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—— Abstract

We consider the problem of accurately recovering a matrix B of size M x M, which represents
a probability distribution over M? outcomes, given access to an observed matrix of “counts”
generated by taking independent samples from the distribution B. How can structural proper-
ties of the underlying matrix B be leveraged to yield computationally efficient and information

theoretically optimal reconstruction algorithms? When can accurate reconstruction be accom-
plished in the sparse data regime? This basic problem lies at the core of a number of questions
that are currently being considered by different communities, including building recommendation
systems and collaborative filtering in the sparse data regime, community detection in sparse ran-
dom graphs, learning structured models such as topic models or hidden Markov models, and the
efforts from the natural language processing community to compute “word embeddings”. Many
aspects of this problem—both in terms of learning and property testing/estimation and on both
the algorithmic and information theoretic sides—remain open.

Our results apply to the setting where B has a low rank structure. For this setting, we
propose an efficient (and practically viable) algorithm that accurately recovers the underlying
M x M matrix using ©(M) samples (where we assume the rank is a constant). This linear
sample complexity is optimal, up to constant factors, in an extremely strong sense: even testing
basic properties of the underlying matrix (such as whether it has rank 1 or 2) requires Q(M)
samples. Additionally, we provide an even stronger lower bound showing that distinguishing
whether a sequence of observations were drawn from the uniform distribution over M observations
versus being generated by a well-conditioned Hidden Markov Model with two hidden states
requires (M) observations, while our positive results for recovering B immediately imply that
Q(M) observations suffice to learn such an HMM. This lower bound precludes sublinear-sample
hypothesis tests for basic properties, such as identity or uniformity, as well as sublinear sample
estimators for quantities such as the entropy rate of HMMs.
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Recovering Structured Probability Matrices

1 Introduction

Consider an unknown M x M matrix of probabilities B, satisfying ZZ j B, ; = 1. Suppose one
is given N independently drawn (i, j)-pairs, sampled according to the distribution defined
by B. How many draws are necessary to accurately recover B? What can one infer about
the underlying matrix based on these samples? How can one accurately test whether the
underlying matrix possesses certain properties of interest? How do structural assumptions on
B — for example, the assumption that B has low rank — affect the information theoretic or
computational complexity of these questions? For the majority of these tasks, we currently
lack both a basic understanding of the computational and information theoretic lay of the
land, as well as algorithms that seem capable of achieving the information theoretic or
computational limits.

This general question of making accurate inferences about a matrix of probabilities,
given a matrix of observed “counts” of discrete outcomes, lies at the core of a number of
problems that disparate communities have been tackling independently. On the theoretical
side, these problems include both work on community detection in stochastic block models
(where the goal is to infer the community memberships from an adjacency matrix of a
graph that has been drawn according to an underlying matrix of probabilities expressing the
community structure) as well as the line of work on recovering topic models, hidden Markov
models (HMMs), and richer structured probabilistic models (where the model parameters
can often be recovered using observed count data). On the practical side, these problems
include work on computing low-rank approximations to sparsely sampled data, which arise
in collaborative filtering and recommendation systems, as well as the recent work from the
natural language processing community on understanding matrices of word co-occurrence
counts for the purpose of constructing good “word embeddings”. Additionally, work on latent
semantic analysis and non-negative matrix factorization can also be recast in this setting.

In this work, we focus on this estimation problem where the probability matrix B possesses
a particular low rank structure. While this estimation problem is rather specific, it generalizes
the basic community detection problem and the problem of learning various common models
encountered in natural language processing such as probabilistic latent semantic analysis [28].
Additionally, this problem encompasses the main technical challenge behind learning HMMs
and topic models, in the sense that after B is accurately recovered, these learning problems
have a number of parameters that is a function only of the number of topics/hidden states
(which bounds the rank of B and is, in practical applications, at most a few hundred) as
opposed to the the dictionary/alphabet size, M, which, in natural language settings is
typically tens of thousands. Furthermore, this low rank case also provides a means to study
how the relationships between property testing and estimation problems differ between this
structured setting and the basic rank 1 setting that is equivalent to simply drawing i.i.d
samples from a distribution supported on M elements.

We focus on the estimation of a low rank probability matrix B in the sparse data regime,
near the information theoretic limit. In many practical scenarios involving sample counts, we
seek algorithms capable of extracting the underlying structure in the sparsely sampled regime.
To give two motivating examples, consider forming the matrix of word co-occurrences—the
matrix whose rows and columns are indexed by the set of words, and whose (i, j)-th element
consists of the number of times the i-th word follows the j-th word in a large corpus of
text. In this context, the underlying probability matrix, B, represents the distribution of
bi-grams encountered in written english. In the context of recommendation system, one
could consider a low rank matrix model, where the rows are indexed by customers, and the
columns are indexed by products, with the (7, j)-th entry corresponding to the number of
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times the i-th customer has purchased the j-th product. Here, the underlying probability

matrix, B, models the distribution from which each customer/product purchase is drawn.

In both settings, the structure of the probability matrix underlying these observed counts
contains insights into the two domains, and in both domains we only have relatively sparse
data. This is inherent in many other natural scenarios involving heavy-tailed distributions
(including genomic settings), where despite having massive datasets, a significant fraction of
the domain is observed only a single time.

Similar estimation questions have been actively studied in the community detection
literature, where the objective is to accurately recover the communities in the regime where
the average degree (e.g. the row sums of the adjacency matrix) are constant. In contrast, the
recent line of works for recovering highly structured models (such as topic models, HMMs,
etc.) are only applicable to the over-sampled regime where the amount of data is well
beyond the information theoretic limits. In these cases, achieving the information theoretic
limits remains a widely open question. This work begins to bridge the divide between these
recent algorithmic advances in both communities. We hope that the low rank probability
matrix setting considered here serves as a jumping-off point for the more general questions of
developing information theoretically optimal algorithms for estimating structured matrices
and tensors in general, or recovering low-rank approximations to arbitrary probability
matrices, in the sparse data regime. While the general settings are more challenging, we
believe that some of our algorithmic techniques can be fruitfully extended.

In addition to developing algorithmic tools which we hope are applicable to a wider class
of problems, a second motivation for considering this particular low rank case is that, with
respect to distribution learning and property testing, the entire lay-of-the-land seems to
change completely when the probability matrix B has rank larger than 1. In the rank 1
setting — where a sample consists of 2 independent draws from a distribution supported
on {1,..., M} — the distribution can be learned using ©(M) draws. Nevertheless, many
properties of interest can be tested or estimated using a sample size that is sublinear in
M. However, even just in the case where the probability matrix is of rank 2, although the
underlying matrix B can be represented with O(M) parameters (and, as we show, it can also
be accurately and efficiently recovered with O(M) sample counts), sublinear sample property
testing and estimation is generally impossible. This result begs a more general question:
what conditions must be true of a structured statistical setting in order for property testing to
be easier than learning?

1.1 Problem Formulation

We consider the following problem setup and notation:
A vocabulary consisting of M “words”, denoted by M = {1,...,M}.
A low rank probability matrix B, of size M x M, with the following structure: B = PWP',
where P is an M X r non-negative matrix with column sums 1, and W is p.s.d. with
th WZ‘J = 1.
A set of N independent (i, j) pairs drawn according to B, with the probability of drawing
(t,7) given by B; ;.
An M x M matrix of “counts”, C, summarizing the frequencies of each (i, j) pair in the
N draws.

! Distinguishing whether a distribution is uniform versus far from uniform can be accomplished using
only O(V' M) draws, testing whether two sets of samples were drawn from similar distributions can be
done with O(M2/3) draws, estimating the entropy of the distribution to within an additive ¢ can be

done with O(ﬁ) draws, etc.
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Throughout, we will make frequent use of the Poissonization technique whereby we assume
that the number of draws follows a Poisson distribution of expectation N. This renders
C; ; independent of the other entries of the count matrix, simplifying analysis. Additionally,
for both upper and lower bounds, with all but inverse exponential probability the o(N)
discrepancy between N and Poi(N) contributes only to lower order terms.

Notation

Throughout the paper, we use the following standard shorthand notations. Denote [n] =
{1,...,n}. Z denotes a subset of indices in M. For a M-dimensional vector x, we use vector
x7 to denote the elements of = restricted to the indices in Z; for two index sets Z, J, and
a M x M dimensional matrix X, we use X7y s to denote the submatrix of X with rows
restricting to indices in Z and columns restricting to indices in J.

We use Poi(\) to denote a Poisson distribution with expectation \; we use Ber(p) to
denote a Bernoulli random variable with success probability p € [0, 1]; and for a probability
vector z € [0,1]M satisfying >, #; = 1 and an integer ¢, we use Mul(z;t) to denote the
multinomial distribution over M outcomes corresponding to ¢ draws from [M] according to
the distribution specified by the vector x.

1.2 Main Results

Our main result is the accurate recovery of a rank R matrix of the form described above in
the linear data regime N = O(M):

» Theorem 1 (Upper bound for rank R, constant accuracy). Suppose we have access to N
i.i.d. samples generated according to the a probability matriz B = PWPT with P an M x R
nonnegative matrix with column sum 1, W an R X R p.s.d. matriz with entries summing
to 1 and row sums bounded by Zj Wi > Wmin. For any constants ¢ > 0,0 > 0 and

N = @(% log(1/9)), there is an algorithm with poly(M,log(1/5)) runtime that returns
a rank R matriz B such that with probability at least 1 — J:

IB —Blle, <.

We emphasize that our recovery is in terms of ¢; distance, namely the total variation
distance between the true distribution and the recovered distribution. In settings where
there is a significant range in the row (or column) sums of B, a spectral error bound might
not be meaningful.

Much of the the difficulty in the algorithm is overcoming the fact that the row/column sums
of B might be very non-uniform. Nevertheless, our result can be compared to the community
detection setting with R communities (for which the row/column sums are completely
uniform), for which accurate recovery can be efficiently achieved given N = ©(M R?)

samples [20]. In our more general setting, we incur an extra factor of w whose removal

might be possible with a more careful analysis of our approach.

min’

1.2.1 Topic Models and Hidden Markov Models

One of the motivations for considering low rank structure of a probability matrix B is that
this structure captures the structure of the matrix of expected bigrams generated by topic
models [46, 28] and HMMs, as described below.
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» Definition 2. An R-topic model over a vocabulary of size M is defined by a set of R
distributions, p™), ..., p® supported over M words, and a set of R corresponding topic
mizing weights wy, ..., wr with ). w; = 1. The process of drawing a bigram (7, j) consists
of first randomly picking a topic i € [R] according to the distribution defined by the mixing
weights, and then drawing two independent words from the distribution p(*) corresponding to
the selected topic, . Thus the probability of drawing a bigram (3, j) is Z,If:l wrp® (i)p™* (4),
and the underlying distribution B over (i, ;) pairs can be expressed as B = PWPT with
P=[pW, ..., p"] and W = diag(wy, ..., wr).

In the case of topic models, the decomposition of the matrix of bigram probabilities
B =PWP' has the desired form required by our Theorem 1, with W nonnegative and p.s.d.,
and hence the theorem guarantees an accurate recovery of B, even in the sparse data regime.
The recovery of the mixing weights {w;} and topic distributions {p(¥} from B requires an
additional step, which will amount to solving a system of quadratic equations. Crucially,
however, given the rank R matrix B, the remaining problem becomes a problem only involving
R? parameters—representing a linear combination of the R factors of B for each p(¥)—rather
than recovering M R parameters.

» Definition 3. A Hidden Markov model with R hidden states and observations over an
alphabet of size M is defined by an R X R transition matrix 7', and R observation distributions
pW, ..., pB) A sequence of observations is sampled as follows: select an initial state (e.g.
according to the stationary distribution of the chain) then evolve the Markov chain according
to the transition matrix 7', drawing an observation from the ith distribution p(*) at each
timestep in which the underlying chain is in state ith.

Assuming the Markov chain has stationary distribution my,...,mg, the probability of
seeing a bigram (7, j) with symbol i observed at the kth timestep and symbol j observed
at the k + 1st timestep, tends towards the following (i.e. assuming the chain is close to
mixing by timestep k) rank R probability matrix B = PWP', with P = [p™),... p()] and
W = diag(my,...,7m)T.

For HMMs, the low rank matrix of bigrams, B = PWP', does not necessarily have
the required form—specifically the mixing matrix W may not be p.s.d.—and it is unclear
whether our approach can successfully recover such matrices. Nevertheless, with slightly
more careful analysis, at least in certain cases the techniques yield tight results. For example,
in the setting of an HMM with two hidden states, over an alphabet of size M, we can easily
show that our techniques obtain an accurate reconstruction of the corresponding probability
matrix B, and then leverage that reconstruction together with a constant amount of tri-gram
information to accurately learn the HMM:

» Proposition 4. (Learning 2-state HMMs) Consider a sequence of observations given
by a Hidden Markov Model with two hidden states and symmetric transition matrix with
entries bounded away from 0. Assuming a constant {1 distance between the distributions of
observations corresponding to the two states, there exists an algorithm which, given a sampled
chain of length N = Q(M/€?), runs in time poly(M) and returns estimates of the transition
matriz and two observation distributions that are accurate in ¢y distance, with probability at
least 2/3.

This probability of failure can be trivially boosted to 1 — § at the expense of an extra
factor of log(1/0) observations.
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1.2.2 Testing vs. Learning

Theorem 1 and Proposition 4 are tight in an extremely strong sense: for both the topic model
and HMM settings, it is information theoretically impossible to perform even the most basic
property tests using fewer than ©(M) samples. For topic models, the community detection
lower bounds [43][34][55] imply that © (M) bigrams are necessary to even distinguish between
the case that the underlying model is the uniform distribution over bigrams versus the case
of a R-topic model in which each topic has a unique subsets of M/R words with a constant
fraction higher probability than the remaining words. More surprisingly, for k-state HMMs
with & > 2, even if we permit an estimator to have more information than merely bigram
counts, namely access to the full sequence of observations, we prove the following linear lower
bound.

» Theorem 5. There exists a constant ¢ > 0 such that for sufficiently large M, given
a sequence of observations from a HMM with two states and emission distributions p,q
supported on M elements, even if the underlying Markov process is symmetric, with transition
probability 1/4, it is information theoretically impossible to distinguish the case that the two
emission distributions, p = ¢ = Unifl]M] from the case that ||p — q||1 = 1 with probability
greater than 2/3 using a sequence of fewer than cM observations.

This immediately implies the following corollary for estimating the entropy rate of an
HMM.

» Corollary 6. There exists an absolute constant ¢ > 0 such that given a sequence of
observations from a HMM with two hidden states and emission distributions supported on M
elements, a sequence of cM observations is information theoretically necessary to estimate
the entropy rate to within an additive 0.5 with probability of success greater than 2/3.

These strong lower bounds for property testing and estimation are striking for several
reasons. First, the core of our learning algorithm for 2-state HMMs (Proposition 4) is a
matrix reconstruction step that uses only the set of bigram counts. Conceivably, it might be
helpful to consider longer sequences of observations — even for HMMs that mix in constant
time, there are detectable correlations between observations separated by O(log M) steps.
Regardless, our lower bound shows that actually no additional information from such longer
k-grams can be leveraged to yield sublinear sample property testing or estimation.

A second notable point is the apparent brittleness of sublinear property testing and
estimation as we deviate from the standard (unstructured) i.i.d sampling setting. Indeed for
nearly all distributional property estimation or testing tasks, including testing uniformity
and estimating the entropy, sublinear-sample testing and estimation is possible in the i.i.d.
sampling setting (e.g. [26, 52, 51]). In contrast to the i.i.d. setting in which estimation and
testing require asymptotically fewer samples than learning, as the above results illustrate,
even in the setting of an HMM with just two hidden states, learning and testing require
comparable numbers of observations.

1.3 Related Work

As mentioned earlier, the general problem of reconstructing an underlying matrix of probab-
ilities given access to a count matrix drawn according to the corresponding distribution, lies
at the core of questions that are being actively pursued by several different communities. We
briefly describe these questions, and their relation to the present work.
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Community Detection. With the increasing prevalence of large scale social networks, there
has been a flurry of activity from the algorithms and probability communities to both model
structured random graphs, and understand how (and when it is possible) to examine a graph
and infer the underlying structures that might have given rise to the observed graph. One of
the most well studied community models is the stochastic block model [29]. In its most basic

form, this model is parameterized by a number of individuals, M, and two probabilities, a, 3.

The model posits that the M individuals are divided into two equal-sized “communities”,
and such a partition defines the following random graph model: for each pair of individuals
in the same community, the edge between them is present with probability « (independently
of all other edges); for a pair of individuals in different communities, the edge between them
is present with probability § < «. Phrased in the notation of our setting, the adjacency
matrix of the graph is generated by including each potential edge (4, 7) independently, with

probability B; ;, with B; ; = a or 8 according to whether ¢ and j are in the same community.

Note that B has rank 2 and is expressible as B = PWPT where P = [p, q| for vectors p = 21
and ¢ = %IQ where I is the indicator vector for membership in the first community, and I
is defined analogously, and W is the 2 X 2 matrix with aMTz on the diagonal and MTz on
the off-diagonal.

What values of a, 5, and M enable the community affiliations of all individuals to be
accurately recovered with high probability? What values of a, 5, and M allow for the graph to
be distinguished from an Erdos-Renyi random graph (that has no community structure)? The
crucial regime is where a, § = O(%)7 and hence each person has a constant, or logarithmic
expected degree. The naive spectral approaches will fail in this regime, as there will likely

be at least one node with degree ~ log M/loglog M, which will ruin the top eigenvector.

Nevertheless, in a sequence of works sparked by the paper of Friedman, and Szemeredi [24],
the following punchline has emerged: the naive spectral approach will work, even in the
constant expected degree setting, provided one first either removes, or at least diminishes the
weight of these high-degree problem vertices (e.g. [23, 33, 42, 34, 35]). For both the ezact
recovery problem and the detection problem, the exact tradeoffs between «, 3, and M were
recently established, down to subconstant factors [43, 1, 38]. More recently, there has been
further research investigating more complex stochastic block models, consisting of three or
more components, components of unequal sizes, etc. (see e.g. [20, 2, 3]).

The community detection setting generates an adjacency matrix with entries in {0,1},
choosing entry C; ; <— Bernoulli(B; ;), as opposed to our setting where C; ; is drawn from the
corresponding Poisson distribution. Nevertheless, the two models are extremely similar in the
sparse regime considered in the community detection literature, since, when B, ; = O(1/M),
the corresponding Poisson and Bernoulli distributions have total variation distance O(1/M?).

Word Embeddings. On the more applied side, some of the most impactful advances in
natural language processing over the past five years has been work on “word embeddings” [39,
37, 49, 10]. The main idea is to map every word w to a vector v,, € R? (typically d ~ 500) in
such a way that the geometry of the vectors captures the semantics of the word.? One of the
main constructions for such embeddings is to form the M x M matrix whose rows/columns
are indexed by words, with (i, )-th entry corresponding to the total number of times the i-th

and j-th word occur next to (or near) each other in a large corpus of text (e.g. wikipedia).

2 The goal of word embeddings is not just to cluster similar words, but to have semantic notions encoded
in the geometry of the points: the example usually given is that the direction representing the difference
between the vectors corresponding to “king” and “queen” should be similar to the difference between
the vectors corresponding to “man” and “woman”, or “uncle” and “aunt”, etc.
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The word embedding is then computed as the rows of the singular vectors corresponding
to the top rank d approximation to this empirical count matrix.? These embeddings have
proved to be extremely effective, particularly when used as a way to map text to features that
can then be trained in downstream applications. Despite their successes, current embeddings
seem to suffer from sampling noise in the count matrix (where many transformations of the
count data are employed, e.g. see [48])—this is especially noticeable in the relatively poor
quality of the embeddings for relatively rare words. The theoretical work [11] sheds some
light on why current approaches are so successful, yet the following question largely remains:
Is there a more accurate way to recover the best rank-d approximation of the underlying
matrix than simply computing the best rank-d approximation for the (noisy) matrix of
empirical counts?

Efficient Algorithms for Latent Variable Models. There is a growing body of work from
the algorithmic side (as opposed to information theoretic) on how to recover the structure
underlying various structured statistical settings. This body of work includes work on learning
HMMs [31, 41, 19], recovering low-rank structure [9, 8, 15], and learning or clustering various
structured distributions such as Gaussian mixture models [21, 54, 40, 14, 30, 32, 25]. A
number of these methods essentially can be phrased as solving an inverse moments problem,
and the work in [7] provides a unifying viewpoint for computationally efficient estimation
for many of these models under a tensor decomposition perspective. In general, this body
of work has focused on the computational issues and has considered these questions in the
regime in which the amount of data is plentiful—well above the information theoretic limits.

On the practical side, the natural language processing community has considered a variety
of generative and probabilistic models that fall into the framework we consider. These
include work on probabilistic latent semantic analysis (see e.g. [28, 22]), including the popular
latent Dirichlet allocation topic model [18]. Much of the algorithmic work on recovering
these models is either of a heuristic nature (such as the EM framework), or focuses on
computational efficiency in the regime in which data is plentiful (e.g. [6].

Sublinear Sample Testing and Estimation. In contrast to the work described in the
previous section on efforts to devise computationally efficient algorithms for tackling complex
structural settings in the “over—sampled” regime, there is also significant work establishing
information theoretically optimal algorithms and (matching) lower bounds for estimation
and distributional hypothesis testing in the most basic setting of independent samples
drawn from (unstructured) distributions. This work includes algorithms for estimating basic
statistical properties such as entropy [45, 27, 50, 52], support size [47, 50], distance between
distributions [50, 52, 51], and various hypothesis tests, such as whether two distributions
are very similar, versus significantly different [26, 12, 44, 53, 16], etc. While many of these
results are optimal in a worst-case (“minimax”) sense, there has also been recent progress
on instance optimal (or “competitive”) estimation and testing, e.g. [4, 5, 53], with stronger
information theoretic optimality guarantees. There has also been a long line of work beginning
with [17, 13] on these tasks in “simply structured” settings, e.g. where the domain of the
distribution has a total ordering or where the distribution is monotonic or unimodal.

3 A number of pre-processing steps have been considered, including taking the element-wise square roots
of the entries, or logarithms of the entries, prior to computing the SVD.
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2 Recovery Algorithm

To motivate our algorithms, it will be helpful to first consider the more naive approaches.

Recall that we are given N samples drawn according to the probability matrix B, with
C denoting the matrix of empirical counts. By the Poisson assumption on sample size,
we have that C; ; ~ Poi(NB; ;). Perhaps the most naive hope is to consider the rank R
%C’ , which concentrates to B in Frobenius norm at
ﬁ rate. Unfortunately, in order to achieve constant ¢; error, this approach would require a

truncated SVD of the empirical matrix

sample complexity as large as ©(M?). Intuitively, this is because the rows and columns of C
corresponding to words with larger marginal probabilities have higher row and column sums
in expectation, as well as higher variances that undermine the spectral concentration of the
matrix as a whole.

The above observation leads to the idea of pre-scaling the matrix so that every word
(i.e. row/column) roughly has equal variance. Indeed, with the pre-scaling modification
of the truncated SVD, one can likely improve the sample complexity of this approach to
©(M log M). To further reduce the sample complexity, it is worth considering what prevents
the truncated SVD from achieving accurate recovery in the N = (M) regime. Suppose the
word marginals are roughly uniform, namely all in the order of O(5;), the linear sample
regime roughly corresponds to the stochastic block model setup where the expected row sums
are all of order d = % = Q(1). Tt is well-known that in this sparse regime, the adjacency
matrix (in the graph setting), or the empirical count matrix C' in our problem, does not
concentrate to the expectation matrix in the spectral sense. Due to heavy rows/columns of
sum lolgf‘)lgo Q/IM ), the leading eigenvectors are polluted by the local properties of these heavy
rows/columns and do not reveal the global structure of the matrix/graph, which is precisely
the desired information.

Fortunately, these heavy (empirical) rows/columns are the only impediment to spectral
concentration in the linear sample size regime. Provided all rows/columns with observed
weight significantly more than d are zeroed out, spectral concentration prevails. This simple
idea of taming the heavy rows/columns was first introduced by [24], and analyzed in [23]
and many other works. Recently in [35] and [36], the authors provided clean and clever
proofs to show that any manner of “regularization”—removing entries from the heavy
rows/columns until their row/column sums are bounded—essentially leads to the desired
spectral concentration for the adjacency matrix of random graphs whose row/column sums
are roughly uniform in expectation.

The challenge of applying this regularization approach in our more general setting is that
the row/column expectations of C' might be extremely non-uniform. If we try to “regularize”,
we will not know whether we are removing entries from rows that have small expected sum
but happened to have a few extra entries, or if we are removing entries from a row that
actually has a large expected sum (in which case such removal will be detrimental).

Our approach is to partition the vocabulary M into bins that have roughly uniform
marginal probabilities, corresponding to partitioning the rows/columns into sets that have
roughly equal (empirical) counts. Restricting our attention to the diagonal sub-blocks of
B whose rows/columns consist of indices restricted to a single bin, the expected row and
column sums are now roughly uniform. We can regularize (by removing abnormally heavy
rows and columns) from each diagonal block separately to restore spectral concentration on
each of these sub blocks. Now, we can apply truncated SVD to each diagonal sub block,
recovering the column span of these blocks of B. With the column spans of each bin, we can
now “stitch” them together as a single large projection matrix P which has rank at most R
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Algorithm 1: The algorithm to which Theorem 1 applies, which recovers rank R
probability matrices in the linear data regime.

Input: 3N ii.d. samples from the distribution B of dimension M x M, where N =
O(AE )

we .
min

(In each of the 3 steps, B refers to an independent copy of the normalized count
matrix +C.)

Output: Rank R estimator B for B

Step 1. (Binning according to the empirical marginal probabilities)

EM (C«J"'Cjﬂ?)

j=1

Set p; = SN . Partition the vocabulary M into:

1 ekfl ek
IO—{i:ﬁi<N},andIk—{i: <pi < },fork—l,...,logN.

N N
Sort the M words according to p; in ascending order. Define py = 61;1 . For each
bin Ty, if |Zy| < 20e~ 2+ N get pr to be 0. Let ko = 4log(—2f_) 4 16, for an

€N/ Wmin
absolute constant ¢y which will be specified in the analysis, and set py to be 0 for all

k < kg. Define the following block diagonal matrix:

_1/2
e
D= . (1)

~1/2
plog NI‘Ilog N

Step 2. (Estimate dictionary span in each bin)
For each diagonal block By, = Bz, «17,, perform the following two steps:
1. (Regularization):
If a row/column of B has sum exceeding 2py, set the entire row/column to 0.
2|Zx| 73
Wmin

If a row/column of By has sum exceeding , set the entire row/column to
0.
Denote the regularized block by B
2. (R-SVD): Define the |Z;| x R matrix V}, to consist of the R top singular vectors
of Ek.
Step 3. (Recover estimate for B accurate in /;)

Define the following projection matrix:
Py,
Py = , where Py, = Vi V;!. (2)

PVlogM

Let B be the rank-R truncated SVD of matrix Py D~*BD~!Py, and return B =
DB'D.

times the number of bins, and roughly contains the column span of B. We then project a
new count matrix, C’, obtained via a fresh partition of samples. As the projection is fairly
low rank, it filters most of the sampling noise, leaving an accurate approximation of B.

We summarize these basic ideas of Algorithm 1.

1. Given a batch of NV samples, group words according to the empirical marginal probabilities,
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so that in each bin consists of words whose (empirical) marginal probabilities, differ by
at most a constant factor.

Given a second batch of N samples, zeros out the words that have abnormally large
empirical marginal probabilities comparing to the expected marginal probabilities of
words in their bin. Then consider the diagonal blocks of the empirical bigram counts
matrix C, with rows and columns corresponding to the words in the same bin. We
“regularize” each diagonal block in the empirical matrix by removing abnormally heavy
rows and columns of the blocks, and then apply truncated SVD to estimate the column
span of that diagonal block of B.

With a third batch of IV samples, project the empirical count matrix into the “stitched”
column spans recovered in the previous step which yields an accurate estimate of
Diag(p)~/?BDiag(p)~'/? in spectral norm, where p denotes the vector of marginal
probabilities. Since the estimate is accurate in spectral norm after scaling by the marginal
probabilities, this spectral concentration of the scaled matrix easily translates into an ¢4
error bounds for the un-scaled matrix B, as desired.

There are several potential concerns that arise in implementing the above high-level

algorithm outline and establishing the correctness of the algorithm:

1.
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