26 research outputs found

    Towards cooperative software verification with test generation and formal verification

    Get PDF
    There are two major methods for software verification: testing and formal verification. To increase our confidence in software on a large scale, we require tools that apply these methods automatically and reliably. Testing with manually written tests is widespread, but for automatically generated tests for the C programming language there is no standardized format. This makes the use and comparison of automated test generators expensive. In addition, testing can never provide full confidence in software—it can show the presence of bugs, but not their absence. In contrast, formal verification uses established, standardized formats and can prove the absence of bugs. Unfortunately, even successful formal-verification techniques suffer from different weaknesses. Compositions of multiple techniques try to combine the strengths of complementing techniques, but such combinations are often designed as cohesive, monolithic units. This makes them inflexible and it is costly to replace components. To improve on this state of the art, we work towards an off-the-shelf cooperation between verification tools through standardized exchange formats. First, we work towards standardization of automated test generation for C. We increase the comparability of test generators through a common benchmarking framework and reliable tooling, and provide means to reliably compare the bug-finding capabilities of test generators and formal verifiers. Second, we introduce new concepts for the off-the-shelf cooperation between verifiers (both test generators and formal verifiers). We show the flexibility of these concepts through an array of combinations and through an application to incremental verification. We also show how existing, strongly coupled techniques in software verification can be decomposed into stand-alone components that cooperate through clearly defined interfaces and standardized exchange formats. All our work is backed by rigorous implementation of the proposed concepts and thorough experimental evaluations that demonstrate the benefits of our work. Through these means we are able to improve the comparability of automated verifiers, allow the cooperation between a large array of existing verifiers, increase the effectiveness of software verification, and create new opportunities for further research on cooperative verification

    Correctness Witness Validation by Abstract Interpretation

    Full text link
    Witnesses record automated program analysis results and make them exchangeable. To validate correctness witnesses through abstract interpretation, we introduce a novel abstract operation unassume. This operator incorporates witness invariants into the abstract program state. Given suitable invariants, the unassume operation can accelerate fixpoint convergence and yield more precise results. We demonstrate the feasibility of this approach by augmenting an abstract interpreter with unassume operators and evaluating the impact of incorporating witnesses on performance and precision. Using manually crafted witnesses, we can confirm verification results for multi-threaded programs with a reduction in effort ranging from 7% to 47% in CPU time. More intriguingly, we discover that using witnesses from model checkers can guide our analyzer to verify program properties that it could not verify on its own.Comment: 29 pages, 4 figures, 2 tables, extended version of the paper which is to appear at VMCAI 202

    Model checker execution reports

    No full text
    Software model checking constitutes an undecidable problem and, as such, even an ideal tool will in some cases fail to give a conclusive answer. In practice, software model checkers fail often and usually do not provide any information on what was effectively checked. The purpose of this work is to provide a conceptual framing to extend software model checkers in a way that allows users to access information about incomplete checks. We characterize the information that model checkers themselves can provide, in terms of analyzed traces, i.e. sequences of statements, and safe canes, and present the notion of execution reports (ERs), which we also formalize. We instantiate these concepts for a family of techniques based on Abstract Reachability Trees and implement the approach using the software model checker CPAchecker. We evaluate our approach empirically and provide examples to illustrate the ERs produced and the information that can be extracted

    Model Checker Execution Reports

    Get PDF
    Software model checking constitutes an undecidable problem and, as such, even an ideal tool will in some cases fail to give a conclusive answer. In practice, software model checkers fail often and usually do not provide any information on what was effectively checked. The purpose of this work is to provide a conceptual framing to extend software model checkers in a way that allows users to access information about incomplete checks. We characterize the information that model checkers themselves can provide, in terms of analyzed traces, i.e. sequences of statements, and safe cones, and present the notion of execution reports, which we also formalize. We instantiate these concepts for a family of techniques based on Abstract Reachability Trees and implement the approach using the software model checker CPAchecker. We evaluate our approach empirically and provide examples to illustrate the execution reports produced and the information that can be extracted

    Witness-based validation of verification results with applications to software-model checking

    Get PDF
    In the scientific world, formal verification is an established engineering technique to ensure the correctness of hardware and software systems. Because formal verification is an arduous and error-prone endeavor, automated solutions are desirable, and researchers continue to develop new algorithms and optimize existing ones to push the boundaries of what can be verified automatically. These efforts do not go unnoticed by the industry. Hardware-circuit designs, flight-control systems, and operating-system drivers are just a few examples of systems where formal verification is already part of the quality-assurance repertoire. Nevertheless, the primary fields of application for formal verification are mainly those where errors carry a high risk of significant damage, either financial or physical, because the costs of formal verification are considered to be too high for most other projects, despite the fact that the research community has made vast advancements regarding the effectiveness and efficiency of formal verification techniques in the last decades. We present and address two potential reasons for this discrepancy that we identified in the field of automated formal software verification. (1) Even for experts in the field, it is often difficult to decide which of the multitude of available techniques is the most suitable solution they should recommend to solve a given verification problem. Moreover, even if a suitable solution is found for a given system, there is no guarantee that the solution is sustainable as the system evolves. Consequently, the cost of finding and maintaining a suitable approach for applying formal software verification to real-world systems is high. (2) Even assuming that a suitable and maintainable solution for applying formal software verification to a given system is found and verification results could be obtained, developers of the system still require further guidance towards making practical use of these results, which often differ significantly from the results they obtain from classical quality-assurance techniques they are familiar with, such as testing. To mitigate the first issue, using the open-source software-verification framework CPAchecker, we investigate several popular formal software-verification techniques such as predicate abstraction, Impact, bounded model checking, k -induction, and PDR, and perform an extensive and rigorous experimental study to identify their strengths and weaknesses regarding their comparative effectiveness and efficiency when applied to a large and established benchmark set, to provide a basis for choosing the best technique for a given problem. To mitigate the second issue, we propose a concrete standard format for the representation and communication of verification results that raises the bar from plain "yes" or "no" answers to verification witnesses, which are valuable artifacts of the verification process that contain detailed information discovered during the analysis. We then use these verification witnesses for several applications: To increase the trust in verification results, we irst develop several independent validators based on violation witnesses, i.e. verification witnesses that represent bugs detected by a verifier. We then extend our validators to also erify the verification results obtained from a successful verification, which are represented y correctness witnesses. Lastly, we also develop an interactive web service to store and retrieve these verification witnesses, to provide online validation to quickly de-prioritize likely wrong results, and to graphically visualize the witnesses, as an example of how verification can be integrated into a development process. Since the introduction of our proposed standard format for verification witnesses, it has been adopted by over thirty different software verifiers, and our witness-based result-validation tools have become a core component in the scoring process of the International Competition on Software Verification.In der Welt der Wissenschaft gilt die Formale Verifikation als etablierte Methode, die Korrektheit von Hard- und Software zu gewährleisten. Da die Anwendung formaler Verifikation jedoch selbst ein beschwerliches und fehlerträchtiges Unterfangen darstellt, ist es erstrebenswert, automatisierte Lösungen dafür zu finden. Forscher entwickeln daher immer wieder neue Algorithmen Formaler Verifikation oder verbessern bereits existierende Algorithmen, um die Grenzen der Automatisierbarkeit Formaler Verifikation weiter und weiter zu dehnen. Auch die Industrie ist bereits auf diese Anstrengungen aufmerksam geworden. Flugsteuerungssysteme, Betriebssystemtreiber und Entwürfe von Hardware-Schaltungen sind nur einzelne Beispiele von Systemen, bei denen Formale Verifikation bereits heute einen festen Stammplatz im Arsenal der Qualitätssicherungsmaßnahmen eingenommen hat. Trotz alledem bleiben die primären Einsatzgebiete Formaler Verifikation jene, in denen Fehler ein hohes Risiko finanzieller oder physischer Schäden bergen, da in anderen Projekten die Kosten des Einsatzes Formaler Verifikation in der Regel als zu hoch empfunden werden, unbeachtet der Tatsache, dass es der Forschungsgemeinschaft in den letzten Jahrzehnten gelungen ist, enorme Fortschritte bei der Verbesserung der Effektivität und Effizienz Formaler Verifikationstechniken zu machen. Wir präsentieren und diskutieren zwei potenzielle Ursachen für diese Diskrepanz zwischen Forschung und Industrie, die wir auf dem Gebiet der Automatisierten Formalen Softwareverifikation identifiziert haben. (1) Sogar Fachleuten fällt es oft schwer, zu entscheiden, welche der zahlreichen verfügbaren Methoden sie als vielversprechendste Lösung eines gegebenen Verifikationsproblems empfehlen sollten. Darüber hinaus gibt es selbst dann, wenn eine passende Lösung für ein gegebenes System gefunden wird, keine Garantie, dass sich diese Lösung im Laufe der Evolution des Systems als Nachhaltig erweisen wird. Daher sind sowohl die Wahl als auch der Unterhalt eines passenden Ansatzes zur Anwendung Formaler Softwareverifikation auf reale Systeme kostspielige Unterfangen. (2) Selbst unter der Annahme, dass eine passende und wartbare Lösung zur Anwendung Formaler Softwareverifikation auf ein gegebenes System gefunden und Verifikationsergebnisse erzielt werden, benötigen die Entwickler des Systems immer noch weitere Unterstützung, um einen praktischen Nutzen aus den Ergebnissen ziehen zu können, die sich oft maßgeblich unterscheiden von den Ergebnissen jener klassischen Qualitätssicherungssysteme, mit denen sie vertraut sind, wie beispielsweise dem Testen. Um das erste Problem zu entschärfen, untersuchen wir unter Verwendung des Open-Source-Softwareverifikationsystems CPAchecker mehrere beliebte Formale Softwareverifikationsmethoden, wie beispielsweise Prädikatenabstraktion, Impact, Bounded-Model-Checking, k-Induktion und PDR, und führen umfangreiche und gründliche experimentelle Studien auf einem großen und etablierten Konvolut an Beispielprogrammen durch, um die Stärken und Schwächen dieser Methoden hinsichtlich ihrer relativen Effektivität und Effizienz zu ermitteln und daraus eine Entscheidungsgrundlage für die Wahl der besten Lösung für ein gegebenes Problem abzuleiten. Um das zweite Problem zu entschärfen, schlagen wir ein konkretes Standardformat zur Modellierung und zum Austausch von Verifikationsergebnissen vor, welches die Ansprüche an Verifikationsergebnisse anhebt, weg von einfachen "ja/nein"-Antworten und hin zu Verifikationszeugen (Verification Witnesses), bei denen es sich um wertvolle Produkte des Verifikationsprozesses handelt und die detaillierte, während der Analyse entdeckte Informationen enthalten. Wir stellen mehrere Anwendungsbeispiele für diese Verifikationszeugen vor: Um das Vertrauen in Verifikationsergebnisse zu erhöhen, entwickeln wir zunächst mehrere, voneinander unabhängige Validatoren, die Verletzungszeugen (Violation Witnesses) verwenden, also Verifikationszeugen, welche von einem Verifikationswerkzeug gefundene Spezifikationsverletzungen darstellen, Diese Validatoren erweitern wir anschließend so, dass sie auch in der Lage sind, die Verifikationsergebnisse erfolgreicher Verifikationen, also Korrektheitsbehauptungen, die durch Korrektheitszeugen (Correctness Witnesses) dokumentiert werden, nachzuvollziehen. Schlussendlich entwickeln wir als Beispiel für die Integrierbarkeit Formaler Verifikation in den Entwicklungsprozess einen interaktiven Webservice für die Speicherung und den Abruf von Verifikationzeugen, um einen Online-Validierungsdienst zur schnellen Depriorisierung mutmaßlich falscher Verifikationsergebnisse anzubieten und Verifikationszeugen graphisch darzustellen. Unser Vorschlag für ein Standardformat für Verifikationszeugen wurde inzwischen von mehr als dreißig verschiedenen Softwareverifikationswerkzeugen übernommen und unsere zeugen-basierten Validierungswerkzeuge sind zu einer Kernkomponente des Bewertungsschemas des Internationalen Softwareverifikationswettbewerbs geworden

    TOOLympics 2019: An Overview of Competitions in Formal Methods

    Get PDF
    Evaluation of scientific contributions can be done in many different ways. For the various research communities working on the verification of systems (software, hardware, or the underlying involved mechanisms), it is important to bring together the community and to compare the state of the art, in order to identify progress of and new challenges in the research area. Competitions are a suitable way to do that. The first verification competition was created in 1992 (SAT competition), shortly followed by the CASC competition in 1996. Since the year 2000, the number of dedicated verification competitions is steadily increasing. Many of these events now happen regularly, gathering researchers that would like to understand how well their research prototypes work in practice. Scientific results have to be reproducible, and powerful computers are becoming cheaper and cheaper, thus, these competitions are becoming an important means for advancing research in verification technology. TOOLympics 2019 is an event to celebrate the achievements of the various competitions, and to understand their commonalities and differences. This volume is dedicated to the presentation of the 16 competitions that joined TOOLympics as part of the celebration of the 25th anniversary of the TACAS conference

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems
    corecore