77 research outputs found

    Wireless Telemetry for Implantable Biomedical Microsystems

    Get PDF

    Bidirectional Parallel Capacitive Data Links: Modeling and Experimental Results

    Get PDF
    We present, in this paper, a bidirectional capacitive data link. Enhancement of the spatial pulse position modulation used on the downlink is introduced, and a load-shift keying modulation is implemented for the uplink. Different grounds on the transmitter and the receiver are discussed, and a compatible solution is proposed. A human skin electrical model is extracted using the agilent impedance analyzer 4294A while doing in vivo measurements on cheek skin and then applying curve fitting to the data between 2 and 20 MHz. Multiple geometries for the link are analyzed, and a 5-mm × 5-mm plate size is used for the design of the transceiver. The signal-to-noise ratio along with the capacity of the channel is analyzed theoretically while computing the limits for the downlink and the valid operating frequency to highlight the core parameters that affect the crosstalk interference between channels. The tradeoff in using the uplink on the same channel as the downlink is also discussed and analyzed. The operating frequency is 10 MHz, a bit-rate of 20 Mb/s is demonstrated on the uplink, and 10 Mb/s is demonstrated on the downlink. An in vivo human skin model for a 5-mm × 5-mm plate size with 21.2-mm separation is extracted, and the capacity's equation of the channel is computed using the equations for the analysis of the system.This work was supported by the Natural Sciences and Engineering Research Council of Canada, Canada. The authors would like to acknowledge the financial support from the Canada Research Chair in Smart Medical Devices and the design tools from CMC Microsystems.Scopu

    Bidirectional parallel capacitive data links: Modeling and experimental results

    Get PDF
    ABSTRACT: We present, in this paper, a bidirectional capacitive data link. Enhancement of the spatial pulse position modulation used on the downlink is introduced, and a load-shift keying modulation is implemented for the uplink. Different grounds on the transmitter and the receiver are discussed, and a compatible solution is proposed. A human skin electrical model is extracted using the agilent impedance analyzer 4294A while doing in vivo measurements on cheek skin and then applying curve fitting to the data between 2 and 20 MHz. Multiple geometries for the link are analyzed, and a 5-mm × 5-mm plate size is used for the design of the transceiver. The signal-to-noise ratio along with the capacity of the channel is analyzed theoretically while computing the limits for the downlink and the valid operating frequency to highlight the core parameters that affect the crosstalk interference between channels. The tradeoff in using the uplink on the same channel as the downlink is also discussed and analyzed. The operating frequency is 10 MHz, a bit-rate of 20 Mb/s is demonstrated on the uplink, and 10 Mb/s is demonstrated on the downlink. An in vivo human skin model for a 5-mm × 5-mm plate size with 21.2-mm separation is extracted, and the capacity's equation of the channel is computed using the equations for the analysis of the system

    WIRELESS POWER MANAGEMENT CIRCUITS FOR BIOMEDICAL IMPLANTABLE SYSTEMS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Inductively Coupled CMOS Power Receiver For Embedded Microsensors

    Get PDF
    Inductively coupled power transfer can extend the lifetime of embedded microsensors that save costs, energy, and lives. To expand the microsensors' functionality, the transferred power needs to be maximized. Plus, the power receiver needs to handle wide coupling variations in real applications. Therefore, the objective of this research is to design a power receiver that outputs the highest power for the widest coupling range. This research proposes a switched resonant half-bridge power stage that adjusts both energy transfer frequency and duration so the output power is maximally high. A maximum power point (MPP) theory is also developed to predict the optimal settings of the power stage with 98.6% accuracy. Finally, this research addresses the system integration challenges such as synchronization and over-voltage protection. The fabricated self-synchronized prototype outputs up to 89% of the available power across 0.067%~7.9% coupling range. The output power (in percentage of available power) and coupling range are 1.3× and 13× higher than the comparable state of the arts.Ph.D

    A WI-FI BASED SMART DATA LOGGER FOR CAPSULE ENDOSCOPY AND MEDICAL APPLICATIONS

    Get PDF
    Wireless capsule endoscopy (WCE) is a non-invasive technology for capturing images of a human digestive system for medical diagnostics purpose. With WCE, the patient swallows a miniature capsule with camera, data processing unit, RF transmitter and batteries. The capsule captures and transmits images wirelessly from inside the human gastrointestinal (GI) tract. The external data logger worn by the patient stores the images and is later on transferred to a computer for presentation and image analysis. In this research, we designed and built a Wi-Fi based, low cost, miniature, versatile wearable data logger. The data logger is used with Wi-Fi enabled smart devices, smart phones and data servers to store and present images captured by capsule. The proposed data logger is designed to work with wireless capsule endoscopy and other biosensors like- temperature and heart rate sensors. The data logger is small enough to carry and conduct daily activities, and the patient do not need to carry traditional bulky data recorder all the time during diagnosis. The doctors can remotely access data and analyze the images from capsule endoscopy using remote access feature of the data logger. Smartphones and tablets have extensive processing power with expandable memory. This research exploits those capabilities to use with wireless capsule endoscopy and medical data logging applications. The application- specific data recorders are replaced by the proposed Wi-Fi data logger and smartphone. The data processing application is distributed on smart devices like smartphone /tablets and data logger. Once data are stored in smart devices, the data can be accessed remotely, distributed to the cloud and shared within networks to enable telemedicine. The data logger can work in both standalone and network mode. In the normal mode of the device, data logger stores medical data locally into a micro Secure Digital card for future download using the universal serial bus to the computer. In network mode, the real-time data is streamed into a smartphone and tablet for further processing and storage. The proposed Wi-Fi based data logger is prototyped in the lab and tested with the capsule hardware developed in our laboratory. The supporting Android app is also developed to collect data from the data logger and present the processed data to the viewer. The PC based software is also developed to access the data recorder and capture and download data from the data logger in real-time remotely. Both in vivo and ex vivo trials using live pig have been conducted to validate the performance of the proposed device

    Télémétrie capacitive pour des dispositifs implantables

    Get PDF
    RÉSUMÉ Ce travail vise à concevoir un système de transfert de données bidirectionnel et capacitif. Une introduction couvrant l'histoire des liens de communication dédiés aux implants médicaux est tout d’abord présentée. Ensuite, nous développons une revue de la littérature des télémétries de données qui se basent sur l'approche capacitive ainsi que celles basées sur la modulation de changement de charge. Deux systèmes de transfert de données à base capacitive sont présentés : le premier est unidirectionnel et se base sur la modulation de la position spatiale de la porteuse. Le second est bidirectionnel et utilise une modulation spatiale de la position du pulse pour la liaison descendante et la modulation par déplacement de charge pour la liaison ascendante. Le premier système a été testé sur un cuir chevelu de mouton et a atteint un débit de 20 Mb/s en utilisant des composants discrets. Le système a été modélisé sur COMSOL afin de comprendre le comportement du champ électrique dans ce type de tissu. Les défis du premier système ont été réglés par la conception du deuxième système. Les contributions apportées ont résolu les limitations suivantes : le problème de différence de masse sur l’émetteur et le récepteur, la grande taille des plaques nécessaire pour obtenir une capacité d'isolation valide et finalement l’ajustement automatique du seuil de détection du récepteur en ajoutant une cinquième plaque commune. Une analyse détaillée des paramètres qui affectent le rapport signal sur bruit pour la liaison descendante (de la partir externe du système vers l’implant) est réalisée avec un modèle électrique correspondant à la peau de la joue humaine. La capacité est calculée en utilisant les variables paramétriques du système. La modulation sur la liaison ascendante est analysée en mettant en évidence les compromis nécessaires sur la liaison descendante. Un débit de 10 Mb/s est réalisé sur la liaison ascendante et un débit de 20 Mb/s sur la liaison descendante. Finalement, nous proposons une nouvelle modulation qui utilise le complément de la SPPM et permet une augmentation de 50 % dans le débit binaire en ajoutant un bit aux deux bits transmis par impulsion formant des codes à 3 bits chacun.----------ABSTRACT This work aims to design a bidirectional capacitive data link. An introduction covering the history of communication links used for medical implants is introduced along with a literature review covering the data telemetries using the capacitive approach and some of the other types of telemetries using load shift keying modulation. Two capacitive based telemetry systems are presented; the first is a unidirectional using spatial carrier position modulation and the second is a bidirectional transceiver using spatial pulse position modulation for the downlink and load shift keying for the uplink. The first system achieved a data rate of 20 Mb/s experimentally using discrete components, four plate geometry and sheep head skin. COMSOL modeling has been implanted to understand the behavior of the electric field in this type of tissue. The challenges of the first system were sorted by the design of the second transceiver which solved the different ground on the transmitter and the receiver, the big plate size required to achieve a valid insulation capacitance and most importantly the autonomy of the receiver detection threshold by adding a fifth common plate. A detailed analysis of the parameters that affect the signal to noise ratio for the downlink is made along with an electrical model that fits the human cheek skin. The capacity is computed using the parametric variables of the system. Load shift keying system analysis is done while highlighting the tradeoffs required for implementing on the uplink along with the downlink. A data rate of 10 Mb/s is achieved on the uplink and a 20 Mb/s on the downlink. A new modulation is implemented that uses the complement of the SPPM and allows a 50% increase in the bit-rate by adding a bit to the two transmitted bits per pulse for a total of three

    BPOD: A WIRELESS INTEGRATED SENSOR PLATFORM FOR CONTINUOUS LOCALIZED BIOPROCESS MONITORING

    Get PDF
    Process parameter spatial inhomogeneities inside cell culture bioreactors has attracted considerable attention, however, few technologies allow investigation of the impact of these variations on process yield. Commercially available sensing probes sit at fixed locations, failing to capture the spatial distribution of process metrics. The bio-Processing online device (bPod) addresses this problem by performing real-time in situ monitoring of dissolved oxygen (DO) within bioreactor cell cultures. The bPod is an integrated system comprised of a potentiostat analog-front-end, a Bluetooth Low Energy microcontroller, and a Clark-type electrochemical DO sensor. The Clark-type sensor uses chronoamperometry to determine the DO percent saturation within a range relevant for mammalian cell culture. The free-floating capsule is packaged inside a 3D-printed biocompatible shell and wirelessly transmits data to a smartphone while submerged in the reactor. Furthermore, the bPod demonstrated a sensitivity of 37.5 nA/DO%, and can be adapted to multiple sensor types, enabling numerous bioprocess monitoring applications

    AI Knowledge Transfer from the University to Society

    Get PDF
    AI Knowledge Transfer from the University to Society: Applications in High-Impact Sectors brings together examples from the "Innovative Ecosystem with Artificial Intelligence for Andalusia 2025" project at the University of Seville, a series of sub-projects composed of research groups and different institutions or companies that explore the use of Artificial Intelligence in a variety of high-impact sectors to lead innovation and assist in decision-making. Key Features Includes chapters on health and social welfare, transportation, digital economy, energy efficiency and sustainability, agro-industry, and tourism Great diversity of authors, expert in varied sectors, belonging to powerful research groups from the University of Seville with proven experience in the transfer of knowledge to the productive sector and agents attached to the Andalucía TECH Campu

    High Data-Rate, Battery-Free, Active Millimeter-Wave Identification Technologies for Future Integrated Sensing, Tracking, and Communication Systems-On-Chip

    Get PDF
    RÉSUMÉ Pour de nombreuses applications allant de la sécurité, le contrôle d'accès, la surveillance et la gestion de la chaîne d'approvisionnement aux applications biomédicales et d'imagerie parmi tant d'autres, l'identification par radiofréquence (RFID) a énormément influencé notre quotidien. Jusqu'à présent, cette technologie émergente a été la plupart du temps conçue et développé dans les basses fréquences (en dessous de 3 GHz). D’une part, pour des applications où de courte distances (quelques centimètres) et à faible taux de communications de données sont suffisantes (même préférables dans certains cas), la technologie RFID à couplage inductif qui fonctionne à basse fréquences (LF) ou à haute fréquences (HF) fonctionne très bien et elle est largement utilisée dans de nombreuses applications commerciales. D'autre part, afin d’augmenter la distance de communication (quelques mètres), le débit de données de communication, et ainsi minimiser la taille du tag, la technologie RFID fonctionnant dans la bande d’ultra-haute fréquence (UHF) et aux fréquences micro-ondes (par exemple, 2.4 GHz) a récemment attiré beaucoup d'attention dans le milieu de la recherche et le développement. Cependant, dans ces bandes de fréquences, une bande passante disponible restreinte avec la taille du tag assez large (principalement dominée par la taille d'antenne et de la batterie dans le cas d'un tag actif) sont les principaux facteurs qui ont toujours limité l'évolution de la technologie RFID actuelle. En effet, propulser la technologie RFID dans la bande de fréquences à ondes millimétriques briserait les barrières actuelles de la technologie RFID. La technologie d’identification aux fréquences à ondes millimétriques (MMID) offre plus de bande passante, et permet également la miniaturisation de la taille du tag, car à ces bandes de fréquences, la longueur d’onde est de l’ordre de quelques millimètres, une taille comparable à la taille d’un circuit intégré. L'antenne peut donc être soit intégré sur la même puce (antenne sur puce) ou soit encapsulé dans le même boitier que le circuit intégré. En dotant le tag la capacité de récolter sans fil son énergie à partir d'un signal aux fréquences à ondes millimétriques provenant du lecteur, lui fournissant ainsi l'autonomie énergétique (ainsi éliminant la nécessité d'une batterie et en même temps permettant la miniaturisation du tag), il devient alors possible d'intégrer entièrement tout le tag MMID sur une seule puce y compris les antennes, ce qui aboutira à la mise au point d’une nouvelle technologie miniature (μRFID) fonctionnant à la bande de fréquences à ondes millimétriques.----------ABSTRACT For countless applications ranging from security, access control, monitoring, and supply chain management to biomedical and imaging applications among many others, radio frequency identification (RFID) technology has tremendously impacted our daily life. So far, this ever-needed and emerging technology has been mostly designed and developed at low RF frequencies (below 3-GHz). For many practical applications where short-range (few centimeters) and low data-rate communications are sufficient and in some cases even preferable, inductively coupled RFID systems that operate over either low-frequency (LF) or high-frequency (HF) bands have performed quite well and have been widely used for practical and commercial applications. On the other hand, in the quest for a longer communication range (few meters), relatively high data-rate and smaller antenna size RFID systems operating over ultra-high frequency (UHF) and microwave frequency bands (e.g., 2.4-GHz) have recently attracted much attention in the research and development community. However, over these RF bands, a restricted available bandwidth together with an undesired tag size (mainly dominated by its off-chip antenna size and battery in the case of active tag) are the main factors that have been limiting the evolution of today’s RFID technology. Indeed, propelling RFID technology into millimeter-wave frequencies opens up new applications that cannot be made possible today.Millimeter-wave identification (MMID) technology is set out to exploit significantly larger bandwidth and smaller antenna size. Over these frequency bands, an effective wavelength is in the order of a few millimeters, hence close to a typical semiconductor (CMOS) die size. The antenna, therefore, may either be integrated on the same chip (antenna-on-chip – AoC) or embedded in the related package (antenna-in-package – AiP). In addition, by equipping the tag with the capability to wirelessly harvest its energy from an incoming millimeter-wave signal, thereby providing energy autonomy without the need of a battery and at the same time allowing miniaturization, it becomes possible to integrate the entire MMID tag circuitry on a single chip. Furthermore, the timely MMID concept is fully compatible with upcoming and future applications of millimeter-wave technology in wireless communications which are being discussed and developed worldwide in research and development communities, such as the internet of things (IoT), 5G, autonomous mobility, μSmart sensors, automotive RADAR technologies, etc
    corecore