164 research outputs found

    Porting concepts from DNNs back to GMMs

    Get PDF
    Deep neural networks (DNNs) have been shown to outperform Gaussian Mixture Models (GMM) on a variety of speech recognition benchmarks. In this paper we analyze the differences between the DNN and GMM modeling techniques and port the best ideas from the DNN-based modeling to a GMM-based system. By going both deep (multiple layers) and wide (multiple parallel sub-models) and by sharing model parameters, we are able to close the gap between the two modeling techniques on the TIMIT database. Since the 'deep' GMMs retain the maximum-likelihood trained Gaussians as first layer, advanced techniques such as speaker adaptation and model-based noise robustness can be readily incorporated. Regardless of their similarities, the DNNs and the deep GMMs still show a sufficient amount of complementarity to allow effective system combination

    Reducing Audible Spectral Discontinuities

    Get PDF
    In this paper, a common problem in diphone synthesis is discussed, viz., the occurrence of audible discontinuities at diphone boundaries. Informal observations show that spectral mismatch is most likely the cause of this phenomenon.We first set out to find an objective spectral measure for discontinuity. To this end, several spectral distance measures are related to the results of a listening experiment. Then, we studied the feasibility of extending the diphone database with context-sensitive diphones to reduce the occurrence of audible discontinuities. The number of additional diphones is limited by clustering consonant contexts that have a similar effect on the surrounding vowels on the basis of the best performing distance measure. A listening experiment has shown that the addition of these context-sensitive diphones significantly reduces the amount of audible discontinuities

    Evaluation of preprocessors for neural network speaker verification

    Get PDF

    Text-Independent, Open-Set Speaker Recognition

    Get PDF
    Speaker recognition, like other biometric personal identification techniques, depends upon a person\u27s intrinsic characteristics. A realistically viable system must be capable of dealing with the open-set task. This effort attacks the open-set task, identifying the best features to use, and proposes the use of a fuzzy classifier followed by hypothesis testing as a model for text-independent, open-set speaker recognition. Using the TIMIT corpus and Rome Laboratory\u27s GREENFLAG tactical communications corpus, this thesis demonstrates that the proposed system succeeded in open-set speaker recognition. Considering the fact that extremely short utterances were used to train the system (compared to other closed-set speaker identification work), this system attained reasonable open-set classification error rates as low as 23% for TIMIT and 26% for GREENFLAG. Feature analysis identified the filtered linear prediction cepstral coefficients with or without the normalized log energy or pitch appended as a robust feature set (based on the 17 feature sets considered), well suited for clean speech and speech degraded by tactical communications channels

    Speaker recognition using frequency filtered spectral energies

    Get PDF
    The spectral parameters that result from filtering the frequency sequence of log mel-scaled filter-bank energies with a simple first or second order FIR filter have proved to be an efficient speech representation in terms of both speech recognition rate and computational load. Recently, the authors have shown that this frequency filtering can approximately equalize the cepstrum variance enhancing the oscillations of the spectral envelope curve that are most effective for discrimination between speakers. Even better speaker identification results than using melcepstrum have been obtained on the TIMIT database, especially when white noise was added. On the other hand, the hybridization of both linear prediction and filter-bank spectral analysis using either cepstral transformation or the alternative frequency filtering has been explored for speaker verification. The combination of hybrid spectral analysis and frequency filtering, that had shown to be able to outperform the conventional techniques in clean and noisy word recognition, has yield good text-dependent speaker verification results on the new speaker-oriented telephone-line POLYCOST database.Peer ReviewedPostprint (published version

    Analysis of Speech Recognition Techniques

    Get PDF
    Speech recognition has been an intregral part of human life acting as one of the five senses of human body, because of which application developed on the basis of speech recognition has high degree of acceptance. Here in this project we tried to analyse the different steps involved in artificial speech recognition by man-machine interface. The various steps we followed in speech recognition are feature extraction, distance calculation, dynamic time wrapping. We have tried to find out an approach which is both simple and efficient so that it can be utilised in embedded systems. After analysing the steps above we realised the process using small programs using MATLAB which is able to do small no. of isolated word recognition

    Intersession Variability Compensation in Language and Speaker Identification

    Get PDF
    Variabilita kanálu a hovoru je velmi důležitým problémem v úloze rozpoznávání mluvčího. V současné době je ve velkém množství vědeckých článků uvedeno několik technik pro kompenzaci vlivu kanálu. Kompenzace vlivu kanálu může být implementována jak v doméně modelu, tak i v doménách příznaků i skóre. Relativně nová výkoná technika je takzvaná eigenchannel adaptace pro GMM (Gaussian Mixture Models). Mevýhodou této metody je nemožnost její aplikace na jiné klasifikátory, jako napřílad takzvané SVM (Support Vector Machines), GMM s různým počtem Gausových komponent nebo v rozpoznávání řeči s použitím skrytých markovových modelů (HMM). Řešením může být aproximace této metody, eigenchannel adaptace v doméně příznaků. Obě tyto techniky, eigenchannel adaptace v doméně modelu a doméně příznaků v systémech rozpoznávání mluvčího, jsou uvedeny v této práci. Po dosažení dobrých výsledků v rozpoznávání mluvčího, byl přínos těchto technik zkoumán pro akustický systém rozpoznávání jazyka zahrnující 14 jazyků. V této úloze má nežádoucí vliv nejen variabilita kanálu, ale i variabilita mluvčího. Výsledky jsou prezentovány na datech definovaných pro evaluaci rozpoznávání mluvčího z roku 2006 a evaluaci rozpoznávání jazyka v roce 2007, obě organizované Amerických Národním Institutem pro Standard a Technologie (NIST)Varibiality in the channel and session is an important issue in the text-independent speaker recognition task. To date, several techniques providing channel and session variability compensation were introduced in a number of scientic papers. Such implementation can be done in feature, model and score domain. Relatively new and powerful approach to remove channel distortion is so-called eigenchannel adaptation for Gaussian Mixture Models (GMM). The drawback of the technique is that it is not applicable in its original implementation to different types of classifiers, eg. Support Vector Machines (SVM), GMM with different number of Gaussians or in speech recognition task using Hidden Markov Models (HMM). The solution can be the approximation of the technique, eigenchannel adaptation in feature domain. Both, the original eigenchannel adaptation and eigenchannel adaptation on features in task of speaker recognition are presented. After achieving good results in speaker recognition, contribution of the same techniques was examined in acoustic language identification system with 1414 languages. In this task undesired factors are channel and speaker variability. Presented results are presented on the NIST Speaker Recognition Evaluation 2006 data and NIST Language Recognition Evaluation 2007 data.

    Time–Frequency Cepstral Features and Heteroscedastic Linear Discriminant Analysis for Language Recognition

    Get PDF
    The shifted delta cepstrum (SDC) is a widely used feature extraction for language recognition (LRE). With a high context width due to incorporation of multiple frames, SDC outperforms traditional delta and acceleration feature vectors. However, it also introduces correlation into the concatenated feature vector, which increases redundancy and may degrade the performance of backend classifiers. In this paper, we first propose a time-frequency cepstral (TFC) feature vector, which is obtained by performing a temporal discrete cosine transform (DCT) on the cepstrum matrix and selecting the transformed elements in a zigzag scan order. Beyond this, we increase discriminability through a heteroscedastic linear discriminant analysis (HLDA) on the full cepstrum matrix. By utilizing block diagonal matrix constraints, the large HLDA problem is then reduced to several smaller HLDA problems, creating a block diagonal HLDA (BDHLDA) algorithm which has much lower computational complexity. The BDHLDA method is finally extended to the GMM domain, using the simpler TFC features during re-estimation to provide significantly improved computation speed. Experiments on NIST 2003 and 2007 LRE evaluation corpora show that TFC is more effective than SDC, and that the GMM-based BDHLDA results in lower equal error rate (EER) and minimum average cost (Cavg) than either TFC or SDC approaches

    Text-Independent Automatic Speaker Identification Using Partitioned Neural Networks

    Get PDF
    This dissertation introduces a binary partitioned approach to statistical pattern classification which is applied to talker identification using neural networks. In recent years artificial neural networks have been shown to work exceptionally well for small but difficult pattern classification tasks. However, their application to large tasks (i.e., having more than ten to 20 categories) is limited by a dramatic increase in required training time. The time required to train a single network to perform N-way classification is nearly proportional to the exponential of N. In contrast, the binary partitioned approach requires training times on the order of N2. Besides partitioning, other related issues were investigated such as acoustic feature selection for speaker identification and neural network optimization. The binary partitioned approach was used to develop an automatic speaker identification system for 120 male and 130 female speakers of a standard speech data base. The system performs with 100% accuracy in a text-independent mode when trained with about nine to 14 seconds of speech and tested with six to eight seconds of speech
    corecore