5,691 research outputs found

    Similarity-Based Models of Word Cooccurrence Probabilities

    Full text link
    In many applications of natural language processing (NLP) it is necessary to determine the likelihood of a given word combination. For example, a speech recognizer may need to determine which of the two word combinations ``eat a peach'' and ``eat a beach'' is more likely. Statistical NLP methods determine the likelihood of a word combination from its frequency in a training corpus. However, the nature of language is such that many word combinations are infrequent and do not occur in any given corpus. In this work we propose a method for estimating the probability of such previously unseen word combinations using available information on ``most similar'' words. We describe probabilistic word association models based on distributional word similarity, and apply them to two tasks, language modeling and pseudo-word disambiguation. In the language modeling task, a similarity-based model is used to improve probability estimates for unseen bigrams in a back-off language model. The similarity-based method yields a 20% perplexity improvement in the prediction of unseen bigrams and statistically significant reductions in speech-recognition error. We also compare four similarity-based estimation methods against back-off and maximum-likelihood estimation methods on a pseudo-word sense disambiguation task in which we controlled for both unigram and bigram frequency to avoid giving too much weight to easy-to-disambiguate high-frequency configurations. The similarity-based methods perform up to 40% better on this particular task.Comment: 26 pages, 5 figure

    Word Sense Determination from Wikipedia Data Using Neural Networks

    Get PDF
    Many words have multiple meanings. For example, “plant” can mean a type of living organism or a factory. Being able to determine the sense of such words is very useful in natural language processing tasks, such as speech synthesis, question answering, and machine translation. For the project described in this report, we used a modular model to classify the sense of words to be disambiguated. This model consisted of two parts: The first part was a neural-network-based language model to compute continuous vector representations of words from data sets created from Wikipedia pages. The second part classified the meaning of the given word without explicitly knowing what the meaning is. In this unsupervised word sense determination task, we did not need human-tagged training data or a dictionary of senses for each word. We tested the model with some naturally ambiguous words, and compared our experimental results with the related work by Schütze in 1998. Our model achieved similar accuracy as Schütze’s work for some words

    The Measure of a Model

    Full text link
    This paper describes measures for evaluating the three determinants of how well a probabilistic classifier performs on a given test set. These determinants are the appropriateness, for the test set, of the results of (1) feature selection, (2) formulation of the parametric form of the model, and (3) parameter estimation. These are part of any model formulation procedure, even if not broken out as separate steps, so the tradeoffs explored in this paper are relevant to a wide variety of methods. The measures are demonstrated in a large experiment, in which they are used to analyze the results of roughly 300 classifiers that perform word-sense disambiguation.Comment: 12 pages, uuencoded compressed postscript fil

    AutoSense Model for Word Sense Induction

    Full text link
    Word sense induction (WSI), or the task of automatically discovering multiple senses or meanings of a word, has three main challenges: domain adaptability, novel sense detection, and sense granularity flexibility. While current latent variable models are known to solve the first two challenges, they are not flexible to different word sense granularities, which differ very much among words, from aardvark with one sense, to play with over 50 senses. Current models either require hyperparameter tuning or nonparametric induction of the number of senses, which we find both to be ineffective. Thus, we aim to eliminate these requirements and solve the sense granularity problem by proposing AutoSense, a latent variable model based on two observations: (1) senses are represented as a distribution over topics, and (2) senses generate pairings between the target word and its neighboring word. These observations alleviate the problem by (a) throwing garbage senses and (b) additionally inducing fine-grained word senses. Results show great improvements over the state-of-the-art models on popular WSI datasets. We also show that AutoSense is able to learn the appropriate sense granularity of a word. Finally, we apply AutoSense to the unsupervised author name disambiguation task where the sense granularity problem is more evident and show that AutoSense is evidently better than competing models. We share our data and code here: https://github.com/rktamplayo/AutoSense.Comment: AAAI 201

    MUSE: Modularizing Unsupervised Sense Embeddings

    Full text link
    This paper proposes to address the word sense ambiguity issue in an unsupervised manner, where word sense representations are learned along a word sense selection mechanism given contexts. Prior work focused on designing a single model to deliver both mechanisms, and thus suffered from either coarse-grained representation learning or inefficient sense selection. The proposed modular approach, MUSE, implements flexible modules to optimize distinct mechanisms, achieving the first purely sense-level representation learning system with linear-time sense selection. We leverage reinforcement learning to enable joint training on the proposed modules, and introduce various exploration techniques on sense selection for better robustness. The experiments on benchmark data show that the proposed approach achieves the state-of-the-art performance on synonym selection as well as on contextual word similarities in terms of MaxSimC

    Distinguishing Word Senses in Untagged Text

    Full text link
    This paper describes an experimental comparison of three unsupervised learning algorithms that distinguish the sense of an ambiguous word in untagged text. The methods described in this paper, McQuitty's similarity analysis, Ward's minimum-variance method, and the EM algorithm, assign each instance of an ambiguous word to a known sense definition based solely on the values of automatically identifiable features in text. These methods and feature sets are found to be more successful in disambiguating nouns rather than adjectives or verbs. Overall, the most accurate of these procedures is McQuitty's similarity analysis in combination with a high dimensional feature set.Comment: 11 pages, latex, uses aclap.st
    • …
    corecore