22,546 research outputs found

    Cooperative Detection and Network Coding in Wireless Networks

    Get PDF
    In cooperative communication systems, multiple terminals in wireless networks share their antennas and resources for information exchange and processing. Recently, cooperative communications have been shown to achieve significant performance improvements in terms of transmission reliability, coverage area extension, and network throughput, with respect to existing classical communication systems. This dissertation is focused on two important applications of cooperative communications, namely: (i) cooperative distributed detection in wireless sensor networks, and (ii) many-to-many communications via cooperative space-time network coding. The first application of cooperative communications presented in this dissertation is concerned with the analysis and modeling of the deployment of cooperative relay nodes in wireless sensor networks. Particularly, in dense wireless sensor networks, sensor nodes continuously observe and collect measurements of a physical phenomenon. Such observations can be highly correlated, depending on the spatial separation between the sensor nodes as well as how the physical properties of the phenomenon are evolving over time. This unique characteristic of wireless sensor networks can be effectively exploited with cooperative communications and relays deployment such that the distributed detection performance is significantly improved as well as the energy efficiency. In particular, this dissertation studies the Amplify-and-Forward (AF) relays deployment as a function of the correlation of the observations and analyzes the achievable spatial diversity gains as compared with the classical wireless sensor networks. Moreover, it is demonstrated that the gains of cooperation can be further leveraged to alleviate bandwidth utilization inefficiencies in current sensor networks. Specifically, the deployment of cognitive AF cooperative relays to exploit empty/under-utilized time-slots and the resulting energy savings are studied, quantified and compared. The multiple terminal communication and information exchange form the second application of cooperative communications in this dissertation. Specifically, the novel concept of Space-Time-Network Coding (STNC) that is concerned with formulation of the many-to-many cooperative communications over Decode-and-Forward (DF) nodes is studied and analyzed. Moreover, the exact theoretical analysis as well as upper-bounds on the network symbol error rate performance are derived. In addition, the tradeoff between the number of communicating nodes and the timing synchronization errors is analyzed and provided as a network design guideline. With STNC, it is illustrated that cooperative diversity gains are fully exploited per node and significant performance improvements are achieved. It is concluded that the STNC scheme serves as a potential many-to-many cooperative communications scheme and that its scope goes much further beyond the generic source-relay-destination communications

    Optimization in multi-relay wireless networks

    Get PDF
    The concept of cooperation in communications has drawn a lot of research attention in recent years due to its potential to improve the efficiency of wireless networks. This new form of communications allows some users to act as relays and assist the transmission of other users' information signals. The aim of this thesis is to apply optimization techniques in the design of multi-relay wireless networks employing cooperative communications. In general, the thesis is organized into two parts: ``Distributed space-time coding' (DSTC) and ``Distributed beamforming', which cover two main approaches in cooperative communications over multi-relay networks. In Part I of the thesis, various aspects of distributed implementation of space-time coding in a wireless relay network are treated. First, the thesis proposes a new fully-diverse distributed code which allows noncoherent reception at the destination. Second, the problem of coordinating the power allocation (PA) between source and relays to achieve the optimal performance of DSTC is studied and a novel PA scheme is developed. It is shown that the proposed PA scheme can obtain the maximum diversity order of DSTC and significantly outperform other suboptimal PA schemes. Third, the thesis presents the optimal PA scheme to minimize the mean-square error (MSE) in channel estimation during training phase of DSTC. The effect of imperfect channel estimation to the performance of DSTC is also thoroughly studied. In Part II of the thesis, optimal distributed beamforming designs are developed for a wireless multiuser multi-relay network. Two design criteria for the optimal distributed beamforming at the relays are considered: (i) minimizing the total relay power subject to a guaranteed Quality of Service (QoS) measured in terms of signal-to-noise-ratio (SNR) at the destinations, and (ii) jointly maximizing the SNR margin at the destinations subject to power constraints at the relays. Based on convex optimization techniques, it is shown that these problems can be formulated and solved via second-order conic programming (SOCP). In addition, this part also proposes simple and fast iterative algorithms to directly solve these optimization problems

    Cooperative Symbol-Based Signaling for Networks with Multiple Relays

    Get PDF
    Wireless channels suffer from severe inherent impairments and hence reliable and high data rate wireless transmission is particularly challenging to achieve. Fortunately, using multiple antennae improves performance in wireless transmission by providing space diversity, spatial multiplexing, and power gains. However, in wireless ad-hoc networks multiple antennae may not be acceptable due to limitations in size, cost, and hardware complexity. As a result, cooperative relaying strategies have attracted considerable attention because of their abilities to take advantage of multi-antenna by using multiple single-antenna relays. This study is to explore cooperative signaling for different relay networks, such as multi-hop relay networks formed by multiple single-antenna relays and multi-stage relay networks formed by multiple relaying stages with each stage holding several single-antenna relays. The main contribution of this study is the development of a new relaying scheme for networks using symbol-level modulation, such as binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK). We also analyze effects of this newly developed scheme when it is used with space-time coding in a multi-stage relay network. Simulation results demonstrate that the new scheme outperforms previously proposed schemes: amplify-and-forward (AF) scheme and decode-and-forward (DF) scheme

    Recovering Multiplexing Loss Through Successive Relaying Using Repetition Coding

    Full text link
    In this paper, a transmission protocol is studied for a two relay wireless network in which simple repetition coding is applied at the relays. Information-theoretic achievable rates for this transmission scheme are given, and a space-time V-BLAST signalling and detection method that can approach them is developed. It is shown through the diversity multiplexing tradeoff analysis that this transmission scheme can recover the multiplexing loss of the half-duplex relay network, while retaining some diversity gain. This scheme is also compared with conventional transmission protocols that exploit only the diversity of the network at the cost of a multiplexing loss. It is shown that the new transmission protocol offers significant performance advantages over conventional protocols, especially when the interference between the two relays is sufficiently strong.Comment: To appear in the IEEE Transactions on Wireless Communication

    Dispensing with channel estimation: differentially modulated cooperative wireless communications

    No full text
    As a benefit of bypassing the potentially excessive complexity and yet inaccurate channel estimation, differentially encoded modulation in conjunction with low-complexity noncoherent detection constitutes a viable candidate for user-cooperative systems, where estimating all the links by the relays is unrealistic. In order to stimulate further research on differentially modulated cooperative systems, a number of fundamental challenges encountered in their practical implementations are addressed, including the time-variant-channel-induced performance erosion, flexible cooperative protocol designs, resource allocation as well as its high-spectral-efficiency transceiver design. Our investigations demonstrate the quantitative benefits of cooperative wireless networks both from a pure capacity perspective as well as from a practical system design perspective

    Novel transmission schemes for application in two-way cooperative relay wireless communication networks

    Get PDF
    Recently, cooperative relay networks have emerged as an attractive communications technique that can generate a new form of spatial diversity which is known as cooperative diversity, that can enhance system reliability without sacrificing the scarce bandwidth resource or consuming more transmit power. To achieve cooperative diversity single-antenna terminals in a wireless relay network typically share their antennas to form a virtual antenna array on the basis of their distributed locations. As such, the same diversity gains as in multi-input multi-output systems can be achieved without requiring multiple-antenna terminals. However, there remain technical challenges to maximize the benefit of cooperative communications, e.g. data rate, asynchronous transmission, interference and outage. Therefore, the focus of this thesis is to exploit cooperative relay networks within two-way transmission schemes. Such schemes have the potential to double the data rate as compared to one-way transmission schemes. Firstly, a new approach to two-way cooperative communications via extended distributed orthogonal space-time block coding (E-DOSTBC) based on phase rotation feedback is proposed with four relay nodes. This scheme can achieve full cooperative diversity and full transmission rate in addition to array gain. Then, distributed orthogonal space-time block coding (DOSTBC) is applied within an asynchronous two-way cooperative wireless relay network using two relay nodes. A parallel interference cancelation (PIC) detection scheme with low structural and computational complexity is applied at the terminal nodes in order to overcome the effect of imperfect synchronization among the cooperative relay nodes. Next, a DOSTBC scheme based on cooperative orthogonal frequency division multiplexing (OFDM) type transmission is proposed for flat fading channels which can overcome imperfect synchronization in the network. As such, this technique can effectively cope with the effects of fading and timing errors. Moreover, to increase the end-to-end data rate, a closed-loop EDOSTBC approach using through a three-time slot framework is proposed. A full interference cancelation scheme with OFDM and cyclic prefix type transmission is used in a two-hop cooperative four relay network with asynchronism in the both hops to achieve full data rate and completely cancel the timing error. The topic of outage probability analysis in the context of multi-relay selection for one-way cooperative amplify and forward networks is then considered. Local measurements of the instantaneous channel conditions are used to select the best single and best two relays from a number of available relays. Asymptotical conventional polices are provided to select the best single and two relays from a number of available relays. Finally, the outage probability of a two-way amplify and forward relay network with best and Mth relay selection is analyzed. The relay selection is performed either on the basis of a max-min strategy or one based on maximizing exact end-to-end signal-to-noise ratio. MATLAB and Maple software based simulations are employed throughout the thesis to support the analytical results and assess the performance of new algorithms and methods

    Self-concatenated code design and its application in power-efficient cooperative communications

    No full text
    In this tutorial, we have focused on the design of binary self-concatenated coding schemes with the help of EXtrinsic Information Transfer (EXIT) charts and Union bound analysis. The design methodology of future iteratively decoded self-concatenated aided cooperative communication schemes is presented. In doing so, we will identify the most important milestones in the area of channel coding, concatenated coding schemes and cooperative communication systems till date and suggest future research directions

    Adaptive Randomized Distributed Space-Time Coding in Cooperative MIMO Relay Systems

    Full text link
    An adaptive randomized distributed space-time coding (DSTC) scheme and algorithms are proposed for two-hop cooperative MIMO networks. Linear minimum mean square error (MMSE) receivers and an amplify-and-forward (AF) cooperation strategy are considered. In the proposed DSTC scheme, a randomized matrix obtained by a feedback channel is employed to transform the space-time coded matrix at the relay node. Linear MMSE expressions are devised to compute the parameters of the adaptive randomized matrix and the linear receive filter. A stochastic gradient algorithm is also developed to compute the parameters of the adaptive randomized matrix with reduced computational complexity. We also derive the upper bound of the error probability of a cooperative MIMO system employing the randomized space-time coding scheme first. The simulation results show that the proposed algorithms obtain significant performance gains as compared to existing DSTC schemes.Comment: 4 figure
    corecore