlanga,

2015) and knowledge base completion (Toutanova

et al., 2015) to clinical diagnosis code prediction

(Choi et al., 2016a,b). These works have taken two

broad tacks for the challenge of learning to rep-

resent entities, each of which may have multiple

unique surface forms in text. Knowledge-based

approaches learn entity representations based on

the structure of a large knowledge base, often aug-

mented by annotated text resources (Yamada et al.,

2016; Cao et al., 2017). Other methods utilize ex-

plicitly annotated data, and have been more popu-

lar in the biomedical domain (Choi et al., 2016a;

Mencia et al., 2016). Both approaches, however,

are often limited by ignoring some or most of

the available textual information. Furthermore,

such rich structures and annotations are lacking

for many specialized domains, and can be pro-

hibitively expensive to obtain.

We propose a fully text-based method for

jointly learning representations of words, the sur-

face forms of entities, and the entities themselves,

from an unannotated text corpus. We use distant

supervision from a terminology, which maps en-

tities to known surface forms. We augment the

well-known log-linear skip-gram model (Mikolov

et al., 2013) with additional term- and entity-based

objectives, and evaluate our learned embeddings

in both intrinsic and extrinsic settings.

Our joint embeddings clearly outperform prior

entity embedding methods on similarity and re-

latedness evaluations. Entity and word embed-

dings capture complementary information, yield-

ing improved performance when they are com-

bined. Analogy completion results further illus-

trate these differences, demonstrating that entities

capture domain knowledge, while word embed-

dings capture morphological and lexical informa-

tion. Finally, we see that an oracle combination

of entity and text embeddings nearly matches a

state of the art unsupervised method for biomed-

ical word sense disambiguation that uses complex

knowledge-based approaches. However, our em-

beddings show a significant drop in performance

compared to prior work in a newswire disam-

biguation dataset, indicating that knowledge graph

structure contains entity information that a purely

text-based approach does not capture.
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2 Related Work

Knowledge-based approaches to entity represen-

tation are well-studied in recent literature. Sev-

eral approaches have learned representations from

knowledge graph structure alone (Grover and

Leskovec, 2016; Yang et al., 2016; Wang et al.,

2017). Wang et al. (2014), Yamada et al. (2016),

and Cao et al. (2017) all use a joint embedding

method, learning representations of text from a

large corpus and entities from a knowledge graph;

however, they rely on the disambiguated entity an-

notations in Wikipedia to align their models. Fang

et al. (2016) investigate heuristic methods for joint

embedding without annotated entity mentions, but

still rely on graph structure for entity training.

The robust terminologies available in the

biomedical domain have been instrumental to sev-

eral recent annotation–based approaches. De Vine

et al. (2014) use string matching heuristics to find

possible occurrences of known biomedical con-

cepts in literature abstracts, and use the sequence

of these noisy concepts (without the document

text) as input for skip-gram training. Choi et al.

(2016c) and Choi et al. (2016a) use sequences

of structured medical observations from patients’

hospital stays for context-based learning. Finally,

Mencia et al. (2016) take documents tagged with

Medical Subject Heading (MeSH) topics, and use

their texts to learn representations of the MeSH

headers. These methods are able to draw on rich

structured and semi-structured data from medical

databases, but discard important textual informa-

tion, and empirically are limited in the scope of

the vocabularies they can embed.

3 Methods

In order to jointly learn entity and text representa-

tions from an unannotated corpus, we use distant

supervision (Mintz et al., 2009) based on known

terms, strings which can represent one or more

entities. The mapping between terms and entities

is many-to-many; for example, the same infection

can be expressed as “cold” or “acute rhinitis”, but

“cold” can also describe the temperature or refer

to chronic obstructive lung disease.

Mappings between terms and entities are de-

fined by a terminology.1 We extracted terminolo-

gies from two well-known knowledge bases:

1Terminology is overloaded with both biomedical and lex-
ical senses; we use it here strictly to mean a mapping between
terms and entities.

UMLS Wikipedia

# entities 3,590,353 9,723,785
# terms 7,558,254 17,147,756
Max terms 495 7,077

# entities represented by n terms

n = 1 1,823,569 (51%) 6,828,958 (70%)
n = 2 894,932 (25%) 1,565,109 (16%)
3 ≤ n ≤ 10 831,494 (23%) 1,143,452 (12%)
n > 10 40,358 (1%) 186,266 (2%)

# terms mapping to n entities

n = 1 7,473,902 (98%) 16,127,138 (94%)
n = 2 69,816 (1%) 958,242 (5%)
3 ≤ n ≤ 10 14,366 (< 1%) 62,062 (< 1%)
n > 10 170 (≪ 1%) 15 (≪ 1%)

Table 1: Statistics of the many-to-many mapping

between terms and entities in our terminologies,

including the maximum # of terms per entity.

The Unified Medical Language System

(UMLS; Bodenreider, 2004); we use the mappings

between concepts and strings in the MRCONSO

table as our terminology. This yields 3.5 million

entities, represented by 7.6 million strings in total.

Wikipedia; we use page titles and redirects as

our terminology. This yields 9.7 million poten-

tial entities (pages), represented by 17.1 million

total strings. Table 1 gives further statistics about

the mapping between entities and surface forms in

each of these terminologies.

While iterating through the training corpus, we

identify any exact matches of the terms in our

terminologies.2 We allow for overlapping terms:

thus, “in New York City” will include an occur-

rence of both the terms “New York” and “New

York City.” Each matched term may refer to one

or more entities; we do not use a disambiguation

model in preprocessing, but rather assign a proba-

bility distribution over the possible entities.

3.1 Model

We extend the skip-gram model of Mikolov et al.

(2013), to jointly learn vector representations of

words, terms, and entities from shared textual con-

texts. For a given target word, term, or entity v,

let Cv = c−k . . . ck be the observed contexts in a

window of k words to the left and right of v, and

let Nv = n−k,1 . . . nk,d be the d random negative

samples for each context word. Then, the context-

based objective for training v is

O(v, Cv, Nv) =
∑

c∈Cv

logσ(~c ·~v)+
∑

n∈Nv

logσ(−~n ·~v) (1)

2We lowercase and strip special characters and punctua-
tion from both terms and corpus text, and then find all exact
matches for the terms.
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Pubmed Wikipedia Gigaword

# tokens 2.6B 1.9B 4.3B
# mentions 1.5B 1.4B 3.2B
Avg CP 2.54 1.01 1.01

% of entities by polysemy impact

CP ≥ 1 99.1% 98.6% 98.8%
CP ≥ 2 9.3% 3.5% 2.2%
CP ≥ 10 0.3% 0% ≪ 0.1%

Table 2: Statistics of our embedding training cor-

pora. # mentions is the number of exact matches

found for terms in the relevant terminology. CP =

corpus polysemy of a given entity. B = billion.

where σ is the logistic function.

We use a sliding context window to iterate

through our corpus. At each step, the word w

at the center of the window Cw is updated us-

ing O(w,Cw, Nw), where Nw are the randomly-

selected negative samples.

As terms are of variable token length, we treat

each term t as an atomic unit for training, and set

Ct to be the context words prior to the first token

of the term and following the final token. Negative

samples Nt are sampled independently of Nw.

Finally, each term t can represent a set of enti-

ties Et. Vectors for these entities are updated us-

ing the same Ct and Nt from t. Since the entities

are latent, we weight updates with uniform proba-

bility |Et|
−1; attempts to learn this probability did

not produce qualitatively different results from the

uniform distribution. Thus, letting T be the set of

terms completed at w, the full objective function

to maximize is:

Ô = O(w,Cw, Nw)+
∑

t∈T

[

O(t, Ct, Nt) +
∑

e∈Et

1

|Et|
O(e, Ct, Nt)

]

(2)

Term and entity updates are only calculated

when the final token of one or more terms is

reached; word updates are applied at each step. To

assign more weight to near contexts, we subsam-

ple the window size at each step from [1, k].

3.2 Training corpora

We train embeddings on three corpora. For our

biomedical embeddings, we use 2.6 billion to-

kens of biomedical abstract texts from the 2016

PubMed baseline (1.5 billion noisy annotations).

For comparison to previous open-domain work,

we use English Wikipedia (5.5 million articles

from the 2018-01-20 dump); we also use the Gi-

gaword 5 newswire corpus (Parker et al., 2011),

which does not have gold entity annotations.

As our model does not include a disambigua-

tion module for handling ambiguous term men-

tions, we also calculate the expected effect of pol-

ysemous terms on each entity that we embed us-

ing a given corpus. We call this the entity’s corpus

polysemy, and denote it with CP (e). For entity e

with corresponding terms Te, CP (e) is given as

CP (e) =
∑

t∈Te

f(t)

Z
polysemy(t) (3)

where f(t) is the corpus frequency of term t, Z is

the frequency of all terms in Te, and polysemy(t)
is the number of entities that t can refer to.

Table 2 breaks down expected polysemy im-

pact for each corpus. The vast majority of enti-

ties experience some polysemy effect in training,

but very few have an average ambiguity per men-

tion of 50% or greater. Most entities with high

corpus polysemy are due to a few highly ambigu-

ous generic strings, such as combinations and un-

known. However, some specific terms are also

high ambiguity: for example, Washington County

refers to 30 different US counties.

3.3 Hyperparameters

For all of our embeddings, we used the following

hyperparameter settings: a context window size of

2, with 5 negative samples per word; initial learn-

ing rate of 0.05 with a linear decay over 10 itera-

tions through the corpus; minimum frequency for

both words and terms of 10, and a subsampling

coefficient for frequent words of 1e-5.

3.4 Baselines

We compare the words, terms,3 and entities

learned in our model against two prior biomedical

embedding methods, using pretrained embeddings

from each. De Vine et al. (2014) use sequences

of automatically identified ambiguous entities for

skip-gram training, and Mencia et al. (2016) use

texts of documents tagged with MeSH headers to

represent the header codes. The most recent com-

parison method for Wikipedia entities is MPME

(Cao et al., 2017), which uses link anchors and

graph structure to augment textual contexts. We

also include skip-gram vectors as a final base-

line; for Pubmed, we use pretrained embeddings

with optimized hyperparameters from Chiu et al.

(2016a), and we train our own embeddings with

word2vec for both Wikipedia and Gigaword.

3Unknown terms were handled by backing off to words.
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Full Filtered
Method Sim Rel Sim Rel

Prior work

word2vec 0.559 0.496
DeVine’14 0.455 0.422 0.534 0.482
Mencia’16 0.565 0.534 0.573 0.536

Proposed

Word 0.561 0.490
Term 0.619 0.557*
Entity 0.633* 0.563* 0.614* 0.567*
Entity+Word 0.653* 0.586* 0.615* 0.583*

+Cross 0.662* 0.588* 0.622* 0.573*

Table 3: Spearman’s ρ for similarity/relatedness

predictions in UMNSRS. Filtered results indi-

cate performance on the shared-vocabulary subset.

*=significantly better (p < 0.05) than word base-

line (full), DeVine et al (filtered).

4 Evaluations

Following Chiu et al. (2016b), Cao et al. (2017),

and others, we evaluate our embeddings on both

intrinsic and extrinsic tasks. To evaluate the se-

mantic organization of the space, we use the stan-

dard intrinsic evaluations of similarity and related-

ness and analogy completion. To explore the ap-

plicability of our embeddings to downstream ap-

plications, we apply them to named entity disam-

biguation. Results and analyses for each experi-

ment are discussed in the following subsections.

4.1 Similarity and relatedness

We evaluate our biomedical embeddings on the

UMNSRS datasets (Pakhomov et al., 2010), con-

sisting of pairs of UMLS concepts with judg-

ments of similarity (566 pairs) and relatedness

(587 pairs), as assigned by medical experts. For

evaluating our Wikipedia entity embeddings, we

created WikiSRS, a novel dataset of similarity and

relatedness judgments of paired Wikipedia entities

(people, places, and organizations), as assigned by

Amazon Mechanical Turk workers. We followed

the design procedure of Pakhomov et al. (2010)

and produced 688 pairs each of similarity and re-

latedness judgments; for further details on our re-

leased dataset, please see the Appendix.

For each labeled entity pair, we calculated the

cosine similarity of their embeddings, and ranked

the pairs in order of descending similarity. We re-

port Spearman’s ρ on these rankings as compared

to the ranked human judgments: Table 3 shows re-

sults for UMNSRS, and Table 4 for WikiSRS.

As the dataset includes both string and disam-

biguated entity forms for each pair, we evaluate

Wikipedia Gigaword
Method Sim Rel Sim Rel

Prior work

word2vec 0.630 0.630 0.624 0.623
MPME 0.506 0.567 – –

Proposed

Word 0.646 0.655 0.615 0.600
Term 0.607 0.667 0.625 0.673
Entity 0.594 0.648 0.634 0.686
Entity+Word 0.718* 0.754* 0.701* 0.722*

+Cross 0.697* 0.753* 0.695* 0.729*

Table 4: Spearman’s ρ for similarity/relatedness

predictions in WikiSRS, training on two cor-

pora. All Proposed results are significantly better

than MPME; *=significantly better than strongest

word-level baseline (p < 0.05).

each type of embeddings learned in our model.

Additionally, as words and entities are embed-

ded in the same space (and thus directly compa-

rable), we experiment with two methods of com-

bining their information. Entity+Word sums the

cosine similarities calculated between the entity

embeddings and word embeddings for each pair;

the Cross setting further adds comparisons of each

entity in the pair to the string form of the other.

4.1.1 Results

Our proposed method clearly outperforms prior

work and text-based baselines on both datasets.

Further, we see that the words and entities learned

by our model include complementary information,

as combining them further increases our ranking

performance by a large margin. As the results

on UMNSRS could have been due to our model’s

ability to embed many more entities than prior

methods, we also filtered the dataset to the 255

similarity pairs and 260 relatedness pairs that all

evaluated entity-level methods could represent;4

Table 3 shows similar gains on this even footing.

We follow Rastogi et al. (2015) in calculating sig-

nificance, and use their statistics to estimate the

minimum required difference for significant im-

provements on our datasets.

In UMNSRS, we found that cosine similarity of

entities consistently reflected human judgments of

similarity better than of relatedness; this reflects

previous observations by Agirre et al. (2009) and

Muneeb et al. (2015). Interestingly, we see the

opposite behavior in WikiSRS, where relatedness

is captured better than similarity in all settings.

In fact, we see a number of errors of relatedness

4For WikiSRS, all methods covered all pairs.
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Dataset Words Entities Entity+Word+Cross

UMNSRS
Iron/Iron Iron/Iron Levaquin/Avelox

Nausea/Vomiting Sinemet/Sinemet Enalapril/Lisinopril
Lipitor/Zocor Enalapril/Lisinopril Carboplatin/Cisplatin

WikiSRS
Minas Tirith/Minas Morgul Real Madrid/FC Barcelona Ferrari/Lamborghini
Moscow/Moscow Kremlin Minas Tirith/Minas Morgul Moscow/Moscow Kremlin

Norway/Denmark Charlize Theron/Screen Actor’s Guild Toshiro Mifune/Akira Kurosawa

Table 5: Top 3 pairs in the Relatedness datasets, as ranked by different embedding methods.

in WikiSRS predictions, e.g., “Hammurabi I” and

“Syria” are marked highly similar, while the com-

posers “A.R. Rahman” and “John Phillip Sousa”

are marked dis-similar. MPME embeddings tend

towards over-relatedness as well (e.g., ranking

“Richard Feynman” and “Paris-Sorbonne Univer-

sity” much more highly than gold labels). Despite

better similarity performance, this trend of over-

relatedness also holds in biomedical embeddings:

for example, C0027358 (Narcan) and C0026549

(morphine) are consistently marked highly similar

across embedding methods, even though Narcan

blocks the effects of opioids like morphine.

4.1.2 Comparing entities and words

We observe clear differences in the rankings made

by entity vs word embeddings. As shown in Ta-

ble 5, highly related entities tend to have high co-

sine similarity, while word embeddings are more

sensitive to lexical overlap and direct cooccur-

rence. Combining both sources often gives the

most inuitive results, balancing lexical effects with

relatedness. For example, while the top three pairs

by combination in WikiSRS are likely to co-occur,

the top three in UMNSRS are pairs of drug choices

(antibiotics, ACE inhibitors, and chemotherapy

drugs, respectively), only one of which is likely

to be prescribed to any given patient at once.

These differences also play out in erroneous

predictions. Entity embeddings often fix the worst

misrankings by words: for example, “Tony Blair”

and “United Kingdom” (gold rank: 28) are ranked

highly unrelated (position 633) by words, but en-

tities move this pair back up the list (position 86).

However, errors made by entity embeddings are

often also made by words: e.g., C0011175 (dehy-

dration) and C0017160 (gastroenteritis) are erro-

neously ranked as highly unrelated by both meth-

ods. Interestingly, we find no correlation between

the corpus polysemy of entity pairs and ranking

performance, indicating that ambiguity of term

mentions is not a significant confound for this task.

Method B3 H1 C6 L1 L6

Words 2.9 0.4 7.9 51.5 69.3
Entities 18.3 22.4 4.5 10.6 10.0

Oracle 20.7 22.9 12.1 55.0 70.9

Table 6: Accuracy % on 5 of the relations in

BMASS with greatest absolute difference in word

performance vs entity performance: B3 (gene-

encodes-product), H1 (refers-to), C6 (associated-

with), L1 (form-of ), and L6 (has-free-acid-or-

base-form). The better of word and entity per-

formance is highlighted; all entity vs word differ-

ences are significant (McNemar’s test; p ≪ 0.01).

4.2 Analogy completion

We use analogy completion to further explore the

properties of our joint embeddings. Given anal-

ogy a : b :: c : d, the task is to guess d given

(a, b, c), typically by choosing the word or entity

with highest cosine similarity to b − a + c (Levy

and Goldberg, 2014). We report accuracy using

the top guess (ignoring a, b, and c as candidates,

per Linzen, 2016).

4.2.1 Biomedical analogies

To compare between word and entity representa-

tions, we use the entity-level biomedical dataset

BMASS (Newman-Griffis et al., 2017), which in-

cludes both entity and string forms for each anal-

ogy. In order to test if words and entities are

capturing complementary information, we also in-

clude an oracle evaluation, in which an analogy

is counted as correct if either words or entities

produce a correct response.5 We do not compare

against prior biomedical entity embedding meth-

ods on this dataset, due to their limited vocabulary.

Table 6 contrasts the performance of differ-

ent jointly-trained representations for five rela-

tions with the largest performance differences

from this dataset. For gene-encodes-product and

refers-to, both of which require structured do-

main knowledge, entity embeddings significantly

5We use the Multi-Answer setting for our evaluation (a
single (a, b, c) triple, but a set of correct values for d).
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outperform word-level representations. Many

of the errors made by word embeddings in

these relations are due to lexical over-sensitivity:

for example, in the renaming analogy spinal

epidural hematoma:epidural hemorrhage::canis

familiaris: , words suggest latinate completions

such as latrans and caballus, while entities capture

the correct C1280551 (dog). However, on more

morphological relations such as has-free-acid-or-

base-form, words are by far the better option.

The success of the oracle combination method

for entity and word predictions clearly indicates

that not only are words and entities capturing dif-

ferent knowledge, but that it is complementary. In

the majority of the 25 relations in BMASS, oracle

results improved on words and entities alone by at

least 10% relative. In some cases, as with has-free-

acid-or-base-form, one method does most of the

heavy lifting. In several others, including the chal-

lenging (and open-ended) associated-with, entities

and words capture nearly orthogonal cases, lead-

ing to large jumps in oracle performance.

4.2.2 General-domain analogies

No entity-level encyclopedic analogy dataset is

available, so we follow Cao et al. (2017) in eval-

uating the effect of joint training on words us-

ing the Google analogy set (Mikolov et al., 2013).

As shown in Table 7, our Wikipedia embeddings

roughly match MPME embeddings (which use an-

notated entity links) on the semantic portion of the

dataset, but our ability to train on unannotated Gi-

gaword boosts our results on all relations except

city-in-state.6 Overall, we find that jointly-trained

word embeddings split performance with word-

only skipgram training, but that word-only train-

ing tends to get consistently closer to the correct

answer. This suggests that terms and entities may

conflict with word-level semantic signals.

4.3 Entity disambiguation

Finally, to get a picture of the impact of our

embedding method on downstream applications,

we investigated entity disambiguation.7 Given a

named entity occurrence in context, the task is to

assign a canonical identifier to the entity being re-

ferred to: e.g., to mark that “New York” refers to

6We failed to precisely replicate the analogy numbers re-
ported by Cao et al. (2017); we attribute this primarily to the
different training corpus and slightly different preprocessing.

7This task is also referred to as entity linking and entity
sense disambiguation.

Method Capital

(com-

mon)

Capital

(all)

Currency City

in

State

Family

word2vec (W) 89.1 86.0 15.0 55.5 82.4
word2vec (G) 90.9 89.7 18.4 38.4 81.0

MPME (W) 83.6 80.5 11.9 50.6 78.9

Proposed (W) 90.1 78.7 9.1 42.5 75.5
Proposed (G) 92.7 92.3 16.4 31.3 81.6

Table 7: Analogy completion accuracy % on the

semantic relations in the Google analogy dataset.

W=Wikipedia, G=Gigaword.

the city in the sentence, “The mayor of New York

held a press conference.” It bears noting that in un-

ambiguous cases, a terminology alone is sufficient

to link the correct entity: for example, “Barack

Obama” can only refer to a single entity, regard-

less of context. However, many entity strings (e.g.,

“cold”, “New York”) are ambiguous, necessitating

the use of alternate sources of information such as

our embeddings to assign the correct entity.

4.3.1 Biomedical abstracts

We evaluate on the MSH WSD dataset (Jimeno-

Yepes et al., 2011), a benchmark for biomedical

word sense disambiguation. MSH WSD consists

of mentions of 203 ambiguous terms in biomedical

literature, with over 30,000 total instances. Each

sample is annotated with the set of UMLS entities

the term could refer to. We adopt the unsupervised

method of Sabbir et al. (2016), which combines

cosine similarity and projection magnitude of an

entity representation e to the averaged word em-

beddings of its contexts Cavg as follows:

f(e, Cavg) = cos(Cavg, e) ·
||P (Cavg, e)||

||e||
(4)

The entity maximizing this score is predicted.

We compare against concept embeddings

learned by Sabbir et al. (2016). They used

MetaMap (Aronson and Lang, 2010) with the dis-

ambiguation module enabled on a curated corpus

of 5 million Pubmed abstracts to create a UMLS

concept cooccurrence corpus for word2vec train-

ing. As shown in Table 8, our method lags behind

theirs, though it clearly beats both random (49.7%

accuracy) and majority class (52%) baselines. In

addition, we leverage our jointly-embedded enti-

ties and words by adding in the definition-based

model used by Pakhomov et al. (2016), which cal-

culates an entity’s embedding as the average of

definitions of its neighbors in the UMLS hierar-

chy (McInnes et al., 2011). We use this alternate
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Method Accuracy %

Baselines

Sabbir et al. (2016) (entities; +MetaMap) 89.3
Sabbir et al. (2016) (+MetaMap, UMLS) 92.2
Pakhomov et al. (2016) (words) 77.7

Proposed

Entities 76.4
Definitions (joint words) 80.8
Entities+Definitions 82.7
Oracle (Entities—Definitions) 90.9

Table 8: MSH WSD disambiguation accuracy.

Definitions is comparable to Pakhomov et al.

(2016), using jointly-embedded words. All differ-

ences are significant (McNemar’s test, p ≪ 0.01).

entity embedding in Equation 4 to calculate a sec-

ond score that we add to the direct entity embed-

ding score. This yields a large performance boost

of over 6% absolute, indicating that using enti-

ties and words together makes up much of the gap

between our distantly supervised embeddings and

the external resources used by Sabbir et al. (2016).

Using the definition-based method alone with our

jointly-embedded words, we see a significant in-

crease over Pakhomov et al. (2016), indicating the

benefits of joint training. However, the combined

entity and definition model still yields a signifi-

cantly different 2% boost in accuracy over defini-

tions alone. Finally, we evaluate an oracle com-

bination that reports correct if either entity or def-

inition embeddings achieve the correct result; as

shown in the last row of Table 8, this combina-

tion outperforms the entity-only method of Sab-

bir et al. (2016), and approaches their state-of-the-

art result that combines entity embeddings with a

knowledge-based approach from the structure of

the UMLS.

Specific errors shed more light on these differ-

ences. The definition-based method performs bet-

ter in many cases where the surface form is a com-

mon word, such as coffee (68% definition accu-

racy vs 28% entity accuracy) and iris (93% defi-

nition accuracy vs 35% entity accuracy). Entities

outperform on some more technical cases, such as

potassium (74% entity accuracy vs 49% definition

accuracy). Combining both approaches in the joint

model recovers performance on several cases of

low entity accuracy; for example, joint accuracy

on coffee is 68%, and on lupus (53% entity accu-

racy), joint performance is 60%.

Method Accuracy %

MPME (entities; +graph structure) 89.0

Wikipedia 40.9
Wikipedia + mentions 44.6
Gigaword 58.0
Gigaword + mentions 63.9

Table 9: AIDA linking accuracy, using entity em-

beddings trained on Wikipedia and Gigaword. All

differences are significant (McNemar’s test, p ≪
0.01).

4.3.2 Newswire entities

AIDA (Hoffart et al., 2011) is a standard dataset

for entity linking in newswire, consisting of ap-

proximately 30,000 entities linked to Wikipedia

page IDs. To reduce the search space, Pershina

et al. (2015) provided a set of candidate entities

for each mention, which we use for our experi-

ments. The MPME model of Cao et al. (2017)

achieves near state-of-the-art performance accu-

racy on AIDA with this candidate set, using the

mention sense distributions and full document

context included in the model. As our embeddings

are trained without explicit entity annotations, we

instead use the same cosine similarity and pro-

jection model discussed in Section 4.3.1 for this

task. In contrast to our results on the biomedical

data, we see performance far below the baseline

on these data, as shown in Table 9.

However, we improve this performance slightly

by multiplying by the similarity between the entity

embedding and the average word embedding of

the mention itself; this gives us roughly a further

4% accuracy for both Wikipedia and Gigaword

embeddings. Using the surface form recovers sev-

eral cases where entities alone yield unlikely op-

tions, e.g. Roman-era Britain instead of the United

Kingdom for Britain. However, it also introduces

lexical errors: for example, British in several cases

refers to the United Kingdom, but the British peo-

ple are often selected instead. We note that this

extra score actually hurts performance on MSH

WSD, where the terms are curated to be highly

ambiguous, in contrast to the shorter contexts and

clearer terms used in AIDA.

Two other issues bear consideration in this eval-

uation. Prior approaches to the AIDA dataset, in-

cluding MPME, make use of the global context of

entity mentions within a document to improve pre-

dictions; by using local context only, we observe

some inconsistent predictions, such as selecting

the cricket world cup instead of the FIFA com-
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Entity Words Terms Entities Joint

C0009443
(common

cold)

k(+)-grown cold
C0041912 (upper respiratory

infections)
C0041912 (upper respiratory

infections)
legionella-

contaminated
short periods C0234192 (cold sensation) C0234192 (cold sensation)

hyperinflating changed
C0719425 (“Cold”

pharmaceutical brand)

C0719425 (“Cold”
pharmaceutical brand)

C0242797
(home health

aides)

homemaker-
home

home health
aide

C1553498 (home health
encounter)

home health aide

voluntary-
sector

home health
aides

C0019855 (home care
services)

home health aides

health/social home health
C1317851 (home health care

specialty)
C1553498 (home health

encounter)

Table 10: Top 3 nearest neighbors to two UMLS entities, using words, terms, entities, or all three.

petition for world cup, in a document discussing

football. Additionally, in contrast to the MSH

WSD dataset, many instances in AIDA have sev-

eral highly-related candidates that introduce some

confusion in our results. For example, Ireland

could refer to the United Kingdom of Great Britain

and Ireland, the island of Ireland, or the Republic

of Ireland. As our embedding training does not

include gold entity links, cases like this are often

errors in our predictions.

5 Analysis of joint embeddings

To get a more detailed picture of our joint em-

bedding space, we investigate nearest neighbors

for each point by cosine similarity. As entities

in the UMLS are assigned one or more of over

120 semantic types, we first examine how inter-

mixed these types are in our biomedical embed-

dings. Figure 1 shows how often an entity’s near-

est neighbor shares at least one semantic type with

it, across the three biomedical embedding methods

we evaluated. As each set of embeddings has a

different vocabulary, we also restrict to the entities

Figure 1: Percentage of UMLS entities whose

nearest neighbor shares a semantic type, with no

vocabulary restriction (vocab size in parentheses)

and in a shared vocabulary subset.

that all three can embed (approximately 11,000).

We see that our method puts entities of the same

type together nearly 40% of the time, despite em-

bedding over 270 thousand entities. On an even

footing, our method puts types together signifi-

cantly more often Mencia et al. (2016) (McNe-

mar’s; p < 0.05), and equivalently with De Vine

et al. (2014), despite using less entity-level infor-

mation in training. Within our embeddings, ma-

jor biological types such as bacteria, eukaryotes,

mammals, and viruses all have more than 60% of

neighbors with the same type, while less struc-

tured clinical types such as Clinical Attribute and

Daily or Recreational Activity are in the 10-20%

range. Corpus polysemy does not appear to have

any effect on this type matching (mean polysemy

of 1.5 for both matched and non-matched entities).

Expanding to include the words and terms in

the joint embedding space, however, we see def-

inite qualitative effects of corpus polysemy on

entity nearest neighbors. Table 10 gives near-

est word, term, entity, and joint neighbors to

two biomedical entities: C0009443 (the common

cold; CP = 6.71) and C0242797 (home health

aides; CP = 1). For the more polysemous

C0009443, where 95% of its mentions are of the

word “cold” (polysemy=7), word-level neighbors

are mostly nonsensical, while term neighbors are

more logical, and entity neighbors reflect different

senses of “cold”. By contrast, the non-polysemous

C0242797, which is represented by 14 different

unambiguous strings, words, terms, and entities

are all very clearly in line with the theme of home

health aides. Notably, the common and unambigu-

ous terms for C0242797 are its nearest neighbors

out of all points, while only two of the top 10

neighbors to C0009443 are terms.
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6 Discussion

Faruqui et al. (2016) observe that similarity and

relatedness are not clearly distinguished in seman-

tic embedding evaluations, and that it is unclear

exactly how vector-space models should capture

them. We see more evidence of this, as cosine

similarity seems to be capturing a mix of the two

properties in our data. This mix is clearly infor-

mative, but it empirically favors relatedness judg-

ments, and cosine similarity is insufficient to sep-

arate the two properties.

Corpus polysemy plays a qualitative role in our

embedding model, but less of a quantitative one. It

does not correlate with similarity and relatedness

judgments or entity disambiguation decisions, but

it clearly affects the organization of the embedding

space, by embedding entities with high corpus pol-

ysemy in less coherent areas than those with low

polysemy. Linzen (2016) points out that for anal-

ogy completion, local neighborhood structure can

interfere with standard methods; how this neigh-

borhood structure affects predictions in more com-

plex tasks is an open question.

Overall, we find two main advantages to our

model over prior work. First, by only using a ter-

minology and an unannotated corpus, we are able

to learn entity embeddings from larger and more

diverse data; for example, embeddings learned

from Gigaword (which has no entity annotations)

outperform embeddings learned on Wikipedia in

most of our experiments. Second, by embedding

entities and text into a joint space, we are able to

leverage complementary information to get higher

performance in both intrinsic and extrinsic tasks;

an oracle model nearly matches a state-of-the-art

ensemble vector and knowledge-based model for

biomedical word sense disambiguation. However,

our other entity disambiguation results demon-

strate that there is additional entity-level informa-

tion that we are not yet capturing. In particular,

it is unclear whether our low performance on dis-

ambiguating newswire entities is due to a disam-

biguation model mismatch, a lack of information

in our embeddings, or a combination of both.

7 Conclusions

We present a method for jointly learning em-

beddings of entities and text from an arbitrary

unannotated corpus, using only a terminology

for distant supervision. Our learned embed-

dings better capture both biomedical and en-

cyclopedic similarity and relatedness than prior

methods, and approach state-of-the-art perfor-

mance for unsupervised biomedical word sense

disambiguation. Furthermore, entities and words

learned jointly with our model capture comple-

mentary information, and combining them im-

proves performance in all of our evaluations. We

make an implementation of our method available

at github.com/OSU-slatelab/JET, along

with the source code used for our evaluations

and our pretrained entity embeddings. Our novel

Wikipedia similarity and relatedness datasets are

available at the same source.
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A WikiSRS construction details

We followed a similar process to Pakhomov et al.

(2010) in selecting the entity pairs to be used

in our dataset. We first filtered the full list of

Wikipedia pages to the subset that we learned

embeddings for, and then used the entity types

assigned to these pages in YAGO (Mahdisoltani

et al., 2015) to restrict to only entities labeled

with WordNet types organization or person, or

with the YAGO type geoEntity. For each pairing

of these categories (Organization-Organization,

Organization-Place, Organization-Person, Place-

Place, Place-Person, and Person-Person), we man-

ually selected 30 pairs of entities for each of the

following relatedness categories: Completely Un-

related, Somewhat Unrelated, Somewhat Related,

and Highly Related. These produced the list of

720 entity pairs we used for our Mechanical Turk

surveys.

We augmented each survey of 30 questions with

4 manually-created validation pairs using common

entities (e.g., London, New York), each of which

was categorized as Highly Related or Completely

Unrelated. We included these validation questions

at random indices in our surveys. To evaluate if

participants were reading the questions, we binned

their ratings on these validation questions into 0-

25 (Completely Unrelated), 26-50 (Somewhat Un-

related), 51-75 (Somewhat Related), and 76-100

(Highly Related). If a participant’s ratings dis-

agreed with ours on multiple validation questions,

we discarded their data (we allowed disagreement

on a single question, as some validation questions

had high variance in responses among reliable an-

notators).

We recruited 6 participants for each survey, for a

total of 34 unique participants across the 48 HITs.

Participants were presented with a message de-

scribing the survey and stating that by clicking

the button at the bottom of the message to begin

the survey, they were providing informed consent

to participate. Identifying participant data was

not collected, and we used only the anonymous

worker IDs provided by the Mechanical Turk in-

terface to collate our data and remunerate work-

ers. Participants were asked optional demographic

questions about their age bracket and native lan-

guage at the end of the survey; we did not end up

using age information, but filtered our participants

for those that self-reported English reading profi-

ciency. The majority responded to a single HIT,

# of raters
Similarity Relatedness

ICC # pairs ICC # pairs

4 0.531 419 0.467 180

5 0.520 267 0.540 207

6 0.560 299

> 6 – 2 – 2

Total 688 688

Table 11: The intraclass correlation coefficient

(ICC) among Amazon Mechanical Turk worker

judgments of similarity and relatedness of pairs of

Wikipedia entities. As ICC requires a fixed num-

ber of raters, but we had variable numbers of re-

sponses to each HIT, we break down the datasets

by the number of workers who rated each item.

while 3 completed more than 20. We discarded all

submissions from 3 participants, as they did not re-

port English reading proficiency (1) or did not sat-

isfy the validation questions (2). All participants

were paid state minimum wage at the time of the

study for their time, regardless of whether they an-

swered demographic questions or if we used their

data in the final sample. Collection of this data was

approved under Ohio State University IRB proto-

col 2017E0050.

To generate the final dataset, we assessed each

participant’s responses to the validation questions

in each survey. We kept surveys for which we had

at least 4 participants with satisfactory answers to

the validation questions; this resulted in discard-

ing 1 of the 24 HITs for each task. Due to 2 re-

peated pairs, this gave us final dataset sizes of 688

pairs for each of similarity and relatedness, 658 of

which were shared between the tasks.

Following Pakhomov et al. (2010), we assessed

inter-annotator agreement using the intraclass cor-

relation coefficient (ICC). Table 11 gives the val-

ues for our datasets. The numbers reported are

within the moderate range, and they correspond to

the ICC numbers reported by Pakhomov et al. on

the UMNSRS datasets.

The source code of our Mechani-

cal Turk interface and data files used

to generate the tasks are available at

github.com/OSU-slatelab/WikiSRS.


