368 research outputs found

    Tripartite Graph Clustering for Dynamic Sentiment Analysis on Social Media

    Full text link
    The growing popularity of social media (e.g, Twitter) allows users to easily share information with each other and influence others by expressing their own sentiments on various subjects. In this work, we propose an unsupervised \emph{tri-clustering} framework, which analyzes both user-level and tweet-level sentiments through co-clustering of a tripartite graph. A compelling feature of the proposed framework is that the quality of sentiment clustering of tweets, users, and features can be mutually improved by joint clustering. We further investigate the evolution of user-level sentiments and latent feature vectors in an online framework and devise an efficient online algorithm to sequentially update the clustering of tweets, users and features with newly arrived data. The online framework not only provides better quality of both dynamic user-level and tweet-level sentiment analysis, but also improves the computational and storage efficiency. We verified the effectiveness and efficiency of the proposed approaches on the November 2012 California ballot Twitter data.Comment: A short version is in Proceeding of the 2014 ACM SIGMOD International Conference on Management of dat

    Three Facets of Online Political Networks: Communities, Antagonisms, and Polarization

    Get PDF
    abstract: Millions of users leave digital traces of their political engagements on social media platforms every day. Users form networks of interactions, produce textual content, like and share each others' content. This creates an invaluable opportunity to better understand the political engagements of internet users. In this proposal, I present three algorithmic solutions to three facets of online political networks; namely, detection of communities, antagonisms and the impact of certain types of accounts on political polarization. First, I develop a multi-view community detection algorithm to find politically pure communities. I find that word usage among other content types (i.e. hashtags, URLs) complement user interactions the best in accurately detecting communities. Second, I focus on detecting negative linkages between politically motivated social media users. Major social media platforms do not facilitate their users with built-in negative interaction options. However, many political network analysis tasks rely on not only positive but also negative linkages. Here, I present the SocLSFact framework to detect negative linkages among social media users. It utilizes three pieces of information; sentiment cues of textual interactions, positive interactions, and socially balanced triads. I evaluate the contribution of each three aspects in negative link detection performance on multiple tasks. Third, I propose an experimental setup that quantifies the polarization impact of automated accounts on Twitter retweet networks. I focus on a dataset of tragic Parkland shooting event and its aftermath. I show that when automated accounts are removed from the retweet network the network polarization decrease significantly, while a same number of accounts to the automated accounts are removed randomly the difference is not significant. I also find that prominent predictors of engagement of automatically generated content is not very different than what previous studies point out in general engaging content on social media. Last but not least, I identify accounts which self-disclose their automated nature in their profile by using expressions such as bot, chat-bot, or robot. I find that human engagement to self-disclosing accounts compared to non-disclosing automated accounts is much smaller. This observational finding can motivate further efforts into automated account detection research to prevent their unintended impact.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Recovering Structured Probability Matrices

    Get PDF
    We consider the problem of accurately recovering a matrix B of size M by M , which represents a probability distribution over M2 outcomes, given access to an observed matrix of "counts" generated by taking independent samples from the distribution B. How can structural properties of the underlying matrix B be leveraged to yield computationally efficient and information theoretically optimal reconstruction algorithms? When can accurate reconstruction be accomplished in the sparse data regime? This basic problem lies at the core of a number of questions that are currently being considered by different communities, including building recommendation systems and collaborative filtering in the sparse data regime, community detection in sparse random graphs, learning structured models such as topic models or hidden Markov models, and the efforts from the natural language processing community to compute "word embeddings". Our results apply to the setting where B has a low rank structure. For this setting, we propose an efficient algorithm that accurately recovers the underlying M by M matrix using Theta(M) samples. This result easily translates to Theta(M) sample algorithms for learning topic models and learning hidden Markov Models. These linear sample complexities are optimal, up to constant factors, in an extremely strong sense: even testing basic properties of the underlying matrix (such as whether it has rank 1 or 2) requires Omega(M) samples. We provide an even stronger lower bound where distinguishing whether a sequence of observations were drawn from the uniform distribution over M observations versus being generated by an HMM with two hidden states requires Omega(M) observations. This precludes sublinear-sample hypothesis tests for basic properties, such as identity or uniformity, as well as sublinear sample estimators for quantities such as the entropy rate of HMMs

    Bilateral variational autoencoder for collaborative filtering

    Get PDF
    National Research Foundation (NRF) Singapore under NRF Fellowship Programm

    Nonnegative Matrix Factorization for Signal and Data Analytics: Identifiability, Algorithms, and Applications

    Full text link
    Nonnegative matrix factorization (NMF) has become a workhorse for signal and data analytics, triggered by its model parsimony and interpretability. Perhaps a bit surprisingly, the understanding to its model identifiability---the major reason behind the interpretability in many applications such as topic mining and hyperspectral imaging---had been rather limited until recent years. Beginning from the 2010s, the identifiability research of NMF has progressed considerably: Many interesting and important results have been discovered by the signal processing (SP) and machine learning (ML) communities. NMF identifiability has a great impact on many aspects in practice, such as ill-posed formulation avoidance and performance-guaranteed algorithm design. On the other hand, there is no tutorial paper that introduces NMF from an identifiability viewpoint. In this paper, we aim at filling this gap by offering a comprehensive and deep tutorial on model identifiability of NMF as well as the connections to algorithms and applications. This tutorial will help researchers and graduate students grasp the essence and insights of NMF, thereby avoiding typical `pitfalls' that are often times due to unidentifiable NMF formulations. This paper will also help practitioners pick/design suitable factorization tools for their own problems.Comment: accepted version, IEEE Signal Processing Magazine; supplementary materials added. Some minor revisions implemente
    • …
    corecore