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Abstract

The concept of cooperation in communications has drawn a lot of research atten-

tion in recent years due to its potential to improve the efficiency of wireless networks.

This new form of communications allows some users to act as relays and assist the

transmission of other users’ information signals. The aim of this thesis is to ap-

ply optimization techniques in the design of multi-relay wireless networks employing

cooperative communications. In general, the thesis is organized into two parts: “Dis-

tributed space-time coding” (DSTC) and “Distributed beamforming”, which cover

two main approaches in cooperative communications over multi-relay networks.

In Part I of the thesis, various aspects of distributed implementation of space-

time coding in a wireless relay network are treated. First, the thesis proposes a new

fully-diverse distributed code which allows noncoherent reception at the destination.

Second, the problem of coordinating the power allocation (PA) between source and

relays to achieve the optimal performance of DSTC is studied and a novel PA scheme

is developed. It is shown that the proposed PA scheme can obtain the maximum

diversity order of DSTC and significantly outperform other suboptimal PA schemes.

Third, the thesis presents the optimal PA scheme to minimize the mean-square error

(MSE) in channel estimation during training phase of DSTC. The effect of imperfect

channel estimation to the performance of DSTC is also thoroughly studied.

In Part II of the thesis, optimal distributed beamforming designs are developed

for a wireless multiuser multi-relay network. Two design criteria for the optimal

distributed beamforming at the relays are considered: (i) minimizing the total relay

power subject to a guaranteed Quality of Service (QoS) measured in terms of signal-

to-noise-ratio (SNR) at the destinations, and (ii) jointly maximizing the SNR margin

at the destinations subject to power constraints at the relays. Based on convex

optimization techniques, it is shown that these problems can be formulated and solved

via second-order conic programming (SOCP). In addition, this part also proposes

simple and fast iterative algorithms to directly solve these optimization problems.
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1. Introduction

In recent years, the rapid expansion of wireless communications has put a signif-

icant pressure to the current wireless network infrastructure to cope with demands

for higher throughput, higher robustness and better coverage. It is expected that

such demands would even be stronger in the future fourth-generation (4G) wireless

networks. No longer limited to a medium for only voice transmission, wireless com-

munications have assumed an important role in transmitting data at higher rates

and streaming multimedia services, such as video, at higher Quality of Service (QoS)

requirements as well. These demands have posed tough technical challenges for the

current and future wireless networks.

A fundamental aspect of wireless communication that makes the design of robust

wireless networks challenging is the phenomenon of fading. Basically, fading in a

wireless channel refers to the time and frequency variations of the channel quality. The

fading effect of a wireless channel can be categorized into two types: large-scale fading,

and small-scale fading [1]. The large-scale fading is due to the signal attenuation as a

function of distance and shadowing effects caused by large objects such as buildings,

hills, obstacles, etc. The small-scale fading is due to the constructive and destructive

interferences of the multiple paths between the transmitter and receiver. How to deal

with fading, especially the small-scale fading, is critical to the design of any robust

wireless communication system.

As illustrated in Figure 1.1, the received signal in a wireless channel is a compos-

ite of the transmitted signal over several different paths due to reflection, diffraction,

and scattering from buildings, moving objects like cars, trees, etc. When there is a

1



ScatteringDiffraction

Reflection

Line of sight

Figure 1.1 A typical transmission wireless environment.

large number of scatterers that contribute to the signal at the receiver, the central

limit theorem leads to a Gaussian process model for the channel coefficient. If the

process is zero-mean, the absolute value of the channel response at any time instant

has a Rayleigh probability distribution. Mathematically, given x[m] as the trans-

mitted signal, the received signal y[m] over a fading channel (in discrete base-band

representation) at time m is given by

y[m] = h[m]x[m] + z[m], (1.1)

where z[m] is the additive white Gaussian noise (AWGN), and h[m] is the channel

coefficient, which is commonly referred to as the “channel state information” (CSI). In

a typical Rayleigh fading model of the wireless channel, h[m] is a zero-mean circularly

symmetric complex Gaussian random variable.

It is noted that in an AWGN channel, where h[m] = 1, errors in detection occur

due to the additive noise component z[m]. Uncoded signaling schemes, such as binary

phase-shift keying (BPSK), can perform very well in an AWGN channel, where the

detection error decays exponentially with the signal-to-noise ratio (SNR) [1]. On the

other hand, in a fading channel, the BPSK signaling scheme fails completely even in

2



the absence of noise if the receiver has no knowledge of channel coefficient h[m]. This

is because there is nothing in the received signal y[m] which can be used to distinguish

the transmitted signal x[m]. As the phase of the channel coefficient h[m] is uniformly

distributed between 0 and 2π, the phase of y[m] is also uniformly distributed between

0 and 2π. Furthermore, the amplitude of y[m] is independent of the transmitted

BPSK symbol x[m].

Suppose now that the channel coefficient is tracked such that it is known at the

receiver. This can be practically done by sending a known sequence (called training),

and performing “channel estimation” at the receiver using the training sequence. As

a result, coherent detection can be performed as in the case with an AWGN channel.

Even so, the communication scheme over the fading channel still suffers from a much

poorer performance than that over the AWGN channel [2]. This is due to the fact

that the channel gain is random and there is a certain probability that the channel

is “in a deep fade” [1]. More specifically, when the channel attenuation is large (the

amplitude of the channel coefficient is small), the low instantaneous received SNR

leads to a high probability in detection error.

However, if the receiver is provided with several replicas of the same informa-

tion signal transmitted over independent fading channels, the probability that all the

received signal components are in deep fades simultaneously is much smaller. This

approach to combat fading, called “diversity technique”, has been commonly applied

in wireless communications. In order to quantify the effectiveness of a diversity tech-

nique, the relationship between the average SNR and the average error probability

Pe is determined. A common measure is the “diversity order”, defined as follows:

Gd = − lim
SNR→∞

log Pe

log SNR
. (1.2)

Obviously, the higher the diversity order is, the more reliable the wireless communi-

cation system is. There are several approaches to provide diversity techniques in a

wireless system as outlined next. Regardless of the approach used, it is important

that the implemented technique is capable of obtaining the system’s “maximum di-

versity order”. More precisely, the diversity technique should take the full advantage

3



of the multiple independent received copies of the same transmitted signal.

One diversity technique is to transmit the same information signal over multiple

frequency bands, where the separation between successive bands equals or exceeds the

coherence bandwidth of the channel. Here, the coherence bandwidth measures the

frequency range over which the channel responses are correlated. This technique is

called frequency diversity. A second technique to obtain independently faded versions

of the same information signal is to transmit the signal in different time slots, where

the separation between successive time slots equals or exceeds the coherence time

of the channel. Here, the coherent time refers to the time duration over which the

channel responses are correlated. This technique is known as time diversity. It is

noted that both frequency and time diversity techniques are inefficient since frequency

diversity requires bandwidth expansion, whereas time diversity needs extra time slots

for transmission. Another popular approach to obtain diversity is to deploy multiple

antennas in reception and/or transmission. This technique is called spatial diversity.

Spatial diversity, albeit requiring extra costs for multiple antenna deployment, is much

more spectral efficient and can overcome the drawbacks of both frequency diversity

and time diversity.

Figure 1.2 demonstrates examples of providing spatial diversity in an uplink chan-

nel from a mobile unit to a base station. Spatial diversity can be obtained by deploy-

ing multiple antennas at the receiving end, referred to as receive diversity, or at the

transmitting end, referred to as transmit diversity, or a combination of both. While

it is straightforward to realize receive diversity by simple combining techniques at the

receiver, such as the maximal ratio combining (MRC), achieving transmit diversity

requires a more complex technique at the transmitter [1]. The recent invention of

space-time coding [3, 4] (in the 1990s) allows a simple, yet elegant method to obtain

transmit diversity with a very high bandwidth efficiency. In addition, space-time

coding is capable of achieving the maximum diversity order of the multiple-antenna

system. These recent developments in multi-input multi-output (MIMO) systems

have been a significant step forward with a lot of potentials in meeting the technical
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Figure 1.2 Illustration of spatial diversity in an uplink channel.

challenges of the current and next generation of wireless communications. However,

the implementation of multiple antennas at mobile units faces a serious technical

challenge due to the size and power limitation of the mobile units. This is because

the multiple antennas have to be placed several wavelengths apart so that the channel

between each transmit and receive antenna experiences independent fading.

More recently, cooperative communication has been proposed to provide a different

implementation of multiple antennas which can allow future communication systems

to overcome the aforementioned drawback [5]. In this new form of communications,

the single-antenna users (or nodes) cooperate to relay each other’s information signals,

create a virtual array of transmit antennas, and, thus achieve spatial diversity. Such

cooperation can significantly improve the reliability of signal transmission from each

5



user [6]. User cooperation also enables the system to enhance its capacity and extend

its coverage [7]. Due to the tremendous potential of cooperative communication, there

has been a lot of research efforts in the last few years to study both the theoretical

performance and practical implementation of this new communication scheme.

Independent fading paths

Source

Relay

Destination

Figure 1.3 Example of a relay channel.

Figure 1.3 illustrates an example of cooperative communication in its simplest

form. In particular, one user, called the source user, wants to send its information

signal to another user, called the destination user. Another user, which acts as the

relay, also receives the transmitted signal. The relay processes the received signal

in some way, and then retransmits to the destination. As a result, the original sig-

nal experiences independent transmissions from the source to destination. At the

relay, several relaying protocols, e.g., amplify-and-forward (AF), decode-and-forward

(DF) [5], could be applied to process the received signal. As its name suggests, in AF

protocol, the relay simply amplifies the received signal and then forwards to the desti-

nation. On the other hand, in DF protocol, the relay first decodes the received signal,

re-encodes it, and then forwards to the destination. Figure 1.4 visually describes the

AF and DF protocols at the relay.

In general, multiple relays could simultaneously assist the transmission from a

source to a destination. Each relay could employ a dedicated channel to retransmit

its received signal to the destination. However, this method is spectrally inefficient

since it requires the number of dedicated channels to be at least equal to the number
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Figure 1.4 Amplify-and-forward and decode-and-forward protocols.

of relays. In [8], a new cooperative strategy using AF protocol, referred to as “dis-

tributed space-time coding” (DSTC), was proposed, where the conventional space-

time coding designed for co-located antennas was implemented between the relays in

a distributed manner. The new strategy allows a space-time transmission of source

signals to the destination on the same channel and at the same time, and hence is

more spectrally efficient. In addition, the new scheme is capable of obtaining the

maximum diversity order promised by cooperative communications. Various aspects

of the new cooperative strategy have led to many interesting research problems, such

as code designs and performance analysis [8–10]. The main focuses of Part I of this

thesis are to study fully-diverse code designs for DSTC with different types of CSI

assumptions of the relay networks, optimal power allocation (PA) schemes between

7



the users, channel estimation, and performance analysis of mismatched decoding in

DSTC.

It should be noted that DSTC can be implemented without the need of full channel

state information (CSI) at the relays. However, should the CSI be available at the

relays, i.e., each relay knows the CSI of the channel links connected to it, the relays

can and should compensate for the phase changes introduced by the channels. As

a result, the received signal at the destination can be coherently constructed. Such

relaying strategy, known as “distributed beamforming”, was first proposed in [11–14].

The works in [11–14] study the optimal distributed beamforming strategies to either

maximize the signal-to-noise (SNR) at the destination subject to power constraints

as the relays or minimize the total relay power subject to the QoS requirement at the

destination. Motivated by the early works on distributed beamforming in a one-source

one-destination network, Part II of this thesis generalizes the distributed beamforming

designs to a multi-source multi-destination network. By applying convex optimization

techniques, this second part of the thesis proposes resource allocation schemes at the

relays in order to optimally assist multiple source-destination pairs.

1.1 Thesis Contribution and Outline

The thesis is divided into two main parts, titled Distributed space-time coding and

Distributed beamforming, and is organized as follows.

Part I of the thesis, comprises Chapters 2, 3, and 4, is concerned with several

important aspects of DSTC, including code designs, performance analysis, power al-

location, channel estimation, and mismatched decoding. An important characteristic

of DSTC is that it allows the destination to exploit cooperative diversity without the

availability of CSI at the relays. Chapter 2 considers the design of DSTC in wire-

less multi-relay networks with different CSI assumptions at the destination. First,

the chapter reviews the DSTC design criteria in coherent relay networks. It then

presents the design and the performance analysis of DSTC when full CSI at the des-

tination is unavailable. Proposed in the chapter is a new fully-diverse distributed
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code for the partially coherent and the noncoherent relay networks. The proposed

distributed unitary space-time modulation (DUSTM), which relies on Fourier-based

USTM, allows noncoherent detection at the destination. Developed are the maximum

likelihood (ML) receiver for DUSTM over partially coherent relay networks and the

generalized likelihood-ratio test (GLRT) receiver for the noncoherent relay networks.

Performance analysis of the DUSTM over the two types of relay networks reveals a

surprising result that the knowledge of the relay-to-destination channel information

has a very little impact on the code performance.

Chapter 3 considers the optimal PA problem for DTSC based on the second-order

statistics of each source-to-relay (S → R) and relay-to-destination (R → D) channels,

subject to a total power budget at the source and relays. The chapter first examines

the optimal PA scheme to maximize the effective average SNR in an arbitrary relay

network. Interestingly, it shows that maximizing the average SNR is not sufficient to

optimize the performance of the DSTC. More specifically, at the optimal solution for

such a PA scheme, some of the relays might not be active, and thus compromise the

distributed code’s full diversity order. It then introduces the concept of amount of

fading to the relay networks and establishes the condition of the transmitted power

at each relay such that the fading statistics of each S → R → D link is balanced.

A novel and simple PA scheme is proposed at the chapter’s end and proved to be

capable of obtaining the maximum diversity order in coherent, partially coherent,

and noncoherent DSTC systems at high SNR. Finally, simulation results are given to

confirm the analysis and show a significant performance improvement by the proposed

PA scheme.

Chapter 4 is concerned with the optimal design in the training phase and the

impact of channel estimation and mismatched decoding on DSTC. The chapter first

makes use of the results in [15] that orthogonal training is optimal to minimize the

total mean-square error (MSE) for both the maximum likelihood (ML) and minimum

mean-square error (MMSE) estimations. It then studies an optimal PA scheme to

further minimize the total MSE for both the estimation schemes. The result shows
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that the optimal PA scheme is the same as that obtained in Chapter 3 under the

minimum amount of fading constraint. The impact of imperfect channel estimation on

the error performance of DSTC is also analyzed and it is proved that the mismatched

decoding of DSTC is able to achieve the same diversity order as the coherent decoding

of DSTC.

Part II of the thesis, consists of Chapters 5 and 6, is devoted to multi-source

multi-destination networks employing distributed beamforming. An important re-

mark about distributed beamforming is that it requires full CSI knowledge at the

relays to perform beamforming. Two main problems in optimal distributed beam-

forming designs addressed in this part are (i) minimize the total relay power with

guaranteed QoS in terms of SNR at the destinations, and (ii) jointly maximize the

SNR margin at the destinations subject to power constraints at the relays. The

problems are sequentially investigated and shown to be closely related to each other.

Chapter 5 studies optimal distributed beamforming designs to minimize the total

relay power with guaranteed QoS. The chapter exploits convex optimization tech-

niques to find the optimal beamformers in a relay network with or without per-relay

power constraints. First, the chapter shows that these problems can be formulated

and solved via second-order conic programming (SOCP). Although the optimal solu-

tions to the problems can be obtained by any conic solution package, the contribution

of this chapter is a proposal of simple and fast iterative algorithms to efficiently solve

them. The feasibility conditions of the two optimization problems are also studied

in the chapter. With different assumptions on orthogonality in S → R and R → D

transmission phases, several potential future works on distributed beamforming de-

signs are recommended at the chapter’s end.

Chapter 6 studies the distributed beamforming problems that are inverse to the

ones in Chapter 5. With the constraints on either the sum relay power or the per-

relay power, optimal distributed beamforming designs are studied to jointly maximize

the SNR margin at the destinations. Although the two optimization problems can be

solved effectively by the bisection methods via SOCP feasibility problems, the chapter
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proposes two simple and fast iterative algorithms to directly solve the two problems

without the need of a standard conic solution package. Future works on sum-rate

maximization of the relay networks are also suggested.

Chapter 7 draws the conclusion and gives suggestions for further studies.

1.2 Notations

The notations in this thesis are quite standard and explained as follows:

• R and C denote the sets of real and complex numbers, respectively.

• A column vector is formatted in lower-case and bold, e.g., x; whereas a matrix

is in upper-case and bold, e.g., A.

• Sn denotes the set of symmetric n× n matrices, whereas Sn
+ denotes the set of

symmetric positive semidefinite matrix. A ∈ Sn
+ is denoted as A º 0.

• IM stands for the M ×M identity matrix.

• diag(d1, d2, . . . , dM) denotes an M ×M diagonal matrix with diagonal elements

d1, d2, . . . , dM .

• det(·) and tr(·) denote the determinant and trace of a square matrix, respec-

tively.

• [x]i denotes the ith element of the column vector x, whereas [A]ij denotes the

element at row i, column j of matrix A.

• Superscripts (·)T , (·)∗, (·)H, and (·)† stand for transpose, complex conjugate,

complex conjugate transpose, and matrix pseudo-inverse operations, respec-

tively.

• Ex[·] and varx[·] indicate the expectation and variance of random variable x,

respectively; whereas x? denotes the optimal value of variable x.
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• CN (0, σ2) denotes a circularly symmetric complex Gaussian random variable

with variance σ2.

• |·| and ‖·‖ denote the absolute value and standard Euclidean norm, respectively.
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Part I

Distributed Space-Time Coding
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2. Distributed Space-Time Coding: Design

Criteria and Performance Analysis

2.1 Introduction

Distributed space-time coding (DSTC) [6, 8, 9, 18] refers a cooperative strategy,

where the conventional space-time coding for co-located antennas is implemented be-

tween the relays in a distributed manner. More specifically, when the source signal is

received at the relays, it is linearly processed and then retransmitted to the destina-

tion in the form of a space-time codeword. Like the conventional space-time coding

in MIMO systems, where transmit diversity is exploited without the need of CSI at

the transmitter (see Appendix A), DSTC in a wireless relay network allows the relays

to exploit cooperative diversity without the availability of CSI at the relays. As a

result, it is well known that the transmission reliability of the source signal over the

relay network can be significantly improved.

In the last few years, there has been a lot of research studies in DSTC, for both AF

and DF protocols. With the DF protocol, DSTC was first studied in [6,10,19]. In [19],

the authors present a new type of distributed space-time block codes (DSTBC) for

wireless networks with a large number of users, where each user is assigned a unique

signature vector. With the AF protocol, DSTC has been investigated in [8–10,20–22].

Performance analysis and design criteria of DSTC are thoroughly studied in [8, 10].

It is noted that most of the works on cooperative communications in the literature

assume the availability of perfect channel state information (CSI) of all the channels

0The contributions in this chapter are also presented in [16,17].
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at the relays and/or destination, and only a few of them have considered the scenarios

where only imperfect channel estimation or no CSI is available. Reference [23] in-

vestigated the noncoherent and mismatched coherent detectors for distributed STBC

with one relay, where it is shown that the system can achieve a diversity order of 2.

However, the derivations (see (19) and (20) in [23]) for the suboptimal receiver in the

noncoherent detection turn the problem into the partially coherent one. The partially

coherent relay network was investigated in detail in [22], where a differential coding

scheme was proposed to take advantage of the cooperative diversity. For noncoherent

relay networks, a fully-diverse distributed coding scheme based on division algebra

was proposed in [20, 21]. Similar to the work in [8], references [20–22] consider AF

protocol with linear processing at the relays.

Noncoherent reception for DSTC was also proposed in [24], where the decode-and-

forward (DF), selection relaying (SR), incremental DF, and incremental SR protocols

were employed, and USTM was implemented in a distributed fashion among the

relays. A similar approach using DF protocol was also reported in [19,25]. However,

the drawback with these approaches is that the relay only forwards if it decodes the

source signal correctly in the SR protocol, or it always forwards in the DF protocol.

Given the random nature of the channels in wireless relay networks, for instance, when

the channels between the source and some of the relays are bad, it is highly probable

that the relays would decode incorrectly and thus not forward in the SR protocol,

or forward the incorrect version of the source signal in the DF protocol. This will

compromise the diversity advantage of DSTC. Moreover, the incremental DF and

incremental SR require feedback from the destination to all the relays. The AF

protocol is generally preferred to other protocols since it is always able to achieve the

maximum diversity order and feedback from the destination is not required. Moreover,

the AF protocol requires much less delay tolerance and infers no security problem as

in the DF procotol.

This chapter focuses on the DTSC design in wireless relay networks with the AF

protocol. The first part of the chapter reviews the DSTC with full CSI at the desti-
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nation, i.e., coherent relay networks. From the performance analysis of the DSTC in

coherent networks, the design criteria of a good DSTC scheme are then presented. It

will be shown that the space-time code that achieves the full diversity and maximum

coding gain in traditional MIMO systems also achieves the diversity order in DSTC

implementation. This chapter then concentrates on the design and performance anal-

ysis of DSTC over the partially coherent networks (only relay-to-destination CSI is

available) and the noncoherent networks (no CSI is available). It shows how to in-

corporate the Fourier-based USTM into wireless relay networks in a distributed man-

ner. Developed are the maximum likelihood (ML) receiver for the distributed USTM

(DUSTM) over partially coherent relay networks and the generalized likelihood-ratio

test (GLRT) receiver for the noncoherent relay networks. Performance comparison of

the DUSTM over the two types of relay networks reveals that, although the knowl-

edge of relay-to-destination channels improves the symbol error rate (SER) compared

to the case of fully noncoherent networks, this advantage diminishes as the total sys-

tem power becomes large enough. In fact, it is shown that their performances are

asymptotically the same when all the relays are active. The full diversity order, equal

to the number of relays, is achievable in both networks if the coherence time is larger

than twice the number of relays.

2.2 System Model

Consider a wireless relay network with R + 2 nodes, as illustrated in Figure 2.1.

The system has one source node, one destination node, and R relay nodes. Each

node is equipped with only one antenna, which can be used for both reception and

transmission in the half-duplex mode. There is no direct link from the source to the

destination, and in order to facilitate communications between the source and the

destination, the source signals are assisted by all the relays. Let f̃i ∼ CN (0, σ̃2
Fi

),

and g̃i ∼ CN (0, σ̃2
Gi

) be the channel coefficients from the source to the ith relay, and

from the ith relay to the destination, for i = 1, . . . , R. These channel coefficients are

assumed to be independent of each other, and constant over the coherence time TC .
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Figure 2.1 Block diagram of a distributed space-time coding system with R + 2

nodes.

Let S = {s1, . . . , sL} be the codebook consisting of L distinguished codewords of

length T < TC employed by the source, where E[sHk sk] = 1, for k = 1, . . . , L. In the

first stage, the source transmits vector
√

P0Ts over T symbol intervals, such that P0

is the average power per transmission. The received signal at relay-i can be written

as

ri =
√

P0T f̃is + zRi
, (2.1)

where the noise vector zRi
contains identical and independently distributed (i.i.d.)

CN (0, σ2
R) random variables. The AF protocol [5] with linear signal processing is

applied at each relay. In particular, similar to [8], a unitary relay matrix Ai of size

T × T is used to linearly process the received signal at the ith relay and form the

retransmitted signal as

ti =

√√√√ Pi

P0σ̃2
Fi

+ σ2
R

Air
(∗)
i =

√
εi

σ2
R

Air
(∗)
i , i = 1, . . . , R, (2.2)

where the normalization factor εi = Pi/(P0σ
2
Fi

+ 1) with σ2
Fi

= σ̃2
Fi

/σ2
R is to maintain

the average transmitted power of Pi at the ith relay. Herein, (·)(∗) denotes the entity

itself if the relay operates on (·), whereas it denotes the conjugate of the entity if the

relay operates on (·)∗. In the second stage, all the relays simultaneously retransmit to

the destination. Let zD, whose elements are i.i.d. CN (0, σ2
D), represent the AWGN

vector at the destination. With perfectly synchronized transmissions from the relays,
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the received signal at the destination can be formed as

ỹ =
R∑

i=1

g̃iti + zD

=

√
P0T

σR

R∑

i=1

√
εif̃

(∗)
i g̃iAis

(∗) +
1

σR

R∑

i=1

√
εig̃iAiz

(∗)
Ri

+ zD. (2.3)

Normalize both sides by
√

P0Tσ2
D, and denote σ2

Gi
= σ̃2

Gi
/σ2

D, one has

y =
ỹ√

P0Tσ2
D

= XΛh + z, (2.4)

where

X =
[
A1s

(∗), . . . , ARs(∗)]

Λ = diag
(√

ε1σ2
F1

σ2
G1

, . . . ,
√

εRσ2
FR

σ2
GR

)

h =
[
f

(∗)
1 g1, . . . , f

(∗)
R gR

]T

z =
1√

P0Tσ2
R

R∑

i=1

√
εiσ2

Gi
giAiz

(∗)
Ri

+
1√

P0Tσ2
D

zD. (2.5)

From the system model in (2.4), it can be interpreted that the T × R matrix

X works like a space-time codeword in a multiple-antenna system. In this thesis,

X is called as a distributed space-time codeword. The diagonal matrix Λ contains

power allocation factors, which can be treated separately from the effective channel

vector h. It is noted that the ith element of h is a multiplication of the normalized

channel factor fi and gi, where fi = f̃i/σFi
and gi = g̃i/σGi

are now i.i.d. CN (0, 1).

Finally, the noise vector z, conditioned on {gi}, contains i.i.d. Gaussian variables

with zero-mean and variance:

γ =
1

P0T

(
1 +

R∑

i=1

εiσ
2
Gi
|gi|2

)
. (2.6)

The aim of Part I of this thesis is to design the distributed space-time codewords

depending on the availability of CSI at the destination and the optimal power alloca-

tion scheme to maximize the performance of the relay networks. It is clear that the

design of X can be divided into designing the structure of the source signal s and

the relaying matrices Ai, whereas the power allocation solely depends on Λ.
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2.3 Distributed Space-Time Coding in Coherent Relay Net-

works

In a coherent relay network, the CSI is fully known at the destination. Thus,

coherent detection is possible. Let sk be the source signal (sequence) and Xk be the

distributed ST codeword associated with sk. As both {fi} and {gi} are known at the

destination, the received vector y at the destination is Gaussian distributed with the

mean XkΛh, and variance γIT . Thus, one has the following conditional probability

density function (pdf) for y:

p (y|sk) =
exp

(
−‖y−XkΛh‖2

γ

)

πT γT
(2.7)

In order to decode the original source signal, the coherent maximum likelihood

(ML) decoder performs

ŝ = arg max
sk∈S

p(y|sk) = arg min
sk∈S

‖y −XkΛh‖2 . (2.8)

From the ML decoding rule of coherent DSTC in (2.8), suppose that Xk is the

transmitted codeword, the probability of decoding the received signal as the codeword

X l conditioned on the effective channel vector h can be calculated and bounded as:

P(Xk → X l|h) = P
(
‖y −XkΛh‖2 ≥ ‖y −X lΛh‖2

)

= P
(
‖∆Λh‖2 + 2Re{zH∆Λh} ≤ 0

)

= Q


 ‖∆Λh‖2

√
2γ‖∆Λh‖2




= Q




√
‖∆Λh‖2

2γ




<
1

2
exp

(
−‖∆Λh‖2

4γ

)
, (2.9)

where ∆ = Xk −X l, and the last inequality comes from Q(x) < 1
2
exp

(
−x2

2

)
.1

1The Q-function is defined as Q(x) = 1√
2π

∫∞
x

exp
(
−u2

2

)
du.
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In order to find the average PEP P(Xk → X l), P(Xk → X l|h) needs to be

averaged over the distribution of h, that is

P(Xk → X l) = E
{fi},{gi}


Q




√
‖∆Λh‖2

2γ





 <

1

2
E

{fi},{gi}

[
exp

(
−‖∆Λh‖2

4γ

)]
. (2.10)

It is clear from the above evaluation that in order to minimize the upper-bound of

the PEP, ∆ has to be full rank and the determinant of ∆H∆ has to be maximized.

This is equivalent to maximizing the diversity and coding gains of the DTSC.2 In-

terestingly, the space-time code designed to achieve the full diversity and optimum

coding gains in conventional MIMO systems is also able to achieve the optimum per-

formance in DSTC implementation. Thus, the design criteria applied to space-time

coding in the MIMO conventional systems [4] are the same for designing DSTC over a

relay network [8]. Moreover, in space-time coding, it is required that the transmission

time to be at least equal to the number of transmit antennas to achieve the maximum

diversity order [4]. Thus, in DSTC, the transmission T needs to be at least equal to

the number of relays R in order to achieve the maximum diversity order of R.

Due to the distributed implementation of DSTC in relay networks, it is possible

that some of the relay nodes are not available or in failure to assist the source-

destination communication. Reference [8] argues that a good DSTC scheme should

be scale-free. More specifically, the DSTC scheme is required to perform well even if

some of the relays are not working. In addition, the diversity order of the distributed

code should equal the number of the remaining working nodes.

Since good space-time coding schemes in traditional MIMO systems also work

well with DSTC implementation, many known good ST designs have been applied

to the relay networks. For instance, distributed linear dispersion (LD) code was

considered in [8], whereas distributed space-time block code (STBC) was considered

in [9]. However, given that STBC in MIMO systems possesses many advantages such

as simple decoding (linearly for orthogonal codes or in a pairwise manner for quasi-

2A more detailed discussion on diversity and coding gains of space-time coding is given in Ap-

pendix A.
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orthogonal codes) and scale-free property (removing some columns of an orthogonal

code does not affect the orthogonality of the remaining columns), it is an obvious

choice for DSTC. In the following, two examples of applying STBC to relay networks

in a distributed fashion are given.

For a two-relay network, the distributed Alamouti code can be implemented as

follows:

• The source signal is formed as s = [s1, s2]
T .

• The relaying matrices are:

A1 = I2, A2 =




0 −1

1 0


 ,

If the first relay operates on s and the second relay operates on s∗, the codeword at

the destination is

X =




s1 −s∗2

s2 s∗1


 ,

which is a typical Alamouti codeword for 2 transmit antennas (see Appendix A).

For a four-relay network, distributed quasi-orthogonal STBC (QOSTBC) can be

implemented as follows:

• The source signal is formed as s = [s1, s2, s3, s4]
T .

• The relay matrices are:

A1 = I4, A2 =




0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0




,

A3 =




0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0




, A4 =




0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0




.
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If the first and the fourth relays operate on s, and the other two operate on s∗, then

the effective codeword at the destination is

X =




s1 −s∗2 −s∗3 s4

s2 s∗1 −s∗4 −s3

s3 −s∗4 s∗1 −s2

s4 s∗3 s∗2 s1




,

which is a typical QOSTBC for 4 transmit antennas [26].

2.4 Distributed Unitary Space-Time Modulation in Partially

Coherent and Noncoherent Relay Networks

This section considers the design of DSTC when full CSI is not available at the

destination and noncoherent detection is required. First, a brief review of Fourier-

based unitary space-time constellation designs for noncoherent communication with

multiple co-located transmit antennas, originally proposed in [27], is given. In this

system model, the transmitter is equipped with M antennas, and the channel remains

constant over T symbol times. The USTM design constructs a constellation of L

unitary matrices, Φ1, . . . ,ΦL (each of size T × M), such that ΦH
k Φk = IM , for

k = 1, . . . , L. From this pool of unitary matrices, the transmitted signal matrix is

formed as
√

TΦk. Let y be the received signal vector. The ML receiver for USTM

with noncoherent reception was shown in to be (see Appendix A):

Φ̂ = arg max
Φk=Φ1,...,ΦL

tr
{
yHΦkΦ

H
k y

}
. (2.11)

In [27], the authors proposed a Fourier-based approach in designing the unitary

constellations, which uses ideas from signal processing theory. In this design, the kth

constellation point, Φk, can be obtained from the first constellation point Φ1 as

Φk = Θk−1Φ1 (2.12)

where

Θ = diag[ej 2π
L

u1 , . . . , ej 2π
L

uT ], 0 ≤ u1, . . . , uT ≤ L− 1 (2.13)
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and Φ1 is constructed by selecting M columns of a T × T DFT matrix. The optimal

values of the so-called frequencies u1, . . . , uT are also given in [27] for the cases of 1,

2 and 3 transmit antennas.

Next, consider the application of USTM for distributed space-time coding in

wireless relay networks, where full CSI is not available neither at the source, the

relays, nor at the destination, and hence noncoherent detection is required. First,

the kth codeword vector sk from the source is formed by taking the diagonal ele-

ments of matrix Θk−1 and scaling by 1/
√

T to meet the power constraint. That is

sk = 1/
√

T [ej 2π
L

u1(k−1), . . . , ej 2π
L

uT (k−1)]T . Second, the unitary matrix at each relay is

constructed by diagonalizing one of the columns of Φ1. As an example, consider the

following design of Φ1 for M = 3 transmit antennas, and T = 8, given in [27]:

Φ1 =
1√
8




1 1 1

1 ej 2π
8

5 ej 2π
8

6

1 ej 2π
8

2 ej 2π
8

4

1 ej 2π
8

7 ej 2π
8

2

1 ej 2π
8

4 1

1 ej 2π
8

1 ej 2π
8

6

1 ej 2π
8

6 ej 2π
8

4

1 ej 2π
8

3 ej 2π
8

2




.

Then Ai’s for a three-relay network are formed as

A1 = I8,

A2 = diag[1, ej 2π
8

5, ej 2π
8

2, ej 2π
8

7, ej 2π
8

4, ej 2π
8

1, ej 2π
8

6, ej 2π
8

3],

A3 = diag[1, ej 2π
8

6, ej 2π
8

4, ej 2π
8

2, 1, ej 2π
8

6, ej 2π
8

4, ej 2π
8

2],

where the normalization factor 1/
√

8 is dropped to make AH
i Ai = I8. With this

design, the codeword Xk in (2.4) is effectively in the form of (2.12). Therefore, the

noncoherent detection of the codeword vector sk can be carried out similarly as in

(2.11), where the received signal matrix Y in (2.11) is substituted by the received

signal vector y in (2.4).
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2.4.1 ML Receiver for DUSTM over the Partially Coherent

Relay Network

In the partially coherent relay network considered in this part, the destination

has perfect knowledge of all the channels from the relays, but not the channels from

the source to the relays. This means that {gi} is known, while {fi} is unknown, for

i = 1, . . . , R.

Conditioned on {gi} and the transmitted codeword Xk, the received vector y is

a circularly symmetric Gaussian vector with covariance matrix

Ω = γIT + XkGXH
k , (2.14)

where G = diag (β1|g1|2, . . . , βR|gR|2), and βi = εiσ
2
Fi

σ2
Gi

is the ith diagonal element

of Λ2. The received signal vector has the following conditional pdf:

p(y|Xk, {gi}) =
exp(−yHΩ−1y)

πT det(Ω)
. (2.15)

Using property det(I + AB) = det(I + BA) [28], the determinant of Ω can be

found as

det(Ω) = γT det
(
IT + X lGXH

l

)

= γT det(IR + G)

= γT
R∏

i=1

(
1 +

βi

γ
|gi|2

)
,

where G = G/γ. Likewise, using the matrix inverse formula [28]

(A + BCD)−1 = A−1 −A−1B(C−1 + DA−1B)−1DA−1,

the inverse of Ω can be calculated as

Ω−1 =
1

γ

(
IT + XkGXH

k

)−1

=
1

γ

(
IT −Xk(G

−1
+ XH

k IT Xk)
−1XH

k

)

=
1

γ

(
IT −XkCXH

k

)
,
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where

C = diag

(
β1|g1|2

γ + β1|g1|2 , . . . ,
βR|gR|2

γ + βR|gR|2
)

.

The partially coherent ML receiver then becomes

X̂ML = arg max
Xk=X1,...,XL

P(y|Xk, {gi})

= arg max
Xk=X1,...,XL

−1

γ
yH

(
IT −XkCXH

k

)
y

= arg max
Xk=X1,...,XL

yHXkCXH
k y. (2.16)

2.4.2 GLRT Receiver for DUSTM over the Noncoherent Re-

lay Network

For a (fully) noncoherent relay network, neither the CSI of the relay-to-destination

channels nor the CSI of the source-to-relay channels is known at the destination. Since

each element of h in (2.4) is a product of two complex Gaussian random variables,

the source-relay-destination link is represented by cascaded fading. Furthermore, the

conditional pdf p(y|Xk) does not appear to have a closed-form expression. Thus, it is

not trivial to derive the optimal ML receiver for the network. Instead, the suboptimal

GLRT receiver [27,29] shall be considered.

With GLRT, the receiver first estimates the channel h under the hypothesis that

the codeword Xk was sent. From (2.4), conditioned on the transmitted codeword

Xk, {fi}, and {gi}, the received vector y is a Gaussian random vector with mean

XkΛh and covariance matrix γIT , the same covariance matrix of the noise vector.

Thus, the ML estimation of h is

ĥk = arg max
h

p(y|Xk,h)

= arg min
h
‖y −XkΛh‖2. (2.17)

It then follows that ĥk is given by

ĥk = Λ−1
(
XH

k Xk

)−1
XH

k y = Λ−1XH
k y, (2.18)
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where the last equality follows from the property that Xk is unitary. Substitute ĥk

into (2.4), the GRLT receiver is expressed as

X̂GLRT = arg max
Xk=X1,...,XL

{
−‖y −XkΛĥk‖2

}

= arg max
Xk=X1,...,XL

yHXkX
H
k y. (2.19)

Observe that the GLRT receiver in (2.19) operates in the same way as the GLRT

receiver for co-located multiple transmit antennas in [27], and the receiver for DUSTM

with DF relaying protocol in [24,25]. Comparing the receiver in (2.16) for the partially

coherent network and the one in (2.19) for the noncoherent network, it can be seen

that the difference is in the existence of the matrix C in the former one. The matrix

C contains the CSI of the relay-to-destination channels. However, as the signal power

becomes large enough, the matrix C comes closer to an identity matrix and, therefore,

the two receivers are basically the same. This observation is reconfirmed in the next

sections with the pairwise error probability (PEP) analysis.

2.4.3 PEP of DUSTM over the Partially Coherent Relay

Network

Here, the objective is to evaluate the pairwise error probability (PEP) performance

of partially coherent DUSTM and relates it to the constellation design of DUSTM.

Suppose that all the relays are active, which means that the matrix G is full rank.

In [22], the authors derive the PEP for the partially coherent DUSTM, its Chernoff

bound, as well as an approximation for the average symbol error rate (SER) at high

SNR. The result is summarized as followed. Suppose that Xk and X l are two code-

words and Zkl = [Xk, X l] is full rank. Define Rkl = XH
k X l and let Rkk = Rll = K.

The error probability of decoding to X l for large η, given that Xk was transmitted,

is approximated as

Pk,l|{gi} ≈
γR

det(µ(1− µ)G)

1

det(K −RlkK
−1Rkl)

, (2.20)

which is minimized with µ = 1/2.
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On the other hand, since y is Gaussian distributed, and XH
k CXk is Hermitian for

k = 1, . . . , L, the ML receiver in (2.16) can be interpreted as a quadratic receiver [30].

The asymptotic PEP performance of the quadratic receiver is readily given as (cf.

(28) in [30])

Pk,l|{gi} =
γR

det(G)

(
2R
R

)

det(K −RlkK
−1Rkl)

. (2.21)

The two PEP expressions above differ only in a scaling factor and they clearly

indicate that the effect of channel coefficients {gi}, which are in G, can be separated

from the effect of the distributed code [22]. With the implementation of DUSTM over

partially coherent networks, one has K = IR, det(K −RlkK
−1Rkl) =

∏R
r=1(1− d2

r),

where dr, r = 1, . . . , R, are the singular values of the correlation matrix XH
k X l.

Therefore, the PEP will be minimized when this product is maximized. This is the

same condition on the constellation design of USTM for co-located transmit antennas

in [27]. This means that the best Fourier-based constellation design in [27] is also

the best Fourier-based constellation design for DUSTM. As pointed out in [22], the

system achieves the full diversity order, which is equal to the number of relays, if Zkl

is full rank for any pair of Xk and X l. The necessary condition for this is T ≥ 2R,

which is similar to the condition imposed in USTM, namely T ≥ 2M .

In order to calculate the symbol error probability, the conditional PEP expression

in (2.20) or (2.21) has to be averaged over the distribution of {gi}. This is analyzed

in [22] by performing similar derivation steps for the coherent distributed space-

time coding in [8]. An important remark from such PEP analysis is that the SER

is proportional to (logP/P )R as P becomes large enough. Thus, DUSTM over a

partially coherent relay network is able to achieve the full diversity for large P , which

is the same result obtained for the coherent space-time coding in [8].

The above discussion is only concerned with the diversity order of DUSTM. It

should be pointed out that the exact PEP still depends on the relay network’s power

allocation, which affects the coding gain of DUSTM. The next chapter establishes the

optimal power allocation to asymptotically minimize the upper-bound of the PEP of
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the partially coherent DUSTM.

2.4.4 PEP of DUSTM over the Noncoherent Relay Network

This section considers the PEP analysis of DUSTM over the noncoherent relay

network. Intuitively, the performance of DUSTM over such a network is poorer than

that over a partially coherent relay network. However, as the total transmit power

P becomes very large, it is shown that the two performances are asymptotically the

same.

Recall the GLRT receiver in (2.19). Suppose that the codeword Xk was sent, the

PEP of decoding to the wrong codeword X l is given by

Pk,l = P
(
yH(X lX

H
l −XkX

H
k )y > 0|Xk

)
. (2.22)

Since y is not Gaussian distributed, (2.19) cannot be interpreted as a quadratic

receiver [30]. To calculate the PEP as well as its asymptotic behavior, reintroduce

{gi} into the above equation as follows:

Pk,l = E
{gi}

[
P

(
yH(X lX

H
l −XkX

H
k )y > 0|Xk, {gi}

)]

︸ ︷︷ ︸
P̃k,l|{gi}

. (2.23)

In other words, Pk,l can be obtained by taking the expectation of P̃k,l|{gi} over {gi} [31].

Conditioned on a specific realization of {gi}, y is now Gaussian distributed with

zero mean and covariance matrix given in (2.14). Since X lX
H
l is Hermitian for

l = 1, . . . , L, one can interpret the GLRT receiver as a quadratic receiver. Thus its

asymptotic performance is given as (cf. (36) in [30])

P̃k,l|{gi} =
γR

det(G)

(
2R−1

R

) (
1 + det(K)

det(K)

)

det(K −RlkK
−1Rkl)

=
γR

det(G)

2
(

2R−1
R

)

det(K −RlkK
−1Rkl)

. (2.24)

It can be seen that P̃k,l|{gi} in (2.24) and Pk,l|{gi} in (2.21) are essentially the

same since 2
(

2R−1
R

)
=

(
2R
R

)
. Thus, conditioned on {gi}, the performance of GLRT
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receiver for the noncoherent relay network is asymptotically the same as that of the

ML receiver for the partially relay network. Interestingly, this fact also makes the

constellation design of DUSTM for noncoherent system analogous to the design of

the partially coherent DUSTM. Moreover, the optimal power allocation scheme that

minimizes the PEP’s upper-bound of the partially coherent DUSTM also minimizes

the PEP’s upper-bound of the noncoherent DUSTM at high P . To obtain the average

PEP Pk,l at high P , P̃k,l|{gi} has to be averaged over the distribution of {gi}, which is

similar to the process discussed in the previous section.

2.4.5 Impact of Non-functioning Relays

In designing a good DSTC, reference [8] points out that the code should be “scale-

free” in the sense that it should have a large diversity product when one or more of

the relays are not functioning. This section investigates the impact of node failures

to the performance of the proposed DUSTM, and whether the decoding rules for

DUSTM are still valid in such situations.

Without loss of generality, it is assumed that the last d relays out of total R

relays are not working. As the destination knows the channels from the relays in the

partially coherent networks, the destination also knows which relay(s) is not working.

Recall the decoding rule for partially coherent networks in (2.16), it can be seen that

the last d diagonal elements of matrix C are now zero. Let

C ′ = diag

(
β1|g1|2

γ + β1|g1|2 , . . . ,
βR−d|gR−d|2

γ + βR−d|gR−d|2
)

,

which is full rank. Define X ′
k as the T × (R− d) matrix that contains the first R− d

columns of Xk. It is easy to see that XkCXH
k = X ′

kC
′X ′H

k . The decoding rule in

(2.16) is then equivalent to

X ′
ML = arg max

X′
1,...,X′

L

yHX ′
kC

′X ′H
k y,

which is the same as the decoding rule for the system with R − d relays. Hence, it

is concluded that the relay network is able to achieve the diversity order of R− d at

very high P .
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In noncoherent relay networks, it might not be possible that the destination knows

which relay(s) is not working. Since the decoding rule for noncoherent detection in

(2.19) is similar to the decoding rule for the DUSTM using selection relay (SR)

protocol in [24], the analysis on the impact of node failures in the proposed DUSTM

scheme is also similar to that of incorrect decoding and non-forwarding relays with

the SR protocol. It was shown in [24] (cf. (9)) that, when d out of R relays are

not functioning, the PEP derived from the decoding rule (2.19) decays at the order

of R − d for very large SNR. A similar conclusion could be drawn for the proposed

noncoherent AF DUSTM.

Note that in both the partially coherent and noncoherent receptions, the optimal

frequencies u1, . . . , uT specifically designed for the network with R relays are no longer

optimal for the network with R − d relays. Finally, it should be pointed out that in

order to achieve the best SER performance of the distributed code from the remaining

R − d functioning relays, the optimal power allocation scheme needs to be adjusted.

Such an adjustment can be readily made from the analysis in Chapter 3 applied to

R− d relays.

2.5 Simulation Results

This section presents the simulation results to illustrate the performance of DUSTM

for some specific configurations of relay networks that have 2 or 3 relays. The data rate

is set at 1 bit/channel use. All the channels are assumed to remain constant for T = 8.

Thus, the codeword Xk is a 8× 3 matrix for 3 relays, or a 8× 2 matrix for 2 relays.

The DUSTM constellations are chosen from the optimal designs for 2 and 3 transmit

antennas [27]. Specifically, the sets of frequencies are {1, 7, 60, 79, 187, 125, 198, 154}
and {220, 191, 6, 87, 219, 236, 173, 170} for 2 and 3 relays, respectively. In all simula-

tions, σ2
R and σ2

D are normalized to 1.
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2.5.1 Performance Comparison of DUSTM over Partially Co-

herent, Noncoherent, and Coherent Networks

This part compares the performances of DUSTM over different types of relay net-

works, including partially coherent, noncoherent and coherent networks. Emphasis

shall be placed on the comparison between partially coherent and noncoherent net-

works in order to illustrate the analysis in Sections 2.4.3 and 2.4.4. At each value

of the total power P , the equal power allocation scheme is applied, i.e., P0 = P/2,

Pi = P/(2R), i = 1, . . . , R.

Three balanced network configurations are considered. Let σ2
F and σ2

G denote the

common variances of S → R, and R → D links after normalized by the noise variances

σ2
R and σ2

D, respectively. In the first configuration, the relays are located in the

midway between the source and destination. The variances of the channel coefficients

fi and gi are set to be unity. As can be seen from Figure 2.2, the partially coherent

DUSTM outperforms the noncoherent DUSTM in both two-relay and three-relay

configurations. However, the performance difference is only noticeable at small values

of P , i.e., over the low SNR region. As P increases, the performance curves merge

together, which agrees with the asymptotic analysis in previous sections. Another

observation is that when P surpasses 18 dB, the DUSTM for the system with 3

relays starts to perform better than the one with 2 relays and clearly shows its higher

diversity order.

The second simulation investigates the case when the relays are closer to the source

than to the destination. This implies that the source-to-relay channels experience a

much better condition than the relay-to-destination channels. Specifically σ2
F is to be

10, and σ2
G is set to 1. The performance of DUSTM in this network configuration is

shown in Figure 2.3.

The next network configuration considered is the opposite of the second one. The

relays are assumed to be closer to the destination than to the source, with σ2
F = 1

and σ2
G = 10. The relay-to-destination channels are relatively much better than
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Figure 2.2 Symbol error performance of DUSTM with σ2
F = 1 and σ2

G = 1.
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Figure 2.3 Symbol error performance of DUSTM with σ2
F = 10 and σ2

G = 1.

the source-to-relay channels. Similar to the first simulation, the performances of

DUSTM in Figures 2.3 and 2.4 for the two types of relay networks eventually merge

as P becomes large enough. Therefore, it can be concluded that at high SNR, the
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knowledge of the relay-to-destination channels have no apparent effect on the system

performance, no matter how good or poor these channels are compared relatively to

the source-to-relay channels. Note that since either σ2
F or σ2

G is increased to 10 in

the last two simulations, it requires less total transmit power, P to realize the full

diversity order of the network.
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Coherent − 3 relays
Coherent − 2 relays

Figure 2.4 Symbol error performance of DUSTM with σ2
F = 1 and σ2

G = 10.

Also presented in Figures 2.2, 2.3, and 2.4 is the performance of the coherent

decoder (where the channel state information of both source-to-relay and relay-to-

destination links are available at the destination). As can be seen from the figures,

with the same network configuration, three types of decoders achieve the same diver-

sity order. It is noted that the coherent decoder outperforms the other two decoders

by approximately 3 to 4 dB. This observation is similar to that noted for the perfor-

mance of USTM in point-to-point communications where the unitary constellations

perform about 2 to 4 dB better when the channel is known, as compared to the case

of unknown channel [27].
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Figure 2.5 Symbol error performances of the proposed DUSTM and a random

code with σ2
F = 1 and σ2

G = 10.

2.5.2 Comparison Between DUSTM and a Random Code

This section compares the performance achieved by the proposed DUSTM with

that of a random code, where the third network configuration (σ2
F = 1 and σ2

G = 10)

is used as an illustrative example. Instead of using the optimally found frequen-

cies u1, . . . , uT for 3 transmit antennas [27] as in the proposed DUSTM, a random

code is formed by randomly generating the frequencies with a uniform distribu-

tion between 0 and L. The obtained frequencies used in all the simulations are

{114, 239, 119, 107, 217, 134, 52, 172}. Depending on the information bits, the source

signals for the random code are formed in a similar process discussed in Section 2.4.

The unitary relay matrices Ai are kept the same as in the proposed DUSTM. As can

be seen from Figure 2.5, under the partially coherent and noncoherent decoders, the

proposed DUSTM outperforms the random code by about 0.5 dB. This performance

advantage is due to the use of the optimal frequencies designed for the noncoherent

USTM. Note, however, that under the coherent decoding rule, the proposed DUSTM

is performed by the random code. This is not unexpected since the optimality of the
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frequencies found in [27] and applied in this work only holds for partially coherent or

noncoherent networks.

Though desirable, it is noted that the optimal frequencies in USTM can only

be found by an exhaustive search [27], which is not practically attractive when the

number of relays is large and when the transmission interval T in DUSTM is varied.

On the other hand, the relatively good performance of random codes makes them

a viable option in designing DUSTM. More specifically, the source signal is simply

formed from randomly chosen frequencies, while the relay matrices Ai are formed by

selecting columns of DFT matrices of size T × T .

2.6 Summary

This chapter has considered the design of DSTC in wireless multi-relay networks

with different amounts of CSI at the destination. In the first part, the chapter re-

viewed the DSTC design criteria in coherent relay networks. It was shown that the

space-time code that achieves the full diversity and optimum coding gain in MIMO

networks also achieves the maximum performance in DSTC. The chapter then fo-

cused on the design and the performance of DSTC over the partially coherent and

the noncoherent networks. Proposed was a new distributed code, which relied on the

Fourier-based USTM, for the two types of relay networks. In addition, the new code

allowed noncoherent reception at the destination. The ML receiver for the DUSTM

over partially coherent relay networks and the GLRT receiver for the noncoherent

relay networks were then developed. The performances of the DUSTM over the two

types of relay networks were thoroughly studied. Interestingly, the analysis showed

a very small impact by the knowledge of R → D channels on the performances of

the distributed code. Full diversity order equal to the number of relays is achievable

by the proposed code in both networks if the coherence time is larger than twice the

number of relays.
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3. Optimal Power Allocation in DSTC

3.1 Introduction

Power control at the transmitter is a key consideration in designing any wireless

network. First, power control helps to maintain a good connectivity to the receiver.

Due to the random nature of wireless channels, it is important to maintain a minimum

signal power reception by adjusting the transmitted power. Second, power control

helps to manage the power usage and maximize the lifetime of the transmitting node

and even the network. This is due to the fact that most of operating nodes in wireless

communications are mobile nodes with limited battery power. Finally, due to the

broadcast nature of the wireless channel, transmitted signals usually interfere with

each other. Power control helps to manage the interference to adjacent networks, and

facilitate efficient spectral reuse [33].

In the wireless relay networks, given a limited power budget, it is necessary to

optimize the power consumption at all the transmitting nodes, including the source

and relays with the aim of achieving the optimal performance at the destination.

While most of the works on DSTC in the literature consider the optimal power al-

location (PA) problem with a fixed value of the channel strength of each S → R,

R → D link (see [8, 9, 20, 22]) and thus imply a fixed location for all the relays, the

optimal power allocation for DSTC [8, 20–22] in an arbitrary relay network has not

been fully studied. Reference [34] analyzed such a problem, with the assumption of

either full channel state information (CSI) or partial CSI available at the source. The

authors [34] also proposed an optimal PA scheme, which was obtained via an iterative

0The contributions in this chapter are also presented in [16,32].

36



method.

This chapter studies an optimal PA scheme with the assumption that the CSI of

all the links is not available at either the source or the relays, but their statistics are

known. The aim is to optimize the PA between the source and the relays to maximize

the long-term effective average SNR at the destination. It is first shown that with

the optimal solution for such PA, some of the relays might not be active.1 As a

result, this scheme may degrade the system performance as it reduces the maximum

achievable diversity order. The concept of amount of fading is then introduced for

the relay network to leverage the fading statistics of each S → R → D link, and used

as a constraint to derive a novel optimal PA scheme. This new scheme is presented in

a closed-form solution, and proved to be capable of obtaining the maximum diversity

order in all coherent, partially coherent, and noncoherent DSTC systems. Simulations

confirm the analysis and show a significant performance advantage of the new scheme.

3.2 Problem Formulation

Recall the system model described in Equation (2.4) in Chapter 2. All the fading

coefficients {fi}R
i=1, {gi}R

i=1, the noise vectors {zRi
}R

i=1, and zD are independent of

each other. Since zRi
is circularly symmetric and Ai acts as a rotation matrix, the

rotated noise vector Aiz
(∗)
Ri

has the same distribution as that of zRi
. Conditioned on

gi, the average noise power is

γ = E
{zRi

}R
i=1,zD

[
‖z‖2

]
=

1

P0T

(
1 +

R∑

i=1

εiσ
2
Gi
|gi|2

)
. (3.1)

On the other hand, the instantaneous signal power is

ρ =
1

R

R∑

i=1

εiσ
2
Fi

σ2
Gi
|fi|2|gi|2. (3.2)

Accordingly, the instantaneous SNR at the destination is ρ/γ. Thus, the exact average

SNR can be calculated by averaging ρ/γ over random variables {gi}R
i=1 and {fi}R

i=1

1Hereafter, a relay is said to be “active” if it is distributed a non-zero power by the PA scheme.

Otherwise, the relay is said to be “inactive”.
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as follows:

η = E
{gi}R

i=1,{fi}R
i=1

[
ρ

γ

]

=
P0T

R
E

{gi}R
i=1

[ ∑R
i=1 εiσ

2
Fi

σ2
Gi
|gi|2

1 +
∑R

i=1 εiσ2
Gi
|gi|2

]

=
P0T

R

∫ ∞

0
· · ·

∫ ∞

0

∑R
i=1 εiσ

2
Fi

σ2
Gi

λi

1 +
∑R

i=1 εiσ2
Gi

λi

e−λ1 · · · e−λRdλ1 · · · dλR. (3.3)

Note that the integral follows from the fact that λi = |gi|2 is exponentially distributed

with mean 1.

Though the exact average SNR can be evaluated numerically by the Gauss-

Laguerre integration method [35], a closed-form expression of η in (3.3) is hard to

obtain. To provide insight and perform the optimization of the average SNR, the

following approximation of η, resulted by taking the first term of the Taylor’s series

expansion of the expectation in (3.3) [36], shall be considered:

η ≈ E{gi}R
i=1,{fi}R

i=1
[ρ]

E{gi}R
i=1,{fi}R

i=1
[γ]

=
P0T

R

∑R
i=1 εiσ

2
Fi

σ2
Gi

1 +
∑R

i=1 εiσ2
Gi

=
P0T

R

∑R
i=1

Piσ
2
Fi

σ2
Gi

P0σ2
Fi

+1

1 +
∑R

i=1

Piσ2
Gi

P0σ2
Fi

+1

=
P0T

R

∑R
i=1

Piσ
2
Fi

σ2
Gi

P0σ2
Fi

+1

1 +
∑R

i=1

Piσ2
Gi

P0σ2
Fi

+1

, (3.4)

Let Ptotal =
∑R

i=0 Pi be the total transmitted power spent in the network. The

aim of PA between the source and the relays is to maximize the average SNR at the

destination, given that the total power consumption Ptotal is not greater than the

power budget P . It is observed that increasing P makes the average SNR at the

destination higher. However, it is not clear how to split the total power between the

source and the relays in order to maximize η. Such a PA problem is analyzed next

where the approximation of η in (3.4) is used as the objective function. Numerical

results presented in Section 3.7 confirm the accuracy of the approximate SNR in (3.4)

under all the PA schemes proposed and examined in this chapter.
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From (3.4), ignore the constant factor T/R, the optimization problem is stated as

minimize
P0,...,PR

f(P0, . . . , PR) =
1 +

∑R
i=1

Piσ
2
Gi

P0σ2
Fi

+1

P0
∑R

i=1

Piσ2
Fi

σ2
Gi

P0σ2
Fi

+1

(3.5)

subject to
R∑

i=0

Pi ≤ P, Pi ≥ 0, i = 0, . . . , R.

Note that the objective function of the above optimization problem is noncon-

vex. Thus, it is difficult to perform the optimization directly over the variables

P0, . . . , PR. However, if P0 is fixed, the objective function is linear-fractional. Thus,

the optimization problem is a linear-fractional program, which is a subclass of convex

programming [37] and can be solved effectively. Before presenting the solution to

Problem (3.5), Lemma 1 is first presented as it is useful to establish the analytically

closed-form expression of the optimal PA scheme.

Lemma 1. At the optimal solution to the optimization problem (3.5), the inequality
∑R

i=0 Pi ≤ P is met with equality.

Proof. If P ?
i is the optimal solution with

∑R
i=0 P ?

i < P , increasing P ?
0 up to P −

∑R
i=1 P ?

i makes the objective function strictly smaller, which contradicts to the op-

timality of P ?
i . This is because the objective function is a monotonically decreasing

in P0, which follows from the fact that its numerator, 1 +
∑R

i=1

Piσ
2
Gi

P0σ2
Fi

+1
, is mono-

tonically decreasing in P0 while its denominator, P0
∑R

i=1

Piσ
2
Fi

σ2
Gi

P0σ2
Fi

+1
=

∑R
i=1

Piσ
2
Fi

σ2
Gi

σ2
Fi

+1/P0
, is

monotonically increasing in P0.

In [8], the optimal PA for the case of {σ̃2
Fi
}R

i=1 = {σ̃2
Gi
}R

i=1 = 1, σ2
R = σ2

D = 1

was given. The allocation, referred to as “equal PA” in this thesis, assigns half of

the total power to the source and equally divide the other half to all the relays.

However, the condition of σ̃2
Fi

= σ̃2
Gi

= 1 loosely implies that all the relays are in

the midway between the source and the destination. More general cases of network

topology, as summarized in Table 3.1, are now considered. For convenience, hereafter

a relay network is classified as balanced if σ̃2
F1

= . . . = σ̃2
FR

, and σ̃2
G1

= . . . = σ̃2
GR

,
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Table 3.1 Network configurations and optimization problems

Network Configuration Optimization Problem

Balanced network Equal power sharing at relays, joint optimization be-

tween the source and relays.

Unbalanced network Fix source power P0, relay power allocated to the

best relay(s).

Unbalanced network with the

amount of fading constraint

Balance the network by the amount of fading con-

straint, joint optimization between the source and

the relays.

i.e., σ2
F1

= . . . = σ2
FR

, and σ2
G1

= . . . = σ2
GR

. Otherwise, it is classified as unbalanced.

Section 3.3 considers a balanced network, where equal power sharing at the relays is

assumed and joint power optimization between the source and the relays is performed.

For the unbalanced network topology examined in Section 3.4, we first fix the source

power P0, and prove that the remaining power is allocated only to the best relay(s).

In Section (3.5), the “amount of fading” concept is introduced for the relay networks

to balance S → R → D links. Taking into account the amount of fading constraint,

a closed-form expression for the joint power optimization between the source and the

relays is established.

3.3 SNR-Maximized PA in Balanced Networks

For a balanced network, the “average qualities” of S → R → D links are the same.

Thus, the relay power is equally shared between the relays, and the optimization

problem reduces to how to distribute the power budget between the source and the

relays. Substitute P1 = . . . = PR = (P − P0)/R into (3.4), the optimal power
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allocation problem is equivalent to

minimize
P0

f(P0) =
(P − P0)σ

2
G + P0σ

2
F + 1

P0(P − P0)σ2
F σ2

G

, (3.6)

subject to 0 < P0 < P.

In the special case of σ2
F = σ2

G, (3.6) returns to the same problem in [8] and

P0 = P/2, P1 = . . . = PR = P
2R

constitute the optimal allocation scheme. If σ2
F 6= σ2

G,

it is simple to verify that the second-order derivative of f(P0) is always positive.

Thus, f(P0) is a convex function for 0 < P0 < P . It is then straightforward to obtain

the optimal value of P0 from the first-order derivative of f(P0). The solution is

P0 =





√
(Pσ2

F +1)(Pσ2
G+1)−(Pσ2

G+1)

σ2
F−σ2

G
, if σ2

F 6= σ2
G

P/2, if σ2
F = σ2

G

P1 = . . . = PR = (P − P0)/R, (3.7)

where one can easily verify that the condition 0 < P0 < P is met.

3.4 SNR-Maximized PA in Unbalanced Networks

Considered now is the PA problem in an even more general setting than the cases

previously examined. Here σ2
Fi

and σ2
Gi

, i = 1, . . . , R, can take on any values. This

consideration is more practical than that of balanced networks since there are no

restrictions on the relay locations as well as the fading profiles of S → R and R → D

channels.

Since the objective function in (3.5) is nonconvex, it may not be straightforward to

solve the optimization problem directly. The approach here is to fix P0 and optimize

the function over P1, . . . , PR first. This is equivalent to fixing the source’s transmitted

power and optimizing the PA between the relays. Then, the objective function is

optimized over P0 to yield the optimal solution. The optimization problem (3.5) can
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be rewritten as

minimize
x

f1(x) =
1

pT x
+

qT x

pT x
(3.8)

subject to 1T x = P − P0

x º 0,

where

p = P0

[
σ2

F1
σ2

G1

P0σ2
F1

+ 1
, . . . ,

σ2
FR

σ2
GR

P0σ2
FR

+ 1

]T

q =

[
σ2

G1

P0σ2
F1

+ 1
, . . . ,

σ2
GR

P0σ2
FR

+ 1

]T

x = [P1, . . . , PR]T

1 = [1, . . . , 1]T ∈ RR.

Note that the equality constraint follows from Lemma 1.

With the variable change z = x
pT x

, which implies that pT z = 1 and 1
pT x

=

1T z
1T x

= 1T z
P−P0

whenever 1T x = P − P0, the optimization problem in (3.8) becomes the

following linear programming (LP):

minimize
z

(
1

P − P0

1 + q
)T

z = q̄T z (3.9)

subject to z º 0

pT z = 1,

where q̄ = 1
P−P0

1 + q.

An obvious optimal solution of the above problem is

z = [0, . . . , 0, 1/pi, 0, . . . , 0]T , (3.10)

where the index i is such that q̄i

pi
is minimum. Further, the corresponding optimal

value of the objective function in (3.9) is q̄i

pi
. If there are more than one q̄i

pi
attaining

the minimum value, any distribution between the corresponding relays will result in

the same optimal value of the objective function.
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It can be further verified that when the relay network is balanced, q̄i

pi
is equal

for all i = 1, . . . , R and any distribution of the total relay power results in the same

optimal value of the objective function, i.e., the same maximum value of the effective

SNR. Nevertheless, the scheme that equally shares the power between the relays is

most preferred, since it makes use of all the relays and minimizes the amount of fading

experienced over the network as introduced and discussed in more detail in the next

section. This equal-PA scheme is also consistent with the previous analysis of the

balanced networks.

From the above analysis, it is clear that with a fixed value of P0, not all the relays

might be active in an unbalanced network. It is of interest to find which relay(s)

are active and how the total power should be distributed between the source and

the active relay(s). As shown above, for a fixed source power P0, the active relay is

identified by the index, denoted by iact(P0), such that
q̄iact(P0)

piact(P0)
is minimum. That is,

iact(P0) = arg min
i=1,...,R

q̄i

pi

= arg min
i=1,...,R

(P − P0)σ
2
Gi

+ P0σ
2
Fi

+ 1

P0(P − P0)σ2
Fi

σ2
Gi

. (3.11)

Note that, if there are multiple minimizers in (3.11), those minimizers assign the

corresponding multiple active relays.

Regardless of the number of active relays, the optimization of the source power

can be solved by expressing the optimization problem in (3.5) as follows:

min
0<P0<P

min
i=1,...,R

(P − P0)σ
2
Gi

+ P0σ
2
Fi

+ 1

P0(P − P0)σ2
Fi

σ2
Gi

= min
i=1,...,R

min
0<P0<P

(P − P0)σ
2
Gi

+ P0σ
2
Fi

+ 1

P0(P − P0)σ2
Fi

σ2
Gi

.

(3.12)

For each i = 1, . . . , R, let

µi = min
0<P0<P

(P − P0)σ
2
Gi

+ P0σ
2
Fi

+ 1

P0(P − P0)σ2
Fi

σ2
Gi

. (3.13)

Observe that (3.13) is in the form of (3.6), where the common variances σ2
F and σ2

G

for a balanced network are replaced by σ2
Fi

and σ2
Gi

for the specific S → R → D link

via the ith relay. Thus, for each i, the optimal source power, denoted by P0,i, is given
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by

P0,i =





√
(Pσ2

Fi
+1)(Pσ2

Gi
+1)−(Pσ2

Gi
+1)

σ2
Fi
−σ2

Gi

, if σ2
Fi
6= σ2

Gi

P/2, if σ2
Fi

= σ2
Gi

. (3.14)

The corresponding value of µi is

µi =





(
σ2

Fi
−σ2

Gi

)2

(√
Pσ2

Fi
+1−

√
Pσ2

Gi
+1

)2

σ2
Fi

σ2
Gi

, if σ2
Fi
6= σ2

Gi

4(Pσ2
Fi

+1)

P 2σ2
Fi

σ2
Gi

, if σ2
Fi

= σ2
Gi

.

. (3.15)

The following proposition summarizes the optimal PA for an unbalanced network.

Proposition 1. The optimal PA scheme to maximize the effective SNR in an un-

balanced relay network would spend all the relay power to the relays with the best

overall S → R → D channels. The indices of such active relays are found by

iact = argmini=1,...,R µi, where µi is defined in (3.15). Furthermore, given the in-

dex of an active relay, i = iact, the optimal source power is found by (3.14). Any

distribution of the remaining power, i.e., the relay power, between the active relay(s)

gives the same optimal SNR at the destination.

It is clear from Proposition 1 that in unbalanced networks, while the optimal PA

scheme maximizes the long term average SNR at the destination, it may distribute no

power to some of the relays. This may affect the error performance of the distributed

code as its diversity order is reduced (since the number of independent channels in

the network is reduced). Therefore, some additional constraints should be introduced

into the optimization problem to ensure that all the relays are active, i.e., the relay

power is allocated to all the relays, hence providing the full diversity order. In the

next section, the amount of fading concept is introduced for the relay networks and

used as an additional constraint for the PA problem. The amount of fading gives a

convenient measure of the fading severity experienced by the network and it should

be kept as small as possible. It shall be shown that the amount of fading in a relay

network can be reduced inversely to the number of relays. Then the condition on the
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transmitted power at each relay is derived to obtain a lower bound on the amount of

fading.

3.5 The Optimal PA Scheme under the Amount of Fading

Constraint

The amount of fading is a common measure of fading severity in a fading channel

model. In single-input single-output communication systems, the amount of fading is

defined based on the instantaneous fading amplitude α = |h| of the complex fading

coefficient h as [38]

κ =
var[α2]

(E[α2])2 . (3.16)

In multiple-input multiple-output communication systems, α2 is the summation

of the instantaneous squared magnitudes of all the channel coefficients between each

pair of transmit and receive antennas [39]. In the distributed space-time relay network

considered in this thesis, by taking into account the fading coefficients in each S →
R → D link, α2 can be loosely defined as

α2 =
R∑

i=1

Piσ
2
Fi

σ2
Gi
|fi|2|gi|2

P0σ2
Fi

+ 1
. (3.17)

By disregarding common factors, the amount of fading of the considered relay network

can be defined similarly to (3.16).

Since fi and gi are independent, for i = 1, . . . , R, the mean value of α2 is given as

E
{gi},{fi}

[α2] =
R∑

i=1

Piσ
2
Fi

σ2
Gi

P0σ2
Fi

+ 1
. (3.18)

The variance of α2 is

var[α2] =
R∑

i=1

P 2
i σ4

Fi
σ4

Gi

(P0σ2
Fi

+ 1)2
var[|fi|2|gi|2]

=
R∑

i=1

3P 2
i σ4

Fi
σ4

Gi

(P0σ2
Fi

+ 1)2
(3.19)

which follows from the fact that |fi|2 and |gi|2 are exponentially distributed with

mean 1, and var[|fi|2|gi|2] = E[|fi|4]E[|gi|4]− (E[|fi|2]E[|gi|2])2 = 2× 2− 1 = 3.
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Next, observe that Hölder inequality (see [37], p. 48) can be used to obtain the

following inequality
R∑

i=1

|xi|2 ≥
(∑R

i=1 |xi|
)2

R
(3.20)

where the equality is achieved when |x1| = . . . = |xR|. Then applying (3.20) to (3.19),

one obtains the following lower bound on the variance of α2:

var[α2] ≥ 3

R

(
R∑

i=1

Piσ
2
Fi

σ2
Gi

P0σ2
Fi

+ 1

)2

. (3.21)

Therefore, the amount of fading is lower bounded as

κ =
var[α2]

(E[α2])2 ≥
3

R
, (3.22)

and the lower bound is achieved with

P1σ
2
F1

σ2
G1

P0σ2
F1

+ 1
= . . . =

PRσ2
FR

σ2
GR

P0σ2
FR

+ 1
. (3.23)

It is noted that the factor 3 in the amount of fading expression for the relay networks

is due to the “cascaded” fading characteristic of the amplify-and-forward protocol

employed. Furthermore, an amount of fading equal to 1 here does not mean that

the system has the diversity order of 1 as in a typical point-to-point communication

system over a Rayleigh fading channel.

In order to minimize the amount of fading of the distributed space-time coding

in wireless relay networks, the PA scheme between the source and the relays needs

to satisfy (3.23). Apparently, the condition in (3.23) makes the amount of fading in

each S → R → D link to be the same, an intuitively satisfying result. Therefore the

optimization problem to maximize the average SNR is the same as in (3.5), but with

the additional constraint for minimum amount of fading as in (3.23). Intuitively, the

optimal power scheme would allocate more power to the relay with a weaker link, and

less power for the relay with a stronger link. This is reasonable since only channel

statistics are known at the relays and one would like to use all the relay channels

reliably to achieve the full diversity order.
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Define a =
∑R

i=1
1

σ2
Fi

, b =
∑R

i=1
1

σ2
Gi

, and c =
∑R

i=1
1

σ2
Fi

σ2
Gi

. From the minimum

amount of fading constraint, one has

P1

P0σ2
F1

+1

σ2
F1

σ2
G1

= . . . =
PR

P0σ2
FR

+1

σ2
FR

σ2
GR

=

∑R
i=1 Pi

∑R
i=1

P0σ2
Fi

+1

σ2
Fi

σ2
Gi

=
P − P0

P0b + c
, (3.24)

where the condition on optimality in Lemma 1 is used. It follows that

Pi =
P − P0

P0b + c
· P0σ

2
Fi

+ 1

σ2
Fi

σ2
Gi

, i = 1, . . . , R. (3.25)

Substitute P1, . . . , PR from (3.25) to the objective function in (3.5), the new ob-

jective function can be written as

f(P0) =
1 +

∑R
i=1

P−P0

(P0b+c)σ2
Fi

P0R
P−P0

P0b+c

=
1

R

(
P0b + c

P0(P − P0)
+

a

P0

)
. (3.26)

Ignore the constant factor 1/R, the optimization problem can be simplified to

minimize
P0

f(P0) =
P0b + c

P0(P − P0)
+

a

P0

,

subject to 0 < P0 < P. (3.27)

Since the second derivative of the objective function is always positive in the

domain of P0, the objective function is convex. This problem can be solved easily

and the solution is given in in the following proposition.

Proposition 2. The optimal PA scheme for a relay network that maximizes the

effective SNR at the destination under the minimum amount of fading constraint is

P0 =





√
(Pa+c)(Pb+c)−(Pa+c)

b−a
, if b 6= a

P/2, if b = a

Pi =
P − P0

P0b + c
· P0σ

2
Fi

+ 1

σ2
Fi

σ2
Gi

, i = 1, . . . , R, (3.28)

where

a =
R∑

i=1

1

σ2
Fi

, b =
R∑

i=1

1

σ2
Gi

, c =
R∑

i=1

1

σ2
Fi

σ2
Gi

.
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Proposition 2 provides simple closed-form expressions to optimally allocate the

total transmitted power in the network to the source and relays. The scheme tries to

maximize the effective average SNR at the destination while maintaining a balance

between S → R → D links in order to minimize the amount of fading. In Section 3.6,

it is shown that such a scheme is also optimal in minimizing the SER performance of

the coherent DSTC and the proposed DUSTM in Chapter 2. It is also noted that as

the minimum amount of fading constraint is automatically met with the equal PA at

the relays in balanced networks, the closed-form optimal power allocation scheme for

such networks given in (3.7) is a special case of the expressions in Proposition 2.

3.6 Diversity Analysis of The Proposed Power Allocation

Scheme

3.6.1 Coherent DSTC

The following lemmas are established to analyze the SER performance of the

optimal PA scheme with minimum amount of fading constraint given in Proposition

2.

Lemma 2. Asymptotically, the upper-bound of the coherent DSTC’s PEP is mini-

mized with the optimal PA scheme under the minimum amount of fading constraint.

Maximum diversity order is also obtained by the optimal PA scheme.

Proof. Suppose that sk is the transmitted source signal. Following similar derivation

steps of Theorem 1 in [8], the pairwise error probability (PEP) of mistaking sk by sl

is upper-bounded as

Pk,l ≤ 1

2
E
{gi}

[
det−1

(
IR +

∆H∆G

4γ

)]
, (3.29)

where ∆ = Xk −X l, G = diag (β1|g1|2, . . . , βR|gR|2) with βi = εiσ
2
Fi

σ2
Gi

.

Since taking the expectation in (3.29) over {gi} is difficult, the approach as in

[8] shall be followed to approximate the random variable γ by its mean value, i.e.,

γ ≈ γ̄ = (1/P0T )(1 +
∑R

i=1 εiσ
2
Gi

). Note that by the law of large numbers, this
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approximation holds almost surely as R →∞. Since the coherent code is assumed to

be full rank, ∆ is also of full rank. Let σ2 be the minimum singular value of ∆H∆.

Then the PEP Pkl is (approximately) upper-bounded as

Pkl . 1

2
E
{gi}


det−1


IR +

σ2P0TG

4
(
1 +

∑R
i=1 εiσ2

Gi

)






=
1

2

R∏

i=1

E
{gi}




1 +

βiσ
2P0T |gi|2

4
(
1 +

∑R
i=1 εiσ2

Gi

)


−1




=
1

2

R∏

i=1

∫ ∞

0

e−x

1 + aixi

dx

=
1

2

R∏

i=1

a−1
i e1/ai

[
−Ei

(
−a−1

i

)]
, (3.30)

where ai =
σ2εiP0Tσ2

Fi
σ2

Gi

4

(
1+

∑R

j=1
εjσ2

Gj

) and Ei(χ) =
∫ χ
−∞

et

t
dt is the exponential integral function

[40]. When P0T becomes large, ai also becomes large, e1/ai = 1 + O(1/ai) ≈ 1, and

−Ei
(
−a−1

i

)
= 1 + log ai ≈ log ai.

Thus, the approximate upper-bound of the PEP becomes

Pkl . 1

2

R∏

i=1

(
log ai

ai

)R

. (3.31)

It can be shown that log(log(t)/t) is a convex function2 for large t [37]. This means

that log(t)/t is a log-convex function for large t. From the definition of a log-convex

function [37], one has the following inequality:

R∏

i=1

log ai

ai

≥

R log

(∑R
i=1 ai/R

)

∑R
i=1 ai




R

=

[
log(ησ2/4)

ησ2/4

]R

, (3.32)

as
∑R

i=1 ai = ησ2/4. The equality holds when a1 = . . . = aR, i.e., the minimum

amount of fading constraint is met. It is clear that the upper-bound of the coherent

DSTC’ PEP is minimized when the PA scheme meets the minimum amount of fading

constraint. It is noted that (log η)/η is a decreasing function for large η. Maximizing

the SNR, i.e., η, under the minimum amount of fading constraint will further minimize

2It can be easily verified that log(log(t)/t) is convex when t ≥ e
1+
√

5
2 by its second-order derivative.
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the upper-bound of PEP Pkl. The expression in (3.32) also suggests that both the

upper-bound on PEP and the PEP are proportional to (log η/η)R. Since log η =

η
log log η

log η , one has (log η/η)R = η−R(1− log log η
log η ). It means that the diversity order is

R(1− log log η
log η

), which is also the maximum achievable diversity order of DSTC [8].

3.6.2 Partially Coherent and Noncoherent DSTC

Lemma 3. Asymptotically, the PEP of the partially coherent DUSTM is minimized

with the optimal PA scheme under the minimum amount of fading constraint. Maxi-

mum diversity order R is also obtained by the scheme.

Proof. The exact conditional PEP is given in [22] as

Pk,l|{gi} =
det (IR + G/γ)

2 det
(
I2R + ΨZH

klZkl/(4γ)
) , (3.33)

where Ψ = diag(G,G) and Zkl = [Xk, X l]. In order to find the unconditional

PEP Pk,l, one needs to average (3.33) over the distribution of {gi}. Since taking

the expectation over {gi} is difficult, the same approach as in the previous section

is taken to approximate the random variable γ by its mean value, i.e., γ ≈ γ̄ =

(1/P0T )
(
1 +

∑R
i=1 εiσ

2
Gi

)
. Since Zkl is a full-rank matrix with the Fourier-based

USTM design [27], the minimum singular value of ZH
klZkl, denoted as ν2, is non-zero.

Then the asymptotic PEP Pk,l is (approximately) upper-bounded as

Pk,l . E
{gi}

det (IR + G/γ̄)

2 det (I2R + Ψν2/(4γ̄))

=
1

2

R∏

i=1

E
{gi}

{
1 + βi|gi|2/γ̄

[1 + βiν2|gi|2/(4γ̄)]2

}

=
1

2

R∏

i=1

∫ ∞

0

(1 + bix)e−x

(1 + ν2bix/4)2 dx, (3.34)

where bi = βiσ
2
Gi

/γ̄. Let 1 + ν2bix/4 = −ν2bit/4. Then (3.34) becomes

Pk,l . 1

2

(
16

ν4

)R R∏

i=1

e
4

biν2

b2
i

∫ − 4
biν2

−∞
−bit + 1− 4/ν2

t2
etdt. (3.35)
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When P0T becomes large, bi also becomes large and e4/(biν
2) = 1 + O(4/(biν

2)) ≈ 1.

Furthermore, one has the following approximations when bi is large:

∫ − 4
biν2

−∞
−et

t
dt = −Ei

(
− 4

biν2

)
= 1 + log

(
biν

2

4

)
≈ log

(
biν

2

4

)
,

and

∫ − 4
biν2

−∞
et

t2
dt =

1

2
Ei

(
− 4

biν2

)
+

biν
2e
− 4

biν2

4
≈ −1

2
log

(
biν

2

4

)
+

biν
2

4
,

Clearly, when bi becomes large, the dominant term of e
4

biν2

b2i

∫− 4
biν2

−∞
−bit+1−4/ν2

t2
etdt is

log(biν
2/4)

bi
. Thus, the PEP is upper-bounded as

Pk,l . 1

2

(
4

ν2

)R R∏

i=1

log (biν
2/4)

biν2/4
. (3.36)

Similar to the argument in Lemma 3, maximizing the SNR under the amount of

fading constraint will further minimize the PEP’s upper-bound of the partially coher-

ent DUSTM. Note that the PEP’s upper-bound is then proportional to (log η/η)R.

Thus, the maximum diversity order of DUSTM is also obtained by the PA in Propo-

sition 2.

3.7 Simulation Results

Source Destination

Relay 2 Relay 1

Relays 3, 4

Figure 3.1 The relays’ locations relatively to the source and destination.

Considered in the simulation are systems with 2, 3, or 4 relays whose locations are

illustrated in Figure 3.1. Assume that the source and destination are located at (0,0)

and (1,0), respectively. The first relay is located at (0.75,0), and the second relay

is at (0.25,0). The location of the third and fourth relays, if deployed, is at midway

between the source and destination, i.e., (0.5,0). The fading variances are assigned

proportionally to the distance between the transmit and receive terminals, taking into

51



account the path loss exponent, which is set at 4. Thus, if σ̃2
F1

is normalized to 1,

then σ̃2
F2

= 34, σ̃2
F3

= σ̃2
F4

= (3/2)4. Similarly, σ̃2
G1

= 34, σ̃2
G2

= 1, σ̃2
G3

= σ̃2
G4

= (3/2)43.

Both the noise variances σ2
R and σ2

D are set at 1.
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Figure 3.2 Average SNR at the destination with different PA schemes. “Dash-

dot” lines are for the exact SNR evaluation, solid lines are for the SNR

evaluated by (3.4).

Figure 3.2 illustrates the effective average SNR at the destination with three PA

schemes: (i) optimal PA with the minimum amount of fading (AoF) constraint, (ii)

optimal PA without the AoF constraint, and (iii) equal PA. The average SNR values

are calculated by an exact evaluation and the approximation given in (3.4). A network

with 3 relays is considered. As can be seen from the figure, given the total power

budget P , the optimal PA without the AoF constraint scheme gives the highest SNR,

followed by the optimal PA scheme with the minimum AoF constraint. However,

3The network configuration of Figure 3.1 is adopted for simplicity. An arbitrary network topology

is not limited to the case that relays are on the same line and the relay locations are defined by two

coordinates. For a general topology, all that need to be taken into account are distances from the

source to each relay and from each relay to the destination so that the strengths of different channels

are modeled appropriately.
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there is only one active relay, the third relay, in the optimal PA without the AoF

constraint. Therefore, although achieving the highest average SNR, having only one

active relay leads to a decrease in the diversity order (as illustrated in Figure 3.3).

Furthermore, in comparing the approximate average SNR to the exact average SNR,

Figure 3.2 shows that the approximation taken in (3.4) is very accurate, especially in

PA schemes where all the relays are active. In particular, the two evaluations of the

average SNR for the optimal PA with the AoF constraint scheme are almost identical.
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Optimal PA without AoF const.
Equal PA

Figure 3.3 Performance of noncoherent DUSTM with different PA schemes.

“Dash-dot” lines are for the three-relay system, solid lines are for the

two-relay system.

In order to illustrate the performance of different PA schemes in noncoherent

relay networks, we use the Fourier-based distributed unitary space-time modulation

(DUSTM), stated in Chapter 2. Two-relay (relays 1 and 2) and three-relay (relays

1, 2, and 3) networks are considered. Figure 3.3 shows a significant improvement of

the optimal PA scheme with AoF constraint over the equal PA scheme in terms of

SER, where the former outperforms the latter by 4 dB and 2.5 dB in the three-relay,

and two-relay networks, respectively. It is also observed that the optimal PA scheme
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Figure 3.4 Performance of coherent DSTC with different PA schemes. “Dash-dot”

lines are for the three-relay system, solid lines are for the two-relay

system.

with AoF constraint is able to achieve the maximum diversity order at high SNR,

while the equal PA scheme is not. Nevertheless, both schemes performs significantly

better than the optimal PA scheme without AoF constraint. This is due to the fact

that only one relay is active in this scheme, hence the DUSTM in both relay networks

only offers a diversity order of 1. Figure 3.3 also shows the “scale-free” characteristic

of the proposed DUSTM, as its performance does not collapse with one active relay.

The performances of each PA scheme in coherent relay networks are presented

in Figure 3.4. The DSTC implemented are the distributed Alamouti code for two-

relay network and the distributed quasi-orthogonal space-time block code for four-

relay networks [9]. Similar to the noncoherent networks, the optimal PA with AoF

constraint achieves the maximum diversity order of the codes in both two-relay and

four-relay networks, while the equal PA scheme does not. It can be seen that the

optimal PA with AoF constraint outperforms the equal PA scheme significantly; about

6 dB and 4 dB improvements are observed in the four-relay and two-relay networks,
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respectively. The optimal PA scheme without AoF constraint clearly fails to deliver

the maximum diversity in both networks. This is due to the fact that there are only

one active relay in the two-relay network, and 2 active relays in the four-relay network

(relays 3 and 4).

3.8 Summary

This chapter has studied the optimal PA scheme for DTSC, given a total power

budget at the source and the relays. It was shown that maximizing the effective

average SNR at the destination is not the most important thing to obtain the optimal

performance of the DSTC. This is because some of the relays may become inactive in

maximizing the average SNR, and hence the diversity order of the DTSC is reduced.

To overcome this limitation, the concept of amount of fading was introduced for the

relay networks to balance the fading statistics of each S → R → D link, and to ensure

that all the relays are active. A novel and simple PA scheme under the minimum

amount of fading constraint was proposed in a closed-form solution. Furthermore,

this PA scheme was proved to be capable of obtaining the maximum diversity order

in coherent, partially coherent, and noncoherent DSTC networks.
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4. Optimal Training and Mismatched Decoding

in DSTC

4.1 Introduction

In most existing studies on DSTC, it is commonly assumed that the destination

has a perfect knowledge of the CSI, namely the channel coefficient vector h. With such

an assumption, the coherent maximum-likelihood decoding of the distributed space-

time codeword X is possible [8,9]. However, in practical wireless relay networks, the

channel vector h has to be estimated at the destination, typically via training signals.

Unlike the DF protocol, where channel estimation can be performed separately at each

stage of transmission (S → R and R → D), separate channel estimation with the

AF protocol has many drawbacks [15]. First, separate channel estimation requires

additional training time. Second, the transmission of the S → R channel estimation

to the destination may be prone to error. Note that the effective channel in AF

transmission is a multiplication of the S → R and R → D channels. To estimate

the effective channel, it is possible to estimate the overall effective S → R → D

channel directly to overcome these drawbacks. Thus, similar to [15], this chapter

only considers the direct estimation of the effective channel h.

This chapter first reviews the optimal training design in DSTC, proposed in [15].

Similar to the optimal training design in MIMO communications [42], orthogonal

training is proved to be optimal in DSTC with regard to both maximum likelihood

(ML) and minimum mean-square error (MMSE) estimation criteria. The chapter

then investigates the optimal power allocation between the source and the relays

0The contributions in this chapter are also presented in [41].
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to further minimize the total mean-square error (MSE) of the channel estimation.

Finally, the effect of imperfect CSI estimation on system performance is thoroughly

studied. It shall be shown that with orthogonal training signals, the DSTC with

imperfect channel estimation is able to achieve the same diversity order as that with

perfect CSI.

4.2 Optimal Training Design and Channel Estimation

Suppose that the source sends a training sequence u and the codeword s and

both are affected by the same overall channel vector h. Like the data transmission

phase for s, the transmission of the training sequence also needs to meet the power

constraint of uHu ≤ 1. In addition, since at least R independent measurements are

needed to estimate the length-R channel vector h, the training time should be no less

than the number of relays,1 R. In this work, in order to simplify the processing at

each relay, it is assumed that the same relaying matrix is applied to both the training

sequence and information codeword. Thus, the training time is also set at T , the

same as the data transmission time. The channel h is therefore assumed to remain

constant for a block of TC > 2T channel uses and change independently over the next

block.

After possibly rearranging the order of the transmitted symbols, and normalizing

the received signal during the training phase by factor
√

P0Tσ2
D, the destination

observes the following:

yT = XTΛh + zT , (4.1)

where XT = [A1u
(∗), . . . , ARu(∗)] is the training matrix formed at the relays and

known at the destination. The noise vector zT , given in a form similar to (2.5),

has the same distribution as that of z in the data transmission phase. Rewrite the

channel model (4.1), one has the following equivalent input-output model for the

1This condition is similar to the requirement of having the training time at least equal to the

number of transmit antennas in a MIMO system [42].
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training phase:

yT = XTΛh +
√

γz̄T , (4.2)

where, conditioned on {gi}, z̄T contains i.i.d. CN (0, 1) random variables. Denote

γ0 = 1/(P0T ), then γ = γ0

(
1 +

∑R
i=1 σ2

Gi
|gi|2

)
. Note that γ0 would be the inverse of

the signal-to-noise ratio of the S → D channel if there was no channel fading and the

added noise’s variance is unity. For convenience, γ−1
0 shall be generally referred to

as the channel signal-to-noise ratio (CSNR). Meanwhile, the channel model (2.4) in

Chapter 2 is also rewritten as:

y = XΛh +
√

γz̄, (4.3)

where the noise vector z̄, conditioned on {gi}, contains i.i.d. CN (0, 1) random vari-

ables.

For the relay networks considered in this thesis, where fi and gi, i = 1, . . . , R

are independent of each other, the optimal training matrix XT will be shown to be

orthogonal for both the ML and MMSE estimation criteria [15]. In particular, XH
T XT

is an identity matrix.

4.2.1 Maximum Likelihood (ML) Estimation

The ML estimation assumes a specific realization of the effective channels h. From

the channel model of the training phase, the optimal ML estimate of h is obtained as

ĥML = Λ−1X†
T yT = h +

√
γΛ−1X†

T z̄T . (4.4)

Given {gi}, the covariance of the estimation error, ∆h = ĥML − h, can be shown to

be

cov (∆h|{gi}) = γΛ−1(XH
T XT )−1Λ−1. (4.5)

Then averaging over {gi}, the mean-square error (MSE) in estimating h is

cov (∆h) = γ̄Λ−1(XH
T XT )−1Λ−1, (4.6)
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where

γ̄ = E
{gi}

[γ] = γ0

(
1 +

R∑

i=1

εiσ
2
Gi

)
. (4.7)

It should be emphasized at this point that the total MSE in ML estimation de-

pends on both the power allocation factor in Λ and the training matrix in XT , which

can be treated separately. To this end, the optimal conditions on the design of the

training phase are established by the following 2 lemmas.

Lemma 4. (From [15]) The optimal training matrix XT must be orthogonal and

XH
T XT = IR under the ML estimation criterion.

Proof. Due to the constraint on source power uHu ≤ 1, the diagonal elements of

XH
T XT need to satisfy [XH

T XT ]ii ≤ 1, ∀i. Finding the optimal training matrix is

to find the solution that minimizes the total MSE while meeting the above power

constraint, i.e.,

minimize
XT

tr(Λ−1(XH
T XT )−1Λ−1) (4.8)

subject to [XH
T XT ]ii ≤ 1, i = 1, . . . , R.

The proof for this lemma follows from Theorem 1 in [15]. At first, XH
T XT is shown

to be a diagonal matrix. This can be done by contradiction. Let F be an arbitrary

R×R positive definite matrix, one has

tr(F−1) ≥
R∑

i=1

([F ]ii)
−1, (4.9)

where the equality hold if and only if F is a diagonal matrix. Suppose that X?
T is

the optimal solution and (X?
T )HX?

T is not diagonal. Let D be a diagonal matrix,

whose diagonal elements are the diagonal element of (X?
T )HX?

T . Obviously, D1/2 is

also a feasible solution to (4.8), as [D]ii ≤ 1, ∀i. Also note that Λ−1D−1Λ−1 is now

a diagonal matrix. Thus, apply the inequality in (4.9), one has:

tr
(
Λ−1

(
(X?

T )HX?
T

)−1
Λ−1

)
= tr

((
Λ(X?

T )HX?
TΛ

)−1
)

<
R∑

i=1

([
Λ(X?

T )HX?
TΛ

]
ii

)−1
= tr

(
Λ−1D−1Λ−1

)
,
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which contradicts the assumption that X?
T is optimal. Thus, the optimal XH

T XT

must be diagonal. Applying the power constraint in (4.8), the optimal solution sat-

isfies XH
T XT = IR. The proof is complete.

Given that the optimal training matrix is orthogonal under the ML estimation,

it is of interests to find the optimal power allocation to further minimize the total

MSE. Note that the total MSE now is tr(γ̄Λ−2). Before stating the solution to such

a power allocation problem, Lemma 5 is presented next to establish a lower bound

on the total MSE.

Lemma 5. Given xi > 0, i = 1, . . . , R, one has the inequality

R∑

i=1

1

xi

≥ R2

∑R
i=1 xi

, (4.10)

where the equality is achieved when x1 = . . . = xR.

Proof. The proof follows directly by applying the Jensen’s inequality [37] on the

convex function f(x) = 1/x, x > 0.

From Lemma 5, one has

tr(γ̄Λ−2) = γ̄
R∑

i=1

1

εiσ2
Fi

σ2
Gi

≥ γ̄
R2

∑R
i=1 εiσ2

Fi
σ2

Gi

, (4.11)

and the equality is met when

ε1σ
2
F1

σ2
G1

= . . . = εRσ2
FR

σ2
GR

. (4.12)

Equivalently,

P1σ
2
F1

σ2
G1

P0σ2
F1

+ 1
= . . . =

PRσ2
FR

σ2
GR

P0σ2
FR

+ 1
, (4.13)

which means that the amount of fading constraint is met.

Observe that η =
∑R

i=1 εiσ
2
Fi

σ2
Gi

/(Rγ̄) is the average effective SNR. Thus, the

power allocation scheme that maximizes the SNR under the minimum amount of

fading constraint will further minimize the total MSE. Such a power allocation scheme

was already presented in Chapter 3 (see Proposition 2).
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4.2.2 Minimum Mean-Square Error (MMSE) Estimation

The MMSE estimation requires the second-order statistics of the channel to be

known at the destination. Let Σh be the covariance matrix of the channel vector

h. As {fi} and {gi} are i.i.d. CN (0, 1) random variables, Σh = IR. Based on the

input-output model for the training phase in (4.2), the MMSE estimation yields [15]

ĥMMSE = ΣhΛXH
T

(
XTΛΣhΛXH

T + γ̄IT

)−1
yT

=
(
ΛXH

T XTΛ + γ̄IR

)−1
ΛXH

T yT

= BĥML, (4.14)

where B =
(
ΛXH

T XTΛ + γ̄IR

)−1
Λ2 is considered as a biasing matrix to the unbi-

ased estimator ĥML of h. The covariance of the estimation error ∆h = ĥMMSE − h

under the MMSE estimation criterion can be found as

cov(∆h) =

(
Σ−1

h +
1

γ̄
ΛXH

T XTΛ

)−1

=

(
IR +

1

γ̄
ΛXH

T XTΛ

)−1

. (4.15)

Having known the total MSE as tr(cov(∆h)), it is now ready to derive the optimal

training matrix to minimize the total MSE under the MMSE criterion.

Lemma 6. (From [15]) The optimal training matrix XT must be orthogonal and

XH
T XT = IR under the MMSE estimation criterion.

Proof. The proof for this lemma is similar to that of Lemma 4, and is thus omitted.

It is noted that the optimal orthogonal training design under the MMSE estima-

tion criterion is only applicable when the covariance matrix Σh is a diagonal matrix,

i.e., h contains independent elements. The optimal training design for an arbitrary

covariance matrix Σh can be found as in [15].

Given that XH
T XT = IR, the total MSE under MMSE estimation is then given

by

tr (cov(∆h)) =
R∑

i=1

1

1 + εiσ2
Fi

σ2
Gi

/γ̄
≥ γ̄

R2

γ̄R +
(∑R

i=1 εiσ2
Fi

σ2
Gi

) , (4.16)
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where Lemma 5 has been used again to arrive at the lower bound. Similar to the case

of the ML estimation in the previous section, the lower bound in (4.16) is achieved

when (4.12) is satisfied. Thus the optimal power allocation in MMSE estimation is

also the same as that in ML estimation. Moreover, it is clear from (4.11) and (4.16)

that the total MSE in MMSE estimation is always less than that in ML estimation

if the same PA scheme is applied. This is an intuitively satisfying result since the

MMSE estimation is optimum with regard to the mean-square error measure.

4.2.3 Examples of Training Design

The previous sections have shown that the optimal training matrix must be or-

thogonal under both ML and MMSE estimation criteria. The remaining task is

to determine the training source u, and the relaying matrix Ai. There are more

than one solution. As an example, the training sequence can be chosen as u =

1/
√

T [1, . . . , 1]T ∈ RT to avoid the peak to average power ratio problem at the

source. The relaying matrix Ai can be set as in Chapter 2. Such design allows

the same relaying matrices at both the training phase and information transmission

phase, and simplifies the implementation at the relays. Furthermore, it is possible to

have XH
T XT = IR.

For a two-relay network, the training time T = 2, Ai, i = 1, 2 is chosen as in

Chapter 2 to design the distributed Alamouti code, the resultant training matrix

XT =
1√
2




1 −1

1 1


 ,

is orthogonal.

For a four-relay network, the training time T = 4, Ai, i = 1, 2, 3, 4 is chosen as in

Chapter 2 to design the distributed QOSTBC. The resultant training matrix

XT =
1

2




1 −1 −1 1

1 1 −1 −1

1 −1 1 −1

1 1 1 1




,
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is orthogonal.

4.3 Performance of Mismatched Decoding

This section analyzes the diversity order of the mismatched decoding with imper-

fect channel estimation. The analysis follows a similar procedure in Section IV of [42]

for point-to-point multiple-input multiple-output MIMO systems and it is performed

in the large CSNR regime,2 i.e., when γ0 → 0 (asymptotic analysis). It is important

to point out that both γ in (3.1) and γ̄ in (4.7) are proportional to γ0, hence they

are in the same order of γ0. The analysis will show that the mismatched decoder of

DSTC is able to achieve the same diversity order as that of the coherent decoder.

First, for the coherent decoding of DSTC, it is assumed that the channel h is

perfectly known at the destination. The pairwise error probability (PEP) of mistaking

the transmitted codeword sk by sl, i.e., mistaking Xk by X l, is given in Equation

(2.10) as

P(Xk → X l) = E
{fi},{gi}

P (Xk → X l|{fi}, {gi})

= E
{fi},{gi}


Q




√
‖∆Λh‖2

2γ





 , (4.17)

where ∆ = Xk −X l.

Now, for the mismatched decoding, the destination uses the estimated CSI ĥ in

the same way as with the perfect CSI h. The decoder performs

X̂ = arg min
Xk

∥∥∥y −XkΛĥ
∥∥∥
2
. (4.18)

It is noted that under the MMSE channel estimation in (4.14), the Taylor series

expansion of the biasing matrix is B =
(
IR + γΛ−2

)−1
= IR −O(γ0Λ

−2). This also

implies that B → IR when γ0 → 0.

Thus, under either ML or MMSE estimation, the channel estimate ĥ can be

2Recall that the CSNR refers to P0T = 1/γ0. Since P0 is allocated a portion of the total power

P , the CSNR becomes large when the ratio P becomes large.
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expressed as

ĥ = h +
√

γΛ−1XH
T z̄T −O

(
γ0Λ

−2
)
. (4.19)

The mismatched metric for codeword X l is

∥∥∥y −X lΛĥ
∥∥∥
2

=
∥∥∥XkΛh +

√
γz̄ −X lΛ

[
h +

√
γΛ−1XH

T z̄T −O
(
γ0Λ

−2
)]∥∥∥

2

=
∥∥∥∆Λh +

√
γ

(
z̄ −X lX

H
T z̄T

)
−O

(
γ0Λ

−1
)∥∥∥

2

=
∥∥∥∆Λh

∥∥∥
2
+ 2

√
γRe{z̄H∆Λh}

−2
√

γRe{z̄HT XT XH
l ∆Λh}+ O (γ0) . (4.20)

Note that, since z̄ and z̄T contain i.i.d. CN (0, 1) random variables, the term
∥∥∥√γ(z̄−

X lX
H
T z̄T )

∥∥∥
2

= γ
∥∥∥z̄ −X lX

H
T z̄T

∥∥∥
2 → 0 almost surely as γ0 → 0. Therefore this term

can be subsumed in O(γ0) in (4.20).

The asymptotic PEP of the mismatched decoder can be calculated as

P(Xk → X l) = P
(∥∥∥y −X lΛĥ

∥∥∥
2

<
∥∥∥y −XkΛĥ

∥∥∥
2
)

(4.21)

= P
(∥∥∥∆Λh

∥∥∥
2
+ 2

√
γRe{z̄H∆Λh}

−2
√

γRe{z̄HT XT XH
l ∆Λh}+ O (γ0) < 0

)

= E
{fi},{gi}


P




∥∥∥∆Λh
∥∥∥
2

√
γ

+ O (
√

γ0) <

2Re{z̄HT XT XH
l ∆Λh} − 2Re{z̄H∆sΛh}

∣∣∣ {fi}, {gi}
)]

.

Note that, conditioned on {gi} and {fi}, the elements of z̄T and z̄ are i.i.d. CN (0, 1)

random variables. Thus, 2Re{z̄HT XT XH
l ∆Λh} − 2Re{z̄H∆Λh} is Gaussian dis-

tributed with zero mean and variance 2‖XH
l ∆Λh‖2+2‖∆Λh‖2, since XH

T XT = IR.

The probability term in (4.21) is just the probability that a zero-mean Gaussian ran-
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dom variable is bigger than some constant. Therefore (4.21) can be written as

P(Xk → X l) = E
{fi},{gi}




Q




√√√√√√√√√




∥∥∥∆Λh

∥∥∥
2

√
γ

+ O
(√

γ0

)



2

2‖XH
l ∆Λh‖2 + 2‖∆Λh‖2







= E
{fi},{gi}



Q




√√√√√√√

∥∥∥∆Λh

∥∥∥
4

γ
+ 2

∥∥∥∆Λh

∥∥∥
2

√
γ

O
(√

γ0

)

2‖XH
l ∆Λh‖2 + 2‖∆Λh‖2







= E
{fi},{gi}


Q




√√√√√
1

2γ

‖∆Λh‖2

1 +
‖XH

l ∆Λh‖2
‖∆Λh‖2

+ O (1)





 . (4.22)

Similar to [42], apply the Cauchy-Schwarz inequality to the Frobenius norm [28],

one has

1 ≤ 1 +
‖XH

l ∆Λh‖2

‖∆Λh‖2
≤ 1 + ‖X l‖2. (4.23)

Thus, due to the monotonic decreasing of the Q function, the asymptotic PEP is

bounded as

E
{fi},{gi}

[
Q

(√
1

2γ
‖∆Λh‖2 + O (1)

)]

≤ P(Xk → X l) (4.24)

≤ E
{fi},{gi}


Q




√√√√ 1

2γ

‖∆Λh‖2

1 + ‖X l‖2
+ O (1)





 .

Note that at high CSNR, i.e., small γ, the constant term O (1) becomes negligible

compared to the term ‖∆Λh‖2/(2γ) or the term ‖∆Λh‖2/(2γ(1+‖X l‖2)). Therefore

it can be neglected as far as the diversity order analysis is concerned. Comparing the

PEP expression in (4.17) and the bounds in (4.24) clearly shows that the diversity

order of the mismatched decoder is the same as that of the coherent decoder if the

same PA scheme is applied. Moreover, it is of interest to find the PA scheme that

achieves the maximum diversity order with the mismatched decoder. This is discussed

next.
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In Chapters 2-3, it was shown that if ∆ = Xk−X l is full rank, the PEP in (4.17)

decays in the order of R(1 − loglogη/logη), as long as the optimal power allocation

scheme under the minimum amount of fading is exercised. The analysis and simula-

tion in Chapter 3 also indicate a significant performance improvement by the optimal

power allocation scheme over the equal power allocation scheme. As a consequence of

the analysis on the PEP of the mismatched decoding given in (4.24), under the opti-

mal power scheme, the mismatched decoder is able to not only realize the maximum

diversity order of the DSTC, but also outperform the equal power allocation scheme

substantially.

4.4 Simulation Results

This section presents the simulation results on the total MSE of the ML and

MMSE estimators, as well as the SER of the mismatched decoder in order to illus-

trate the superiority of the proposed optimal PA in both estimation and decoding

performances. Considered are the relay networks with 2 or 4 relays as in Section 3.7

of Chapter 3. The second order statistics of each S → R and R → D channel are

kept the same.

Figure 4.1 compares the total MSE achieved by the optimal and equal PA schemes

in a four-relay network, for both the ML and MMSE estimations. It can be seen

that, with either ML or MMSE estimation, the total MSE is significantly reduced

with the optimal PA over the suboptimal equal PA scheme. The total MSE of the

MMSE estimation is also smaller than that of the ML criterion with both PA schemes.

However, at high CSNR, the difference is negligible, which validates the common

representation of the two estimators in (4.19).

The SER performance of the mismatched decoder is compared to that of the

coherent decoder under the two PA schemes in Figures 4.2 and 4.3. The distributed

Alamouti code is implemented for the two-relay network, while the distributed quasi-

orthogonal space-time block code (QOSTBC) is applied in the four-relay network [9].

As can be seen from the two figures, the diversity order achieved with the mismatched

66



5 10 15 20 25 30 35
10

−4

10
−3

10
−2

10
−1

10
0

10
1

 P in dB

T
ot

al
 M

S
E

Equal PA − ML estimation
Equal PA − MMSE estimation
Optimal PA − ML estimation
Optimal PA − MMSE estimation

Figure 4.1 Total MSE achieved with ML and MMSE estimators, with the optimal

and equal PA schemes in a four-relay network.
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Figure 4.2 Error performance of DSTC with different types of detection in a two-

relay network. “Dash-dot” lines are for the optimal PA scheme, solid

lines are for the equal PA scheme.
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decoding is the same as that of the coherent decoding, regardless of the PA scheme

applied. This agrees with the analysis in Section 4.3. Moreover, under the optimal

PA scheme, the mismatched decoder is able to achieve the maximum diversity order

and significantly outperforms the decoder under the equal PA scheme, by about 2.5

dB and 5.0 dB in the two-relay and four-relay networks, respectively.

5 10 15 20 25 30 35
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

 P in dB

S
E

R

Mismatched decoder − ML est.
Mismatched decoder − MMSE est.
Coherent decoder

Figure 4.3 Error performance of DSTC with different types of detection in a four-

relay network. “Dash-dot” lines are for the optimal PA scheme, solid

lines are for the equal PA scheme.

Finally, the two figures show that the mismatched decoders perform almost the

same with both the ML and MMSE channel estimations and under either the opti-

mal or equal PA schemes, especially at high CSNR. In fact, their performances are

identical for the case of distributed Alamouti code (orthogonal code) and optimal PA.

This is because with the optimal PA, the channel estimate by the MMSE estimator is

a scaled version of the channel estimate by the ML estimator, whereas the decoding

performance of the orthogonal code is insensitive to the scaling factor in the channel

estimate.
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4.5 Summary

This section has studied optimal training design in wireless multi-relay networks.

It was shown that orthogonal training scheme is optimal with both the ML and

MMSE criteria. The optimal power allocation scheme to minimize the total MSE

of both ML and MMSE channel estimations was obtained for distributed space-time

coding (DSTC). The diversity order of the error performance of the mismatched

decoder that works with the estimated channel information was also analyzed. It was

shown that, with a given power allocation scheme in the data transmission phase,

the mismatched decoder is able to achieve the same diversity order as the coherent

decoder. In particular, if the optimal power allocation under the minimum amount of

fading obtained in the training phase is also applied to the transmission phase, then

the mismatched decoder achieves the same maximum diversity order as that of the

coherent decoder.
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Part II

Distributed Beamforming
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5. Distributed Beamforming in a Multiuser

Multi-relay Network with Guaranteed QoS

In the first part of this thesis, distributed space-time coding (DSTC) for a one-

source one-destination network was studied. It was shown that DSTC can take ad-

vantage of cooperative diversity in the absence of CSI at the relays. However, should

the relays know both the backward, i.e., source-to-relay (S → D) and forward, i.e.,

relay-to-destination (R → D), channels, they can beam their retransmitted signals so

that the received signal at the destination is coherently constructed. The approach,

referred to as distributed beamforming, is investigated in [11–14, 45]. In particular,

reference [11] considers the problem of controlling the transmitted power at each relay

in order to maximize the signal-to-noise ratio (SNR) at the destination. It shows that,

depending on its own channels and other relays’ channels, each relay may not use its

maximum power to obtain the optimal SNR. The same problem is also considered

in [13] by the technique of conic programming. Reference [12] studies a distributed

relay strategy for wireless sensor networks to obtain a certain target SNR at the des-

tination, whereas reference [14] investigates a similar problem with the objective of

minimizing the sum of relay powers, referred to as “sum relay power” hereafter. More

recently, distributed beamforming with second-order statistics is examined in [45].

It is noted that most of the early works in distributed beamforming focus on the

system with one source and one destination. Multiuser multi-relay systems are first

investigated in [46] and [47], where the relay strategies were proposed to minimize

the mean-square error between the source signal and the received signal at the desti-

0The contributions in this chapter are also presented in [43,44].
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nation. In addition, such systems allow the relays to share their received signals from

the sources, and thus require reliable links between the relays. In this work, those

additional links are not needed as the relays do not share their received signals.

This part of thesis studies optimal distributed beamforming designs in a multiuser

multi-relay network with multiple sources and multiple destinations. It is assumed

that all the source-destination pairs operate in orthogonal channels to avoid inter-

user interference at the destinations. The distributed beamforming designs are then

optimized under one of the following two design criteria: (i) minimizing the sum relay

power with guaranteed quality of service (QoS) in terms of SNR at the destinations,

or (ii) maximizing the joint SNR margin subject to power constraints at the relays.

These two design criteria are sequentially investigated in this chapter and Chapter 6

and shown to be closely related with each other.

In this chapter, the optimal distributed beamforming strategy under the design

criterion (i) is examined. Considered are the optimization problems with and without

per-relay power constraints. It will be shown that these two optimization problems

can be transformed into convex second-order conic programs (SOCPs), and thus,

can be solved effectively by any conic software package. In addition, this chapter

also proposes simple and fast iterative algorithms to solve the optimization problems

under consideration.

When no power constraints are applied, the problem can be recast as power min-

imization problems to determine the minimum relay power required for each user.

The corresponding optimal distributed beamformer at the relays for each user is then

presented in a closed-form expression, given its allocated relay power. A simple iter-

ative fixed point algorithm is proposed and showed to converge to the optimal relay

power value.

When per-relay power constraints are applied, the duality of the problem is estab-

lished and studied. Through the interpretation via a virtual uplink channel, the dual

problem could be solved quickly by the iterative fixed point algorithm. Finally, an
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iterative algorithm based on fixed point iteration and Euclidean projection method

is proposed to solve the original distributed beamforming problem.

5.1 System ModelS1
S�

Relay 1Relay 2
Relay R

D1
D�

1g

Ng

1f

Nf

11f

12f

1Rf
21g

1Rg

11g

Figure 5.1 Block diagram of a distributed beamforming system with R relays and

N users.

Consider a relay network with N pairs of source-destination users (Sn-Dn, n =

1, . . . , N), and R relays,1 as illustrated in Figure 5.1. All relays are assumed to work in

a half-duplex mode, i.e., they cannot receive and transmit at the same time. Assume

that there is no direct link between any source and destination and the communication

between the two terminals of each user is assisted by all the relays, and implemented

in two transmission stages. These assumptions are the same as that of the DSTC

system presented in Chapter 2, except that the system model now consists of multiple

S −D users.

In the first stage, each user’s source broadcasts its signals to all the relays. The

transmissions from the sources are conducted over orthogonal channels, using time-

division multiple access (TDMA) or frequency-division multiple access (FDMA), for

instance, such that there is no inter-user interference at the relays. For the nth user,

1This system model is also applicable to a one-source one-destination OFDM system, where N

is interpreted as the number of subcarriers.
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given sn as the source signal, the received signals at the relays are given as

rn = fnsn + zrn ∈ CR×1, (5.1)

where fn = [fn,1, . . . , fn,R]T , and fn,i is the channel from the nth source to the ith

relay; zrn represents the AWGN at the relays, which contains i.i.d. CN (0, σ2
R).

At the ith relay, the received signal for the nth user is amplified by a complex

beamforming weight wn,i, which is to be designed. Let wn = [wn,1, . . . , wn,R]T be the

vector of the beamforming weights for the nth user. Also define W n = diag(wn).

Accordingly, by applying the AF protocol [5], the retransmitted signals from the

relays scheduled for the nth user are formed as

tn = W nrn = W nfnsn + W nzrn . (5.2)

In the second stage of transmission, all the relays simultaneously transmit to the

nth user’s destination. Similar to the first stage, the transmission to each user’s

destination is carried out over orthogonal channels to avoid inter-user interference.

Let gn = [g1,n, . . . , gR,n]T represent the channels from R relays to the nth destination.

The received signal at the nth destination is written as

yn = gTn tn + zdn = gTn W nfnsn + gTn W nzrn + zdn , (5.3)

where zdn ∼ CN (0, σ2
D) is the AWGN at the destination. Obviously, gTn W nfnsn

represents the signal part, whereas gTn W nzrn + zdn represents the noise part at the

destination. Define h∗n = [h∗n,1, . . . , h
∗
n,R]T = fn¯gn = [fn,1g1,n, . . . , fn,RgR,n]T , where

¯ represents the component-wise Hadamard product. As a result, h∗n models the

effective channel from source-n to destination-n through all the relays, excluding the

beamforming factors. Then, one has gTn W nfn = hHn wn. Let σ2
Sn

= E[|sn|2] be the

average transmitted power of the nth source. Then, the SNR at the nth destination

is given by

SNRn =
σ2

Sn
|hHn wn|2

σ2
R‖G1/2

n wn‖2 + σ2
D

, (5.4)

where Gn = diag(|g1,n|2, . . . , |gR,n|2).
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Let pn be the total relay power allocated for the nth user, one has

pn = E
[
‖tn‖2

]
= σ2

Sn

R∑

i=1

|wn,i|2|fn,i|2 + σ2
R

R∑

i=1

|wn,i|2 = wH
n Dnwn, (5.5)

where Dn is a R × R diagonal matrix, with the ith diagonal element [Dn]ii =

σ2
Sn
|fn,i|2 + σ2

R. On the other hand, the transmitted power at the ith relay is

Pi =
N∑

n=1

E
[
|tn,i|2

]
=

N∑

n=1

σ2
Sn
|wn,i|2|fn,i|2 + σ2

R

N∑

n=1

|wn,i|2 =
N∑

n=1

wH
n DnEiwn, (5.6)

where Ei is a R×R matrix whose elements are zero, except the (i, i)-element, which

is [Ei]ii = 1. The total transmitted power of all the relays (and for all the users) is

therefore given by

Prelay =
R∑

i=1

Pi =
N∑

n=1

pn =
N∑

n=1

wH
n Dnwn. (5.7)

5.2 Sum-Power Minimization

This section considers the optimal design of the beamforming vectors to minimize

the sum power at the relays given the set of target SNRs at the destinations. This

design provides a relaying strategy that can flexibly meet the quality of service (QoS)

requirement at each user’s destination. The optimization problem is formulated as

follows:

minimize
w1,...,wN

N∑

n=1

pn (5.8)

subject to SNRn ≥ γn, n = 1, . . . , N,

where γn is the target SNR at the nth destination. Obviously, this optimization

problem can be performed separately through N smaller optimization problems, each

corresponds to one user. That is

minimize
wn

wH
n Dnwn (5.9)

subject to
σ2

Sn
|hHn wn|2

σ2
R‖G1/2

n wn‖2 + σ2
D

≥ γn.

This optimization problem is illustrated in Figure 5.2. In particular, the effective

channel coefficient from source-n to destination-n through relay-i is denoted as h∗n,i.
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Figure 5.2 Sum relay power minimization for the nth user.

At relay-i, the retransmitted signal is amplified by the weight wn,i. The relay power

for user-n is given by pn = ‖D1/2
n wn‖2. The optimization problem then attempts to

minimize pn subjected to the constraint on target SNR of user-n to be at least equal

to γn.

While this problem is not readily in a convex form, it can be recast as an SOCP

as follows. As a phase rotation to wn has no impact on the SNR constraint and the

objective function, without loss of generality, it is assumed that hHn wn is real. Then

the SNR constraint can now be recast as [13]

√√√√σ2
Sn

γn

hHn wn ≥
∥∥∥∥∥∥∥

σRG1/2
n wn

σD

∥∥∥∥∥∥∥
, (5.10)

which is an SOC constraint. In addition, the objective function is quadratic. Thus,

both the objective function and the constraint are convex, so is the optimization

problem (5.9).2 The solution to the problem can be obtained from any external conic

solution package, such as cvx [48]. However, as the required conic package is not

always readily available, the approach may not be suitable in real-time communica-

tions. To overcome this difficulty, this section considers an alternative approach to

2Detailed discussions on convex set, convex function, and convex optimization are in Appendix

B.
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optimize the relay power consumption pn directly, instead of dealing with the beam-

forming vector. The new approach also motivates a simple and fast algorithm to solve

the optimization problem.

First, Problem (5.9) can also be recast as

minimize
wn

pn (5.11)

subject to
σ2

Sn
|hHn wn|2

σ2
R‖G1/2

n wn‖2 + σ2
D

≥ γn

wH
n Dnwn = pn.

Second, the following lemma establishes the relation between the optimal beam-

forming vector wn and the allocated relay power pn.

Lemma 7. Given pn as the relay power allocated for user-n, the optimal beamforming

weights at the relays to maximize the SNR of user-n are

wn,i =

√
δnf ∗n,ig

∗
i,n

pnσ2
R|gi,n|2 + σ2

D(σ2
Sn
|fn,i|2 + σ2

R)
, (5.12)

where the normalization factor δn is

δn =
pn

∑R
i=1

|fn,i|2|gi,n|2(σ2
Sn
|fn,i|2+σ2

R)

[pnσ2
R|gi,n|2+σ2

D(σ2
Sn
|fn,i|2+σ2

R)]
2

. (5.13)

The corresponding maximum SNR is

SNRn(pn) =
R∑

i=1

pnσ
2
Sn
|fn,i|2|gi,n|2

pnσ2
R|gi,n|2 + σ2

D(σ2
Sn
|fn,i|2 + σ2

R)
. (5.14)

Proof. The derivation of the optimal beamforming weight vector wn is similar to [49],

and based on the Rayleigh-Ritz theorem [28].3 Substitute pn = wH
n Dnwn into the

SNR expression, one has

SNRn =
σ2

Sn
|hHn wn|2

σ2
R‖G1/2

n wn‖2 +
σ2

D

pn
wH

n Dnwn

=
pnσ2

Sn
wH

n hnh
H
n wn

wH
n (pnσ2

RGn + σ2
DDn)wn

. (5.15)

3Detailed discussion on the Rayleigh-Ritz theorem is in Appendix C.
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Let pnσ2
RGn + σ2

DDn be decomposed into Cholesky factors as LnLH
n . Apply

Corollary 1 in Appendix C to the expression of SNRn, the optimal beamforming

vector w to maximize SNRn is a scaled version of the vector (pnσ
2
RGn +σ2

DDn)−1hn.

It follows that the closed-form expression of each beamforming weight can be stated

as in (5.12), while the normalization factor δn in (5.13) is to ensure wH
n Dnwn = pn.

It is also noted that the largest eigenvalue of L−1
n hnh

H
n (LH

n )−1 is its only non-zero

eigenvalue, which is also its trace. From this fact, the maximum SNR value can be

found in a closed-form expression as stated in (5.14).

It should be pointed out that the result presented in Lemma 7 is different from the

result in Section III.B of [49], where the optimal beamforming weight wn is incorrectly

stated as L−1
n hn. The normalization factor in [49] is also different from the correct

value presented in Lemma 7.

By applying Lemma 7, one can optimize the power allocation requirement pn for

user-n, then determine the optimal beamforming vector accordingly. For notational

simplicity, let

an,i =
σ2

Sn

σ2
R

|fn,i|2, bn,i =
σ2

D(σ2
Sn
|fn,i|2 + σ2

R)

σ2
R|gi,n|2 .

Then, the achievable SNR can be written as

SNRn(pn) =
R∑

i=1

an,ipn

bn,i + pn

, (5.16)

which means that the achievable SNR at the nth destination solely depends on the

relaying power pn.

The optimization problem is now restated as

Pn(γn) =





minimize
pn

pn

subject to
∑R

i=1
an,ipn

bn,i+pn
≥ γn,

(5.17)

where Pn(γn) denotes the minimum relay power allocated for user-n in order to obtain

its target SNR γn, and also denotes the optimization problem (5.17) itself. Like the

original problem in (5.9), the problem in (5.17) is also convex, which then can be
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solved efficiently. In addition, the structure of the restated problem also reveals

several interesting properties of the problem, including its feasibility and solution.

Since pn/(bn,i + pn) < 1, one has SNRn =
∑R

i=1
an,ipn

bn,i+pn
<

∑R
i=1 an,i. Thus, if the target

SNR γn ≥ ∑R
i=1 an,i, the problem will be infeasible.

Now, suppose that the target SNR is set such that the problem is feasible. Since
∑R

i=1
an,ipn

bn,i+pn
is a monotonically increasing function,4 the constraint

∑R
i=1

an,ipn

bn,i+pn
≥ γn

must be met with equality at optimum. Thus, the unique solution of

R∑

i=1

an,ipn

bn,i + pn

= γn (5.18)

is also the optimal solution to (5.17).

It is then of interest to find a simple and fast numerical algorithm to solve the R-th

polynomial in (5.18). The monotonicity of
∑R

i=1
an,ipn

bn,i+pn
makes the bisection method

especially suitable to find the solution of (5.18). On the other hand, the structure in

(5.18) also motivates a simple fixed point iteration algorithm to find the optimal p?
n.

By rearranging (5.18), one has the following simple iteration.

p(t+1)
n =

γn∑R
i=1

an,i

bn,i+p
(t)
n

. (5.19)

If (5.18) is feasible, then the above iteration will converge from any initial point

p(0)
n ≥ 0. The convergence analysis of the fixed point iteration is based on the standard

function approach introduced in [50]. Denote fn(p(t)
n ) = γn∑R

i=1

an,i

bn,i+p
(t)
n

, then the fixed

point iteration p(t+1)
n = fn(p(t)

n ) will converge to a unique fixed point p?
n if the function

fn(pn) obeys the following properties [50]:

1. Positivity: fn(pn) > 0 for all pn > 0.

2. Monotonicity: if pn > p′n, then fn(pn) > fn(p′n).

3. Scalability: if α > 1, then αfn(pn) > fn(αpn).

4It is easy to verify that an,ipn

bn,i+pn
, with an,i > 0, bn,i > 0, and pn > 0, is a monotonically increasing

function. Then, the summation
∑R

i=1
an,ipn

bn,i+pn
is also monotonically increasing.
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It is easy to verify that all these three properties are satisfied by the function

fn(pn). Thus, the fixed point iteration (5.19) will surely converge if (5.18) is feasible.

In summary, this section has considered the problem of optimal distributed beam-

forming strategy to minimize the sum relay power with guaranteed QoS at each

destination. It was shown that for a given sum relay power, the distributed beam-

forming can be determined in a closed-form solution. The optimization problem then

can be recast as the power minimization problem at the relays. Also presented was a

simple iterative fixed-point algorithm to determine the required sum power.

5.3 Sum-Power Minimization with Per-Relay Power Con-

straints

In the previous section, sum relay power minimization with guaranteed QoS at

the destinations was considered. No restrictions on the individual power at each relay

were imposed. However, in practical relay communications, each relay is equipped

with its own amplifier and has its own power limit. Under the per relay power

constraints, the relay strategy has to be modified accordingly while meeting the SNR

requirement at each user’s receiving end. This section considers the approach to

uniformly minimize the margin Pi/P
max
i over all the relays, where Pmax

i denotes the

maximum transmitted power of the ith relay. The problem is stated as follows:

minimize
α,w1,...,wN

α (5.20)

subject to SNRn ≥ γn, n = 1, . . . , N

Pi ≤ αPmax
i , i = 1, . . . , R.

The problem is equivalent to

minimize
α,w1,...,wN

α
R∑

i=1

Pmax
i (5.21)

subject to
σ2

Sn
|hHn wn|2

σ2
R‖G1/2

n wn‖2 + σ2
D

≥ γn, n = 1, . . . , N

N∑

n=1

wH
n DnEiwn ≤ αPmax

i , i = 1, . . . , R.
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Note that by multiplying the constant factor
∑R

i=1 Pmax
i into the objective function,

the optimization problem can be interpreted as a sum relay power minimization prob-

lem with per-relay power constraint awareness. This optimization problem is illus-

trated in Figure 5.3, where the objective function and the constraints are highlighted.

S1
S�

D1
D�

max

1

R

i
i

Pα
=
∑minimize max

i iP Pα≤

SNR n nγ≥subject to:

1/2 2

1

|| ||
N

i n i n
n

P
=

=∑ D E wRelay 1Relay 2
Relay R

*
1,1h
*
1,2h

*
,N Rh

*
1,Rh

*
,1Nh

*
,2Nh

Figure 5.3 Sum relay power minimization with per-relay power constraints.

It is also noted that no explicit constraint on variable α is imposed in the opti-

mization problem. Hence, it might happen that α > 1 at optimum, i.e., the power

consumption at one of the relays, say relay-i, exceeds its strict limit Pmax
i . As a

result, it is not possible to find the beamforming vectors that meet both the QoS

constraints and the strict per-relay power constraints. In such a case, an inverse

problem, which tries to maximize the SNR under strict per-relay power constraints,

may be of interest. This inverse problem shall be investigated in Chapter 6.

The approach of minimizing the power consumption margin was first investi-

gated for the multiuser beamforming downlink problem in point-to-point commu-

nications [51]. When applied to relay networks, the idea is to serve all the users,

while maintaining the balance in power consumption at the relays. Alternatively,

one may formulate a problem to minimize the sum relay power with strict individual

per-relay power constraints, i.e., no α is involved. Such a formulation would lead to
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different dual problem and solution, although the analysis would be similar to what

presented here.

Note that the optimization problem stated in (5.21) is not readily convex. How-

ever, as the SNR constraints can be recast as a SOC constraint as in (5.10), the

problem can be transformed into a convex one. The following proposition establishes

the relation between the Lagrangians of the convex and nonconvex forms of (5.21)

and reveals the strong duality property of the optimization problem.

Proposition 3. Strong duality holds for the optimization problem (5.21).

Proof. First, the convex form of (5.21) is

minimize
α,w1,...,wN

α
R∑

i=1

Pmax
n (5.22)

subject to

√√√√σ2
Sn

γn

hHn wn ≥
∥∥∥∥∥∥∥

σRG1/2
n wn

σD

∥∥∥∥∥∥∥
, n = 1, . . . , N

N∑

n=1

wH
n DnEiwn ≤ αPmax

i , i = 1, . . . , R.

Since the reformulated problem is convex, strong duality holds [37]. It is of interest

to find whether the dual gap to the original nonconvex problem is also zero. The

Lagrangian of the convex problem (5.22) is given by

L̃(α, wn,ν,µ) = α
R∑

i=1

Pmax
i −

N∑

n=1

νn




√√√√σ2
Sn

γn

hHn wn −
∥∥∥∥∥∥∥

σRG1/2
n wn

σD

∥∥∥∥∥∥∥




+
R∑

i=1

µi

(
N∑

n=1

wH
n DnEiwn − αPmax

i

)
, (5.23)

where ν = [ν1, . . . , νN ]T , µ = [µ1, . . . , µR]T ; νn’s and µi’s are the Lagrangian mul-

tipliers associated with the SNR and the per-relay power constraints, respectively.

Let

εn =

√√√√σ2
Sn

γn

hHn wn +

∥∥∥∥∥∥∥

σRG1/2
n wn

σD

∥∥∥∥∥∥∥
,
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then,

νn




√√√√σ2
Sn

γn

hHn wn −
∥∥∥∥∥∥∥

σRG1/2
n wn

σD

∥∥∥∥∥∥∥


 =

νn

εn




σ2
Sn

γn

(
hHn wn

)2 −
∥∥∥∥∥∥∥

σRG1/2
n wn

σD

∥∥∥∥∥∥∥

2



=
νn

εn

(
σ2

Sn

γn

(
hHn wn

)2 − σ2
RwH

n Gnwn − σ2
D

)
.

Substitute to the Lagrangian in (5.23), one has

L̃(α, wn, ν, µ) = α
R∑

i=1

Pmax
i −

N∑

n=1

νn

εn

(
σ2

Sn

γn

(
hHn wn

)2 − σ2
RwH

n Gnwn − σ2
D

)

+
R∑

i=1

µi

(
N∑

n=1

wH
n DnEiwn − αPmax

i

)
. (5.24)

Now, consider the Lagrangian of the original nonconvex problem (5.21)

L(α, wn, λ, µ) = α
R∑

i=1

Pmax
i −

N∑

n=1

λn

(
σ2

Sn

γn

|hHn wn|2 − σ2
R‖G1/2

n wn‖2 − σ2
D

)

+
R∑

i=1

µi

(
N∑

n=1

wH
n DnEiwn − αPmax

i

)
, (5.25)

where λ = [λ1, . . . , λn]T , and λn’s are the Lagrangian multipliers associated with the

SNR constraints at the destinations. Clearly, by replacing λn = νn/εn, the Lagrangian

of the convex form is the same as the Lagrangian of the nonconvex form in (5.25).

Thus, strong duality also holds for original nonconvex problem (5.21).

Because of strong duality as stated in Proposition 3, the optimal value of Problem

(5.21) can be found by its dual problem. In the next section, the dual problem of

(5.21) is investigated in detail. The solution of the dual problem will then reveal both

the structure of the original problem’s solution and the algorithm to solve it.

5.3.1 Beamforming Duality

Denote Q = diag(µ1, . . . , µR) and P = diag(Pmax
1 , . . . , Pmax

R ). Rearrange the

Lagrangian L(α, wn,λ,µ) in (5.25), one has

L (α, wn,λ,Q) =
N∑

n=1

λnσ2
D +

N∑

n=1

Ln(wn, λn, Q)− α [tr(QP )− tr(P )] , (5.26)

83



where

Ln(wn, λn, Q) = wH
n

(
DnQ− λnσ

2
Sn

γn

hnhHn + λnσ
2
RGn

)
wn,

which only depends on wn, λn, and Q. By dual decomposition [52], via the La-

grangian, the sum relay power minimization with per-relay power constraints is ef-

fectively decoupled into a summation of N smaller problems.

The dual function of (5.26) is established as

g(Q, λ) = inf
α,w1,...,wN

L
(
α, wn,λ,Q

)

=
N∑

n=1

λnσ
2
D − inf

α

{
α [tr(QP )− tr(P )]

}
+

N∑

n=1

inf
wn
Ln(wn, λn,Q).

It is clear that if DnQ− λnσ2
Sn

γn
hnhHn + λnσ

2
RGn is not a positive semidefinite matrix,

there exists wn to make Ln = wH
n

(
DnQ− λnσ2

Sn

γn
hnh

H
n + λnσ2

RGn

)
wn = −∞. Simi-

larly, if tr(QP )−tr(P ) > 0, it is possible to find α > 0 to make −α[tr(QP )−tr(P )] =

−∞. Thus, the dual problem is stated as

maximize
Q

max
λ

N∑

n=1

λnσ
2
D (5.27)

subject to DnQ + λnσ2
RGn º λnσ2

Sn

γn

hnh
H
n , n = 1, . . . , N

tr(QP ) ≤ tr(P )

Q is diagonal, Q º 0.

Clearly, this problem is divided into a two levels of computation. For the outer

problem, one has

maximize
Q

f(Q) (5.28)

subject to tr(QP ) ≤ tr(P )

Q is diagonal, Q º 0.

where f(Q) = maxλ
∑N

n=1 λnσ
2
D. For the inner problem, one can decompose the

computation of f(Q) into multiple problems as f(Q) =
∑N

n=1 λ?
nσ2

D and λ?
nσ

2
D is
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obtained from

maximize
λn

λnσ
2
D (5.29)

subject to DnQ + λnσ2
RGn º λnσ2

Sn

γn

hnh
H
n .

In the next section, an interpretation via a virtual single-input multiple-output

(SIMO) uplink channel shows that the dual problem (5.27) is equivalent to the fol-

lowing minimax problem:

maximize
Q

min
λ,ŵn

N∑

n=1

λnσ
2
D (5.30)

subject to
λnσ2

Sn
|hHn ŵn|2

ŵH
n DnQŵn + λnσ2

RŵH
n Gnŵn

≥ γn, n = 1, . . . , N

tr(QP ) ≤ tr(P )

Q is diagonal, Q º 0,

where ŵH
n is interpreted as the receive beamforming vector of the virtual uplink

channel for user-n. More precisely, the subproblem in (5.29) is shown to be equivalent

to

minimize
λn,ŵn

λnσ2
D (5.31)

subject to
λnσ

2
Sn
|hHn ŵn|2

ŵH
n DnQŵn + λnσ2

RŵH
n Gnŵn

≥ γn.

Since strong duality holds for the original optimization problem in (5.21), at op-

timum, one has

α?
R∑

i=1

Pmax
i =

N∑

n=1

λ?
nσ

2
D, (5.32)

where λ?
n is obtained from subproblem (5.31) for the virtual uplink channel.

5.3.2 An Interpretation via a Virtual Uplink Channel

In point-to-point multiuser communications, it is widely known that the optimal

beamforming design for the downlink MIMO channel can be found via its equivalent

uplink channel, which is much easier to handle. This property is known as uplink-

downlink duality [51, 53–55]. Inspired by the uplink-downlink duality property of
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the MIMO channel, this section introduces the concept of a virtual uplink channel,

and uses it to solve the optimal distributed beamforming design in the multi-relay

network. Antenna 1Antenna 2,1nS nhσ

Antenna R
,2nS nhσ

,nS n Rhσ

�*

,1nw

�
np �SNR n nγ≥minimize subject to:�2 2

D n R nnpσ σ+D Q G

Gaussian noise�*

,2nw

�*

,n Rw

Figure 5.4 Block diagram of a virtual SIMO uplink channel.

Consider a virtual single-input multiple-output (SIMO) uplink channel as illus-

trated in Figure 5.4. Here a single-antenna transmitter with power p̂n wants to

communicate with an R-antenna receiver. The channel is modeled as σSnhn ∈ C1×R.

The effective additive Gaussian noise at the receiver has the following covariance:

σ2
DDnQ+ p̂nσ2

RGn. One can interpret σ2
DDnQ as the added noise at the receiver and

p̂nσ
2
RĜn as the noise induced by the transmitter, which depends on the transmitted

power p̂n. Now, it is of interest to find the optimal receive beamformer at the receiver

and the minimal transmitted power p̂n at the transmitter in order to obtain a certain

target SNR of the virtual uplink channel’s receiving end.

Let ŵH
n = [ŵ∗

n,1, . . . , ŵ
∗
n,R]T be the receive beamforming vector. The SNR at the

receiver can be expressed as

ŜNRn =
p̂nσ

2
Sn
|hHn ŵn|2

σ2
DŵH

n DnQŵn + p̂nσ2
RŵH

n Gnŵn

. (5.33)

To maximize the above SNR, using the Rayleigh-Ritz theorem (see Appendix C),

the optimal receive beamformer is

ŵn =
(
σ2

DDnQ + p̂nσ2
RGn

)−1
hn. (5.34)
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Given a specific value of the transmit power p̂n, the weight of the optimal receive

beamformer at the ith receive antenna only depends on the channel connected to

itself, and is given by

ŵn,i =
f ∗n,ig

∗
i,n

(σ2
Sn
|fn,i|2 + σ2

R)σ2
Dµn + p̂nσ2

R|gi,n|2 . (5.35)

With the optimal receive beamformer, the constraint on the SNR at the receiver,

ŜNRn ≥ γn, is now equivalent to

p̂nσ2
Sn

γn

|hHn ŵn|2 ≥ ŵH
n

(
σ2

DDnQ + p̂nσ2
RGn

)
ŵn

⇔ p̂nσ2
Sn

γn

hHn
(
σ2

DDnQ + p̂nσ2
RGn

)−1
hn ≥ 1. (5.36)

Under the virtual uplink channel consideration with optimal receive beamformer in

(5.34), the next task is to determine the minimal uplink transmitted power p̂n, given

a target SNR at the receiver. This problem is stated as

minimize
p̂n

p̂n (5.37)

subject to
p̂nσ

2
Sn

γn

hHn
(
σ2

DDnQ + p̂nσ2
RGn

)−1
hn ≥ 1.

Obviously, if the inequality is reversed, the optimization problem can be restated as

a maximization problem as follows:

maximize
p̂n

p̂n (5.38)

subject to
p̂nσ

2
Sn

γn

hHn
(
σ2

DDnQ + p̂nσ2
RGn

)−1
hn ≤ 1.

Apply the result in Lemma 1 of [51], one has

p̂nσ
2
Sn

γn

hHn
(
σ2

DDnQ + p̂nσ2
RGn

)−1
hn ≤ 1

⇔ σ2
DDnQ + p̂nσ2

RGn º p̂nσ2
Sn

γn

hnh
H
n .

Then, the optimization problem (5.38) will be exactly the same as the dual problem

of the distributed beamforming problem in (5.29), if one sets p̂n = λnσ
2
D. Thus, the
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solution of the dual problem in (5.29) given a fixed dual variable Q can be obtained

from the virtual uplink channel problem (5.37). Note that (5.37) is equivalent to

minimize
p̂n

p̂n (5.39)

subject to
R∑

i=1

p̂nan,i

bn,iµi + p̂n

≥ γn.

Thus, the optimal value p̂?
n can be obtained from the simple fixed point iteration, as

presented in Section 5.2. Moreover, with λn = p̂n/σ
2
D, the fixed point iteration

λ(t+1)
n =

γn

σ2
D

∑R
i=1

an,i

bn,iµi+σ2
Dλ

(t)
n

, (5.40)

will surely converge to the optimal value λ?
n, which is the optimal value of Problem

(5.29). Having known the optimal receive beamformer of the virtual uplink channel

ŵn, the optimal distributed beamformer wn for the nth user can be determined by

exploiting the relation between the two beamformers in the next lemma.

Lemma 8. The optimal distributed beamforming vector wn in the multiuser beam-

forming problem is a scaled version of ŵn, i.e., wn =
√

ζnŵn.

Proof. From Karush-Kuhn-Tucker (KKT) condition [37], the gradient of Lagrangian

Ln(Q, λn,wn) vanishes at the optimum of wn, i.e.,

∂Ln(Q, λn,wn)

∂w∗
n

=

(
DnQ− λnσ

2
Sn

γn

hnhHn + λnσ2
RGn

)
wn = 0. (5.41)

Thus,

wn =
(
DnQ + λnσ2

RGn

)−1 λnσ2
Sn

γn

hnh
H
n wn

=
λnσ

2
Dσ2

Sn
hHn wn

γn

ŵn,

which suggests
√

ζn = (λnσ
2
Dσ2

Sn
/γn)hHn wn. However, this expression of ζn still de-

pends on wn. The next step is to determine the value ζn that is independent of wn.

As the SNR constraints in (5.21) is met with equality at optimum, one has

σ2
Sn

γn

|hHn wn|2 = σ2
RwH

n Gnwn + σ2
D.
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Substituting wn =
√

ζnŵn into the above expression yields

ζnσ2
Sn

γn

|hHn ŵn|2 = ζnσ
2
RŵH

n Gnŵn + σ2
D.

Therefore,

ζn =
γnσ2

D

σ2
Sn
|hHn ŵn|2 − γnσ2

RŵH
n Gnŵn

(5.42)

5.3.3 Numerical Algorithm

In the previous section, the dual problem of the optimal distributed beamforming

design with per-relay power constraints (Problem (5.21)) was established. The moti-

vation of presenting the dual problem is that it is generally easier to solve than the

original problem, as well as it reveals the structure of the solution. This section con-

tinues with the dual problem in (5.27) and provides an efficient numerical algorithm

to solve it.

It was shown in Section 5.3.1 that solving the dual problem involves two levels of

computations: the outer maximization problem (5.28) and the inner maximization

problem (5.29). In Section 5.3.2, via the proposal of a virtual uplink channel, the

inner problem was solved by the simple fixed-point iteration algorithm. On the other

hand, the outer maximization of f(Q) can be solved by the subgradient projection

method, as presented next.

Proposition 4. The function f(Q) is concave in Q, and its subgradient is given

by diag
(∑N

n=1 wnwH
n Dn

)
, where wn is the optimal distributed beamforming vector

obtained from Section 5.3.2.

Proof. The proof of this proposition follows the proof of Proposition 3 in [51] for the

point-to-point multiuser downlink beamforming problem. Since f(Q) is the objective

function of the dual problem, it is a concave function by nature [37].

Now look back at the Lagrangian of the distributed beamforming problem in
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(5.25). For a fixed Q, one has

f(Q) = min
w1,...,wn

min
α
L (α, wn,λ,Q)

= min
w1,...,wn

N∑

n=1

wH
n DnQwn (5.43)

subject to
σ2

Sn

γn

|hHn wn|2 ≥ σ2
R‖G1/2

n wn‖2 + σ2
D.

Suppose that Q1 and Q2 are the two diagonal and positive semidefinite ma-

trices. By the definition applied to the first order condition of concave function

f(Q) [37], the diagonal matrix H is the subgradient of f(Q) at Q1 if f(Q2) ≤
f(Q1) + tr [H(Q2 −Q1)]. Denote wn,k as the optimal distributed beamformers for

f(Qk), k = 1, 2. Thus, one has

f(Q2)− f(Q1) =
N∑

n=1

wH
n,2DnQ2wn,2 −

N∑

n=1

wH
n,1DnQ1wn,1

≤
N∑

n=1

wH
n,1DnQ2wn,1 −

N∑

n=1

wH
n,1DnQ1wn,1

= tr

(
diag

(
N∑

n=1

wn,1w
H
n,1Dn

)
(Q2 −Q1)

)
,

where the inequality follows from the fact that wn,2 is optimal for f(Q2), then
∑N

n=1 wH
n,2DnQ2wn,2 ≤ ∑N

n=1 wH
n,1DnQ2wn,1, and the last equality follows because

Dn, Q2, and Q1 are all diagonal.

Therefore, the subgradient of Q is diag
(∑N

n=1 wnw
H
n Dn

)
. In particular, the sub-

gradient of µi at the ith relay is
∑N

n=1 |wn,i|2[Dn]ii.

Having derived the subgradient of f(Q), Q is then updated by applying the

Euclidean projection PSQ
of the subgradient of f(Q) on the constraint set SQ =

{Q : tr(QP ) ≤ tr(P ),Q º 0}, i.e.,5

Q(t+1) = PSQ

{
Q(t) + atdiag

{
N∑

n=1

wnw
H
n Dn

}}
, (5.44)

5Detailed discussion on the Euclidean projection is in Appendix B.
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where at is an appropriate step size. The subgradient projection method is guaranteed

to converge to the global optimum of f(Q) [37]. The proposed algorithm with the

property of distributed implementation is summarized as follows.

1. Initialize Q(t). Set t = 1.

2. Repeat: fix Q(t), then the relays transmit Q(t) to every destination. Each

destination then solves the fixed-point iteration in (5.40) to determine the re-

quired power λnσ2
D for its corresponding virtual uplink channel. The optimal

receive beamformer ŵn and the scaling factor ζn are the determined by the nth

destination.

3. The nth destination broadcasts λn and ζn back to relays. The ith relay cal-

culates the beamforming coefficients w1i, w2i, . . . , wNi with local information

pertaining to the relay as

wn,i =

√
ζnf

∗
n,ig

∗
i,n

σ2
D

[
(σ2

Sn
|fn,i|2 + σ2

R)µn + λnσ2
R|gi,n|2

] . (5.45)

4. The relays cooperate with each other to update Q(t) as in (5.44).

5. Set t = t + 1 and return to Step 2 until convergence.

5.4 Simulation Results

This section presents the numerical results on the power consumptions at the

relays of a multiuser relay-assisted network with and without per-relay power con-

straints. Also presented are the convergence plots of the proposed iterative algorithms.

The network being considered is equipped with 4 relays. The number of users to be

served by the network is 3 users. The source power is set at 10 for all the users’

sources in all the simulations. The noise variances σ2
R and σ2

D are set to unity. Flat

Rayleigh fading is assumed in all the channels, where each S → R and R → D channel

coefficients are assumed to be i.i.d. CN (0, 1). When the per-relay power constraints
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Figure 5.5 Power consumptions at the relays over 50 channel realizations with dif-

ferent power constraints: with per-relay power constraints (solid lines),

without per-relay power constraints (“dash-dot” lines).

are imposed, the maximum per-relay power is set at 10. The target SNR γn is set at

5 (7 dB) for all the destinations.

Figure 5.5 illustrates the power consumptions at the relays for 50 different chan-

nel realizations. At each channel realization, the sum relay powers, the highest relay

power level of the 4 relays, and the difference between the highest and lowest re-

lay power levels of the 4 relays are plotted and compared between the two relaying

strategies: with and without per-relay power constraints. As can be seen from the
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figure, imposing the per-relay power constraints does increase the sum relay power,

compared with the optimal strategy that does not impose the constraints. However,

the main advantage of applying the per-relay power constraints is that it balances the

power consumption at the relays and does not overuse any of them. Consequently, the

highest relay power level of the 4 relays with the per-relay power constraints is always

smaller than that without the constraints. In addition, all the relays transmit at the

same power level almost all the time when the constraints are applied; whereas the

difference between the highest and lowest power levels are quite significant without

the constraints.
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Figure 5.6 Convergence of the iterative fixed point algorithm (5.19) with different

starting points and the achievable SNR at user-1’s destination after

each iteration.

The convergence of the proposed algorithms is illustrated in Figures 5.6 and 5.7.

Figure 5.6 plots the evolution of the sum relay power allocated for user-1, p1, and the

corresponding SNR1 after each iteration by the iterative fixed point algorithm (5.19).

It can be seen that the algorithm converges very quickly after only a few iterations to

the optimal p?
1 from various arbitrary starting points, while the corresponding SNR

also converges to its target value γ1 = 5. Figure 5.7 displays the convergence of
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Figure 5.7 Convergence of the proposed algorithm in finding the optimal dis-

tributed beamformers with per-relay power constraints.

the proposed iterative algorithm in Section 5.3.3 in finding the optimal distributed

beamformers w?
n with per-relay power constraints. The step-size at = 1/t is used for

the subgradient update of the iterative algorithm. The summation
∑N

n=1 ‖wn−w?
n‖,

which is the norm residue of the beamformers, plotted after each iteration clearly

shows the convergence of the proposed algorithm. Numerous simulations also show

that the proposed algorithm converges in a small fraction of the running time required

by the cvx package to converge.

5.5 Summary and Future Works

This chapter has studied the optimal distributed beamforming design to mini-

mize the total relay power with guaranteed QoS in a wireless multiuser multi-relay

network. It was assumed that each user (Sn−Dn) communicates in orthogonal chan-

nels. Considered were the optimization problems with and without per-relay power

constraints. While it was shown that these two optimization problems are convex

SOCP and can be solved effectively by any conic software package, the chapter also
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explored simple and fast iterative algorithms to solve the problems. Feasibility of the

two optimization problems were also thoroughly studied in the chapter.

It should be emphasized that this chapter studies the relay network where S −D

pairs operate over orthogonal channels, i.e., no inter-user interference is incurred.

When the orthogonality assumption is relaxed, several new problems in optimal dis-

tributed beamforming designs to minimize the sum relay power with guaranteed QoS

may arise. In particular, there are 3 other scenarios that might be considered: (i)

nonorthogonal S → R and nonorthogonal R → D channels, (ii) orthogonal S → R

and nonorthogonal R → D channels, and (iii) nonorthogonal S → R and orthog-

onal R → D channels. Unlike the scenario considered in this chapter (orthogonal

S → R and R → D channels), the received signal at each destination is subject to

interference from other users in the 3 mentioned scenarios. The QoS design criterion

is now defined as the target signal-to-interference-plus-noise ratios (SINRs) at the

destinations.

With the network in scenario (i), the optimization problem of the optimal dis-

tributed beamforming designs can be formulated as a nonconvex quadratically con-

strained quadratic program (QCQP). Through relaxation techniques, including semi-

definite programming (SDP) and duality relaxations, the problem can be efficiently

solved. We report this optimization problem and its solution in a conference pa-

per [44].

With the networks in scenarios (ii) and (iii), although no works have been carried

out to date, initial derivations show that the corresponding optimization problems

associated with the two scenarios can be formulated as convex SOCP. Hence, these

problems might be effectively solved by convex techniques. The interpretation via

virtual uplink channels may also be applicable in devising simple iterative algorithms

to solve these two problems.
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6. SNR Maximization and Distributed

Beamforming in a Multiuser Multi-relay

Network

In Chapter 5, the optimal designs of distributed beamforming in a multiuser multi-

relay network with guaranteed QoS were studied. While guaranteed QoS is important

to maintain the connectivity for the users, it is also critical to perform a strict power

control at the relays due to the following reasons. First, the relays, which can be any

nodes in the network, are often operating on a small power budget. Power conserva-

tion at the relays helps to extend the lifetime of the relays and the networks as well.

Second, if one user’s channel is in deep fades, i.e., the channel strength is low, the

relays may consume an excessive amount of power to maintain its connectivity, and

thus may induce significant interference to adjacent networks. As a result, the dis-

tributed beamforming strategy needs to adjust accordingly to the constrained power

consumption of the relays. This chapter studies the optimal distributed beamform-

ing designs to jointly maximize the SNR margin at the destinations subject to two

different types of power constraints: sum relay power constraint and per-relay power

constraints. Although the two problems can be effectively solved by the bisection

method via SOCP feasibility problem, this chapter also proposes two simple and fast

converging iterative algorithms to directly solve the problems.

0The contributions in this chapter are also presented in [56,57].
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6.1 Sum-Power Constraints

This section considers the distributed beamforming strategy to jointly maximize

the minimal SNR margin subject to a sum relay power constraint. Under such a

constraint, the relays are allowed to share a common power pool, although they do

not necessarily share their received signals from the sources. The problem is stated

as

maximize
w1,...,wN

min
n

SNRn

γn

(6.1)

subject to Prelay ≤ Pmax
relay.

Here, the sum relay power constraint is a firm system restriction. Even so, the

problem is always feasible as it is always possible to scale wn down to meet the sum

relay power constraint. The parameter γn is now interpreted as the weight for user-

n’s SNR. Recast the problem by introducing the auxiliary variable τ , denoted as the

SNR margin, as

maximize
τ,w1,...,wN

τ (6.2)

subject to
σ2

Sn
|hHn wn|2

σ2
R‖G1/2

n wn‖2 + σ2
D

≥ τγn, n = 1, . . . , N

N∑

n=1

wH
n Dnwn ≤ Pmax

relay.

Under this reformulation, τ is also a variable, not a parameter. The SNR con-

straint is no longer convex [13]. As a result, Problem (6.2) is not a convex problem.

However, with a fixed value of τ , the problem can be formulated as a convex feasibility

problem and is readily solved by the bisection method [37], as presented in the next

section.
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6.1.1 Bisection Method

Define τ ? as the maximum attained value of τ . For a specific target value of τ ,

the following SOCP feasibility problem is considered:

find w1, . . . , wN (6.3)

subject to

√√√√σ2
Sn

τγn

hHn wn ≥
∥∥∥∥∥∥∥

σRG1/2
n wn

σD

∥∥∥∥∥∥∥
, n = 1, . . . , N

N∑

n=1

wH
n Dnwn ≤ Pmax

relay.

If the problem is feasible, which means that τ < τ ?, then it is possible to increase

the target margin τ . Otherwise, if τ > τ ?, the target margin should be reduced. The

bisection method [37] is summarized as follows:

1. Initialize u and l as the upper and lower bounds of τ .

2. Repeat: τ = (u + l)/2. Solve the feasibility problem (6.3).

3. If (6.3) is feasible, then set l = τ , else, set u = τ .

4. Return to Step 2 until u− l < ε, where ε is a small positive value.

6.1.2 Convex Solution

In the previous section, an SOCP approach using bisection method is presented

to solve the joint SNR margin maximization problem. However, such an approach is

computationally expensive and unappealing, since it requires many iterations in the

bisection method as well as a standard conic solution package. In this section, the

result of Lemma 7 in Chapter 5 is applied to solve the problem in a convex fashion.

In particular, problem (6.2) is recast with τ, p1, . . . , pN as the variables, i.e.,

S(Pmax
relay) =





maximize
p1,...,pN ,τ

τ

subject to τγn −∑R
i=1

an,ipn

bn,i+pn
≤ 0, n = 1, . . . , N

∑N
n=1 pn ≤ Pmax

relay,

(6.4)
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where S(Pmax
relay) denotes the maximum achievable SNR margin τ for a given sum relay

power Pmax
relay, and also denotes the optimization problem (6.4) itself. The problem in

(6.4) is a strictly convex optimization problem due to the convexity of all the con-

straints and the objective function. It is then can be solved by any standard convex

optimization algorithm. On the other hand, the connection between the power mini-

mization problem Pn(γn) in (5.17) and the joint SNR margin maximization problem

S(Pmax
relay) in (6.4) can be exploited to solve the joint SNR margin maximization prob-

lem. In fact, the two problems are inverse of each other. Mathematically, this relation

is given in the following lemma.

Lemma 9. The joint SNR margin maximization problem (6.4) and the power mini-

mization problem in (5.17) are inverse problems:

τ = S
(

N∑

n=1

Pn(τγn)

)
. (6.5)

Pmax
relay =

N∑

n=1

Pn

(
γnS(Pmax

relay)
)
. (6.6)

Proof. This lemma is proved by contradiction and by the monotonicity of the function
∑R

i=1
an,ipn

bn,i+pn
. Begin with (6.5), suppose that p?

n is the optimal value and also the

optimal argument of Pn(τγn), then
∑R

i=1
an,ip

?
n

bn,i+p?
n

= τγn. Also, let τ̃ ? and p̃?
n, n =

1, . . . , N be the optimal value and arguments of S
(∑N

n=1 p?
n

)
. If τ̃ ? < τ , there is a

contradiction that p?
n’s are also feasible solution for S

(∑N
n=1 p?

n

)
, and yet provide a

higher objective value τ . On the other hand, if τ̃ ? > τ , there is a contradiction that

p̃?
n > p?

n to make τ̃ ?γn > τγn, then the constraint
∑N

n=1 p̃?
n ≤

∑N
n=1 p?

n in S
(∑N

n=1 p?
n

)

cannot be true. The proof for (6.6) follows the same line.

Using the results in Lemma 9, problem S(Pmax
relay) in (6.4) can be solved by iter-

atively solving N problems Pn(τγn) for different values of τ until
∑N

n=1Pn(τγn) =

Pmax
relay. Then the optimal arguments p?

n of Pn(τ ?γn) are also optimal to S(Pmax
relay). This

process is summarized by the following bisection method:

1. Initialize u and l as the upper and lower bounds of τ .
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2. Repeat: τ = (u + l)/2. Solve N problems Pn(τγn) using the fixed point

iteration (5.19), and take Prelay =
∑N

n=1Pn(τγn).

3. If Prelay < Pmax
relay, then set l = τ , else, set u = τ .

4. Return to Step 2 until Prelay = Pmax
relay.

It should be pointed out that this algorithm still requires multiple iterations in

the bisection methods, and multiple fixed point iterations in Step 2 to solve Pn(τγn)

for each value of τ . In the next section, a modified fixed point iteration is proposed

to directly find the optimal arguments p?
n’s of S(Pmax

relay).

6.1.3 Modified Fixed Point Iteration for Finding p?
n

As presented in the previous section, the power minimization problem and the joint

SNR margin maximization problem are inverse problems. Thus, the optimal solution

p?
n of the joint SNR margin maximization problem is also the optimal solution to the

power minimization problem Pn(τ ?γn). Therefore, p?
n must also satisfy the fixed point

iteration (5.19) with γn replaced by τ ?γn. Unfortunately, τ ? needs to be determined

as well. However, the condition on optimality
∑N

n=1 p?
n = Pmax

relay allows a modified fixed

point iteration to overcome this difficulty, as follows. Let

p̃n =
γn∑R

i=1
an,i

bn,i+p
(t)
n

. (6.7)

Then normalize the result such that the sum relay power is equal to the maximum

allowable power:

p(t+1)
n =

Pmax
relay∑N
l=1 p̃l

. (6.8)

The iteration gets back to step (6.7) until convergence. Numerous simulations show

a rapid convergence rate of the modified fixed point iteration.

6.2 Per-Relay Power Constraints

With the same arguments as in Section 5.3, it may be desirable to have the power

constraint at each relay. In this section, the joint SNR margin maximization problem
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is investigated with a strict constraint on transmission power at each relay. This

problem is stated as

maximize
w1,...,wN

min
n

SNRn

γn

(6.9)

subject to Pi ≤ Pmax
i , i = 1, . . . , R.

By introducing the auxiliary variable τ , this problem is restated as

maximize
τ,w1,...,wN

τ (6.10)

subject to
σ2

Sn
|hHn wn|2

σ2
R‖G1/2

n wn‖2 + σ2
D

≥ τγn, n = 1, . . . , N

N∑

n=1

wH
n DnEiwn ≤ Pmax

i , i = 1, . . . , R.

6.2.1 Bisection Method

Like the optimization problem (6.2), problem (6.9) is not convex. However, with

a fixed value of τ , the problem can be formulated as a convex feasibility problem.

Thus, this problem can be solved by bisection method [37]. Define τ ? as the maximum

attained value of τ . For a specific value of τ , the following convex SOCP feasibility

problem [37] is considered:

find w1, . . . , wN (6.11)

subject to

√√√√σ2
Sn

τγn

hHn wn ≥
∥∥∥∥∥∥∥

σRG1/2
n wn

σD

∥∥∥∥∥∥∥
, n = 1, . . . , N

N∑

n=1

wH
n DnEiwn ≤ Pmax

i , i = 1, . . . , R.

If the problem is feasible, then τ < τ ?. Otherwise, τ > τ ?. The bisection method is

the same as the one in Section 6.1.1.

It should be pointed out that instead of solving the feasibility problem in (6.11),

one can solve the total power minimization problem under per-relay power constraints
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stated in Chapter 5:

minimize
α,w1,...,wN

α
R∑

i=1

Pmax
i (6.12)

subject to

√√√√σ2
Sn

τγn

hHn wn ≥
∥∥∥∥∥∥∥

σRG1/2
n wn

σD

∥∥∥∥∥∥∥
, n = 1, . . . , N

N∑

n=1

wH
n DnEiwn ≤ αPmax

i , i = 1, . . . , R.

The resultant optimal α? could be used to determine the feasibility of the dis-

tributed beamforming problem with the target SNR margin τ . More specifically, if

the optimal α? > 1, it means that at least one of the per-relay power constraints is

violated, i.e., it is infeasible to meet the SNR constraints without compromising the

per-relay power constraints. Thus, the target margin τ needs to be adjusted to a

smaller value. Conversely, if α? < 1, one can scale up the beamforming vector wn to

improve the target SNR margin τ without violating the per-relay power constraints.

This suggests that at the optimal SNR margin target τ ?, α? = 1. Thus, the afore-

mentioned bisection method can be modified to solve Problem (6.12) until α? = 1,

instead of the feasibility problem in (6.11). The new method is equivalent to the

bisection method proposed in Section 6.1.2, where one attempts to find the solution

that makes Prelay = Pmax
relay.

6.2.2 An Iterative Algorithm for Finding w?
n

It was shown in the previous section that the joint SNR margin maximization

problem with per-relay power constraints can be solved by the bisection method.

At each target SNR margin τ , one can solve either the SOCP feasibility problem

(6.11) or the power minimization problem (6.12). Obviously, this method is very

computationally expensive. In this section, by adapting the algorithm outlined in

Section 5.3.3, a new iterative algorithm is proposed to directly solve the joint SNR

margin maximization problem (6.9).

It should be emphasized that unlike the algorithm in Section 5.3.3 in finding the

optimal beamforming design with a fixed target SNR at each destination, the SNR
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at the nth destination τγn is now a variable. More specifically, τ is an optimiza-

tion variable, not a parameter, and has to be determined as well. At first, revisit

the optimization problem (6.12). From Proposition 3, strong duality holds for the

optimization problem (6.12), i.e.,

α?
R∑

i=1

Pmax
i =

N∑

n=1

λ?
nσ

2
D. (6.13)

Furthermore, the bisection method in Section 6.2.1 states that at the optimal value

τ ?, α? = 1, which also means that
∑N

n=1 λ?
nσ

2
D =

∑R
i=1 Pmax

i at optimum. This can be

done by adjusting the fixed point iteration in step 2 of the algorithm in Section 5.3.3.

In the algorithm presented here to jointly maximize the SNR margin in distributed

beamforming with per-relay power constraints, the modified fixed point iteration is

taken at Step 2:

1. Initialize Q(t). Set t = 1.

2. Repeat: fix Q(t), solve the fixed point λn by iterative function

λ̃n =
γn

σ2
D

∑R
i=1

an,i

bn,iµi+σ2
Dλn

, (6.14)

then normalize the result

λn =
λ̃n

∑R
i=1 Pmax

i

σ2
D

∑N
l=1 λ̃l

(6.15)

so that
∑N

n=1 λnσ
2
D =

∑R
i=1 Pmax

i , then return to (6.14) until convergence.

3. Find the optimal receive beamformers of the virtual channels as

ŵn =
(
σ2

DDnQ
(t) + λnσ2

Dσ2
RGn

)−1
hn. (6.16)

4. Determine the achievable SNR of the virtual uplink channel for each user:

γ̃n =
λnσ2

Sn
|ŵH

n hn|2
ŵH

n DnQ(t)ŵn + λnσ2
RŵH

n Gnŵn

. (6.17)

5. Update the downlink beamformers wn =
√

ζnŵn, where

ζn =
γ̃nσ2

D

σ2
Sn
|hHn ŵn|2 − γ̃nσ2

RŵH
n Gnŵn

. (6.18)
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6. Update Q(t) using subgradient projection method with step size at:

Q(t+1) = PSQ

{
Q(t) + atdiag

(
N∑

n=1

wnw
H
n Dn

)}
. (6.19)

7. Set t ← t + 1 and return to step 2 until convergence.

The convergence of the algorithm can be shown by following the same analysis

as in Chapter 5. Numerous simulations with random channel realizations show a

much faster convergence time of the proposed algorithm as compared to the bisection

methods in Section 6.2.1.

6.3 Simulation Results

This section presents the simulation results on the achievable SNR at the destina-

tions of a multiuser relay-assisted network under one of the two relay power assump-

tions: sum relay power constraint or per-relay power constraints. Also presented are

the convergence plots of the modified iterative fixed point algorithm in Section 6.1.3

and the iterative algorithm in Section 6.2.2. The same network configuration as in

Chapter 5 is assumed. A sum relay power of 40 is assumed in the network with the

sum relay power constraint. Meanwhile, each relay’s transmitted power is constrained

at 10 with the per-relay power constraints.

Figure 6.1 illustrates the achievable SNR margin at the destination, i.e.,

minn SNRn/γn for 50 different channel realizations. At each channel realization, low-

est SNR margin τ ’s, the highest relay power levels of the 4 relays, and the difference

between the highest and lowest relay power levels of the 4 relays are plotted and com-

pared between two different constraints: sum relay power constraint and per-relay

power constraints. As can be seen from the figure, imposing the per-relay power con-

straints does not decrease achievable SNR margin much in most of the simulations,

compared with the optimal strategy that imposes the sum relay power constraint.

However, the benefit of imposing the per-relay power constraints is very clear in

terms of power consumption at each relay. While the highest transmitted power at
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Figure 6.1 The achievable SNR margin τ and the power consumptions at the re-

lays over 50 channel realizations with different power constraints: with

per-relay power constraints (solid lines), and without per-relay power

constraints (“dash-dot” lines).

each relay is strictly under or equal to 10 with the per-relay power constraints, it may

reach to 25 with the sum power constraint. In addition, all the relays transmit at

the same power level at 10 almost all the time with the per-relay power constraints;

whereas the differences between the highest and lowest power levels between the relays

are significant, as much as 20, with the sum relay power constraint.

Figures 6.2 illustrates the convergence of the modified fixed point algorithm in
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Figure 6.2 Convergence of the relay power for each user and the corresponding

achievable SNR at each user’s destination by the modified iterative

fixed point algorithm.
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tributed beamformers with per-relay power constraints to jointly max-
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Section 6.1.3. Plotted are the evolution of the allocated relay power pn and the

corresponding SNRn, n = 1, 2, 3 for the 3 users after each iteration. It can be seen

that the algorithm converges very quickly after only a few iterations, as the allocated

relay power for each user converges to its optimal value. The corresponding SNR also

converges to the same optimal value, as all users’ SNRs are set at the same weight.

Finally, Figure 6.3 displays the convergence of the proposed iterative algorithm

in Section 6.2.2 in finding the optimal distributed beamformers w?
n with per-relay

power constraints to maximize the SNR margin. The summation
∑N

n=1 ‖wn − w?
n‖

plotted after each iteration clearly shows the convergence of the proposed algorithm.

Numerous simulations also show that the proposed algorithm converges in a small

fraction of the time required by the bisection method.

6.4 Summary and Future Works

This chapter was concerned with the inverse problems to the sum relay power

minimization problems in Chapter 5. With the constraints on either the sum relay

power or the per-relay power, optimal distributed beamforming designs were studied

to jointly maximize the SNR margin at the destinations. It was shown in this chapter

that the two optimization problems can be solved effectively by the bisection methods

via SOCP feasibility problems. In addition, the chapter also proposed two simple

and fast iterative algorithms to directly solve the two problems without the need of

a standard conic solution package.

It should be pointed out that the works presented in chapter may also be regarded

as per-user rate-balancing maximization problems. More specifically, should SNRn

be the SNR at user-n’s destination, the achievable rate for the nth user is given by

Rn = log2(1 + SNRn). If the weights γn are set at the same value, the joint SNR

margin maximization presented here tries to maintain the same transmission rate

of each user. This strategy is also referred to as resource allocation with fairness.

However, maintaining fairness in multiuser network is not always a good approach

as it may limit the sum-rate of the network. As an example, when the channels of
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one or more users are in deep fades, these users may take the majority of the relay

power, and hence reduce the transmission rate of other users. One other consideration

for resource allocation in multiuser networks is the sum-rate maximization problem.

In particular, in a multiuser multi-relay network, one tries to design the optimal

distributed beamformers at the relays to maximize
∑N

n=1Rn subject to a sum relay

power constraint or per-relay power constraints.

With a sum power constraint imposed, by applying the result in Lemma 7, the

sum-rate maximization problem can be reformulated as a convex problem with pn’s

as the variables. The optimization process to find the maximum sum-rate is then

standard, and has been reported in a conference paper [57]. In addition, [57] also

proposes a distributed algorithm to solve the problem.

With per-relay power constraints imposed, the sum-rate maximization problem is

no longer a convex problem, and hence complicates the optimization process of solv-

ing the problem. Yet, no optimal solution to the problem has been reported to date.

However, it is believed that via the interpretation of virtual uplink channels, it is pos-

sible to transform the sum-rate maximization problem to the sum-rate maximization

of the virtual channels, which is solvable.

As mentioned in Chapter 5, this thesis only considers the networks with orthogonal

S → R and orthogonal S → D channels. With the other 3 network scenarios, both

the sum-rate maximization and rate-balancing optimization problems are still open.
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7. Concluding Remarks

This thesis studied optimal designs in wireless multi-relay networks which take

advantages of user cooperation. The thesis is divided into two main parts: “Dis-

tributed space-time coding” and “Distributed beamforming”. These two parts are

concerned with two main approaches in cooperative communications over multi-relay

networks. While the first approach relies on space-time coding to take advantages of

cooperative diversity without the need of CSI, the second approach requires full CSI

at the relays to beam the retransmitted signals to the destinations.

Part I of the thesis addressed numerous aspects of distributed space-time coding

(DSTC) including distributed code design, optimal power allocation (PA), channel

estimation, and performance analysis of mismatched decoding. Regarding the code

design, the thesis proposed a new fully-diverse distributed code, called distributed

unitary space-time modulation (DUSTM). Not only does the proposed code allow

noncoherent reception at the destination, it is also capable of obtaining the maximum

diversity order provided by the relay network. In addition, it was unfolded in this part

that the knowledge of R → D channel has a little or no effect on the code performance.

With regard to PA, the thesis showed that maximizing the average effective SNR at

the destination does not guarantee the best performance of DSTC. By appropriately

of balancing the fading statistics of each S → R → D link, a novel and simple

PA scheme was proposed in a closed-form solution. The proposed PA scheme was

shown to significantly outperform other suboptimal PA schemes in coherent, partially

coherent, and noncoherent DSTC systems. Finally, from the perspectives of channel

estimation and performance analysis of mismatched decoding, the thesis presented the
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optimal PA scheme to minimize the mean-square error (MSE) in channel estimation

during the training phase. The impact of imperfect channel estimation on the error

performance of DSTC was also analyzed, where it was proved that the mismatched

decoding of DSTC is able to achieve the same diversity order as the coherent decoding

of DSTC.

Part II of the thesis considered a multiuser multi-relay network employing dis-

tributed beamforming. With different design criteria, this part attempted to find the

optimal distributed beamforming designs at the relays. Two distributed beamforming

problems were examined, including (i) minimizing the total relay power subject to

guaranteed QoS in terms of SNR at the destinations, and (ii) jointly maximizing the

SNR margin at the destinations subject to power constraints at the relays. By means

of convex optimization techniques, it was shown in this part that these problems can

be formulated and solved via second-order conic programming (SOCP). Thus, opti-

mal solutions to the two problems can be obtained by any conic solution package. In

addition, this part also proposed simple and fast iterative algorithms to directly solve

the two problems. As the proposed algorithms work without the need of external

software package, they can be easily implemented in real-time communications.
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A. Space-Time Coding

Exploiting spatial diversity by implementing multiple antennas in transmission

and reception can significantly improve the reliability of wireless communications. To

take advantage of spatial diversity with multiple transmit antennas, space-time (ST)

coding is required. A key characteristic that makes ST coding interesting is its capa-

bility of obtaining the full diversity order of the system at a high spectral efficiency

without the need of channel state information (CSI) at the transmitter. In addition,

as being shown in the first part of this thesis, ST coding can also be implemented in

a distributed fashion to take advantage of cooperative diversity inherent in the relay

network without the need of CSI at the relays.

The aim of this appendix is to describe the basic concepts of ST coding in tradi-

tional MIMO communications. Two examples of ST codes, one for coherent systems,

and one for noncoherent systems are presented and discussed in detail. For simplicity

of presentation, only systems equipped with one receive antenna are considered.Space-time encoder Space-time decoderM1s

X
1h

Mh

h
y �s

Figure A.1 Block diagram of a space-time coding system.

Figure A.1 illustrates an example of a ST coding system with M transmit antennas

and 1 receive antenna. At the encoder (transmitter), an information symbol sequence
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s is mapped into a ST codeword X of size T ×M . Here, the encoding is performed in

space (across M antennas) and time (across T time slots). Suppose that the channel

coefficient vector h = [h1, . . . , hM ]T remains constant over the transmission of one ST

codeword. The received signal is given by

y =
√

ρ/MXh + z, (A.1)

where the AWGN vector z at the receiver contains i.i.d. CN (0, 1) random variables.

The channel coefficient in h is also i.i.d. CN (0, 1) random variables. The normal-

ization in (A.1) is such that ρ is the average SNR at the receiver, regardless of the

number of transmit antennas.

A.1 Coherent Space-Time Coding

When the CSI is fully known at the receiver, coherent decoding of the ST code

is possible. Let Xk be the transmitted ST codeword. Conditioned on Xk and h, y

is Gaussian distributed with mean
√

ρ/MXkh and covariance matrix IT . Thus, the

received signal vector y has the following probability density function (pdf)

p(y|Xk,h) =
exp

(
−

∥∥∥y −
√

ρ/MXkh
∥∥∥
2
)

(πN0)T
. (A.2)

In order to decode the original codeword with a minimum error probability, the

coherent maximum likelihood (ML) decoder performs

X̂ = arg max
Xk

p(y|Xk,h) = arg min
Xk

∥∥∥∥y −
√

ρ/MXkh

∥∥∥∥
2

. (A.3)

From the ML decoding rule of coherent ST, the probability of decoding the re-

ceived signal as the codeword X l, conditioned on the channel vector h can be calcu-

lated as

P(Xk → X l|h) = P
(∥∥∥∥y −

√
ρ/MXk

∥∥∥∥
2

≥
∥∥∥∥y −

√
ρ/MX lh

∥∥∥∥
2
)

= P
(
(ρ/M)‖∆h‖2 + 2

√
ρ/MRe{zH∆h} ≤ 0

)

= Q




√
ρ‖∆h‖2

2M


 ,
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where ∆ = Xk − X l. To compute the (unconditional) pairwise error probability

P(Xk → X l), P(Xk → X l|h) needs to be averaged over the distribution of h:

P(Xk → X l) = E
h


Q




√
ρ hH∆∆Hh

2M





 . (A.4)

Since the matrix ∆∆H is Hermitian, it can be unitarily diagonalized as: ∆∆H =

UΛUH, where U is unitary and Λ = diag(λ2
1, . . . , λ

2
M). Here, λi are the singular

values of the codeword difference matrix ∆. Thus, the PEP in (A.4) is equivalent to

P(Xk → X l) = Ẽ
h


Q




√√√√M
∑M

i=1 |h̃i|2λ2
i

2ρ





 , (A.5)

where h̃l = Uh. Since hi are i.i.d. CN (0, 1) random variables and U is unitary, h̃

has the same distribution as h. Thus, the PEP can be upper-bounded as

P(Xk → X l) < Ẽ
h

[
exp

(
−ρ

∑M
i=1 |h̃i|2λ2

i

4M

)]
=

M∏

i=1

1

1 + (ρ/4M)λ2
i

, (A.6)

where the inequality follows from Q(x) < 1
2
exp

(
−x2

2

)
, and the equality comes from

taking the expectation over the independent exponential random variables |h̃i|2. Since

ρ is the average SNR at the receiver, the PEP expression in (A.6) reveals the following

design criteria for coherent ST codes [4]:

• Rank criterion: If (Xk−X l)(Xk−X l)
H is full rank, for all k 6= l, the maximum

diversity order of the ST code is guaranteed. This is because all the λ2
i are

strictly positive. Thus, the PEP in (A.6) decays as ρ−M , which indicates that

the maximum diversity order of M is achieved.

• Determinant criterion: If the rank criterion is met, then at high SNR

P(Xk → X l) <
4MMM

ρM
∏M

i=1 λ2
i

=
4MMM

ρMdet [(Xk −X l)(Xk −X l)H]
,

which indicates that the coding gain is determined by the minimum of the

determinant, det
[
(Xk −X l)(Xk −X l)

H
]
.
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Therefore, a good ST design must guarantee that every codeword difference matrix

Xk−X l is full rank, and the minimum of the determinant of (Xk−X l)(Xk−X l)
H

is maximized for all k 6= l.

We now consider the simplest, yet the most elegant ST block code design. It is

the Alamouti code designed for 2 transmit antennas [3]. The Alamouti code possesses

two important properties, namely full diversity order and symbol-wise ML decoding.

Given the information symbol s = [s1, s2]
T , the Alamouti space-time codeword is

X =




s1 −s∗2

s2 s∗1


 ,

where the columns of X correspond to the transmit antennas, while the rows of

X correspond to the time slots. Figure A.2 pictorially describe the encoding and

transmission of an Alamouti codeword.

*
1 2

*
2 1

X =
 −  s s

s s

1s

*
2−s

1y
2s

*
1s

2y

Time slot 1 Time slot 2 space
time

Figure A.2 The encoding and transmission of an Alamouti codeword.

Let X ′ =




s′1 −(s′2)
∗

s′2 (s′1)
∗


 be another Alamouti codeword that is different from X.

Then the determinant of the codeword difference matrix is

det
[
(X −X ′)(X −X ′)H

]
= det







s1 − s′1 −s∗2 + (s′2)
∗

s2 − s′2 s∗1 − (s′1)
∗







s1 − s′1 −s∗2 + (s′2)
∗

s2 − s′2 s∗1 − (s′1)
∗




H


=
(
|s1 − s′1|2 + |s2 − s′2|2

)2
.

Obviously, det
[
(X −X ′)(X −X ′)H

]
6= 0, when (s1, s2) 6= (s′1, s

′
2), i.e., X 6= X ′.

This clearly shows that the Alamouti code is fully-diverse.
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The decoding of the Alamouti code can be done as follows. The system model

(A.1) can be rewritten as:




y1

y2




︸ ︷︷ ︸
y

=

√
ρ

2




s1 −s∗2

s2 s∗1




︸ ︷︷ ︸
X




h1

h2




︸ ︷︷ ︸
h

+




z1

z2




︸ ︷︷ ︸
z

, (A.7)

which is equivalent to

y1 =
√

ρ/2 (h1s1 − h2s
∗
2) + z1

y2 =
√

ρ/2 (h1s2 + h2s
∗
1) + z2.

In order to decode s1, and s2, perform the following:

h∗1y1 + h2y
∗
2 =

√
ρ/2(|h1|2 + |h2|2)s1 + h∗1z1 + h2z

∗
2

−h∗2y1 + h1y
∗
2 =

√
ρ/2(|h1|2 + |h2|2)s2 − h∗2z1 + h1z

∗
2

Note that the above implementations are possible since h1 and h2 are assumed to be

known at the receiver (coherent system). The above representations show that the

decoding of the two information symbol s1 and s2 can be done separately, i.e., with

low complexity:

ŝ1 = arg min
s1

∣∣∣∣h∗1y1 + h2y
∗
2 −

√
ρ/2(|h1|2 + |h2|2)s1

∣∣∣∣
2

,

ŝ2 = arg min
s2

∣∣∣∣−h∗2y1 + h1y
∗
2 −

√
ρ/2(|h1|2 + |h2|2)s2

∣∣∣∣
2

.

Furthermore, based on the effective channel gain magnitude of

√
ρ/2(|h1|2+|h2|2)√
var[h∗1z1+h2z∗2 ]

=

√
ρ/2

√
|h1|2 + |h2|2, one concludes that the diversity order is 2, i.e., a full diversity

order of the 2 transmit and 1 receive antenna system.

A.2 Noncoherent Space-Time Coding

When the CSI is not available at the receiver, the ML coherent decoding of the ST

code is no longer possible. Let Xk be the transmitted codeword. As h is unknown,

the received signal vector y is Gaussian distributed with zero mean and covariance
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matrix: Ω = (ρ/M)XXH + IT . Thus, the received signal vector y has the following

conditional pdf:

p(y|Xk) =
exp(−yHΩ−1y)

πT det(Ω)
.

To facilitate noncoherent decoding, unitary space-time constellations are com-

monly used. Suppose that there is a constellation of L unitary matrices Φ1, . . . ,ΦL

(each of size T × M), such that ΦH
k Φk = IM ,∀k. From this pool of unitary ma-

trices, the transmitted signal matrix is formed as Xk =
√

TΦk. Using property

det(I + AB) = det(I + BA) [28], the determinant of Ω is given by

det(Ω) = det
[
IT + (ρT/M)ΦkΦ

H
k

]
= det

[
IM + (ρT/M)ΦH

k Φk

]
= [1 + (ρT/M)]M .

Whereas, using the matrix inverse formula [28]

(A + BCD)−1 = A−1 −A−1B(C−1 + DA−1B)−1DA−1,

the inverse of Ω is

Ω−1 =
(
IT + (ρT/M)ΦkΦ

H
k

)−1

= IT −Φk

(
(M/ρT )IM + ΦH

k Φk

)−1
ΦH

k

= IT − 1

1 + M/ρT
ΦkΦ

H
k .

Thus, the noncoherent ML decoder performs [58]

Φ̂ = arg max
Xk

p(y|Xk) = arg max
Xk

−yHΩ−1y = arg max
Φk

yHΦkΦ
H
k y. (A.8)

From the ML decoding rule of noncoherent ST code, the probability of decoding the

received signal as the codeword Φl (the PEP) is

P (Φk → Φl) = P
(
yHΦkΦ

H
k y < yHΦlΦ

H
l y

)
. (A.9)

This PEP, evaluated in [58], is upper-bounded as

P (Φk → Φl) ≤ 1

2

M∏

i=1

1

1 +
(ρT/M)2(1−d2

i )

4(1+ρT/M)

, (A.10)
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where 1 ≥ d1 ≥ · · · ≥ dM ≥ 0 are singular values of the M ×M correlation matrix

ΦH
k Φl. Clearly, the above upper-bound is minimized when d1 = · · · = dM = 0. This

means that the ideal constellation design is obtained when all the columns of Φk are

orthogonal to all the columns of Φl for k 6= l [58]. On the other hand, if any di = 1,

the diversity order of the ST code will be reduced. Thus, in order to design a good

noncoherent ST constellation, two design criteria are as follows: (i) no singular value

of the correlation matrix ΦH
k Φl, ∀k 6= l is 1 to achieve the maximum diversity order,

and (ii) the singular values are minimized to maximize the achievable coding gain.

We now consider a simple orthogonal design of unitary constellation, which is

based on the coherent Alamouti code [59]. Another design of unitary constellation is

the Fourier-based design [27], which is presented in Section 2.4. For the Alamouti-

based design, consider concatenating a known matrix T =




1 −1

1 1


 and the Alamouti

matrix A =




s1 −s∗2

s2 s∗1


. In order to guarantee the unitarity of Φ = [T T AT ]T , one

can choose s1 and s2 to be Q-PSK (phase shift keying) symbols. In particular, define

Φm,n =
1

2




1 1 ej 2π
Q

m ej 2π
Q

n

−1 1 −e−j 2π
Q

n e−j 2π
Q

m




T

,

where (m,n) ∈ S×S and S = {0, 1, . . . , Q−1}. As a result, a constellation of L = Q2

unitary space-time matrices can be designed, where ΦH
m,nΦm,n = I2. Suppose that

Φm,n and Φk,l are two distinguished codewords, the two singular values of ΦH
m,nΦk,l

can be calculated as [59]:

d1 = d2 =
1

2

√
2 + cos

2π

Q
(m− k) + cos

2π

Q
(n− l).

It is clear that di < 1. Thus, this orthogonal design of unitary constellation achieves

the maximum diversity order of 2 with 1 receive antenna. Interestingly, the design

also inherits the symbol-wise ML decoding from Alamouti code as follows. Since

yHΦm,nΦ
H
m,ny = 2‖y‖2 + yHΦm,0Φ

H
m,0y + yHΦ0,nΦ

H
0,ny,
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the symbol-wise ML decoding is given by [59]

m̂ = arg max
m∈S

yHΦm,0Φ
H
m,0y,

n̂ = arg max
n∈S

yHΦ0,nΦ
H
0,ny.
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B. Convex Optimization Theory

The design and analysis of communication and signal processing systems have

relied heavily on mathematical modeling tool. In that process, many communica-

tion problems can be naturally formulated or transformed into convex optimization

problems, which facilitate their analytical and numerical solutions. There are several

theoretical and conceptual advantages of formulating a problem as a convex opti-

mization problem. First, a local optimum is also the global optimum in a convex

problem. Second, the associated dual problem often reveals interesting interpreta-

tions to the original problem, such as the structure of the solution or an efficient

method for solving it. Third, recent developments in convex optimization methods,

such as the interior-point methods, allows fast and powerful numerical tools to solve

several classes of convex problems.

This thesis, aims to find various optimal designs in multi-relay wireless networks,

is no exception, as it also relies on convex optimization theory. Many aspects of

convex optimization are mentioned throughout the thesis. The aim of this appendix

is to present a brief overview of convex optimization theory, and review the theory

behind optimization problems in the thesis. The appendix starts with the definitions

of affine set, convex set, and cone, and summarizes the convex sets mentioned in

the thesis. Convex optimization and duality are described in the second part. The

appendix is then concluded by presenting algorithms to solve the problem of Euclidean

projection on a convex set. It should be emphasized that a thorough discussion on

convex optimization is well beyond the scope of this appendix. The interested reader

is referred to complete and well-treated sources on the field, such as [37].
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B.1 Convex Sets and Convex Functions

B.1.1 Convex Sets

A set C ⊆ Rn is affine if the line through any two distinct points in C lies in C, i.e.,

∀x1,x2 ∈ C and θ ∈ R, we have θx1 + (1− θ)x2 ∈ C. Figure B.1 gives an example of

an affine set.

1x

2x
0θ =

1θ =
0.6θ =

0.2θ = −

1.2θ =

Figure B.1 Example of an affine set: a line passing through x1 and x2. Any point,

described by θx1 + (1− θ)x2, where θ varies over R, lies on the line.

A set C is convex if the line segment between any two points in C lies entirely in

C, i.e., ∀x1,x2 ∈ C and any 0 ≤ θ ≤ 1, we have θx1 + (1 − θ)x2 ∈ C. Figure B.2

illustrates examples of convex and nonconvex sets.

 
  

Figure B.2 Examples of convex and nonconvex sets: the hexagon and the circle are

convex, whereas the the boomerang is not. The line segment between

the two points in the “boomerang” set (shown as dots) is not contained

in the set.

A set C is called a cone if for any x ∈ C, and θ ≥ 0, we have θx ∈ C. A set C is

a convex cone if it is convex and a cone, i.e., for any x1,x2 ∈ C, and θ1, θ2 ≥ 0, we

have θ1x1 + θ2x2 ∈ C. A cone example is shown in Figure B.3.
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1x

2x
0

Figure B.3 Example of a cone: the pie slice shows all points of the form θ1x1+θ2x2,

where θ1, θ2 ≥ 0.

A second-order cone is a special class of convex cone. It is defined as the set

C = {(x, t)| ‖x‖ ≤ t} ⊆ Rn+1,

where the second-order norm is defined as ‖x‖ =
√

x2
1 + . . . + x2

n with x = [x1, . . . , xn]T .

Figure B.4 shows the boundary of second-order cone in R3.

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

0.5

1

 x
1

 x
2

 t

Figure B.4 Boundary of second-order cone in R3 :
{
(x1, x2, t) | (x2

1 + x2
2)

1/2 ≤ t
}
.

A positive semidefinite cone is a special case of convex cone, denoted as Sn
+ =

{X ∈ Sn|X º 0}, where Sn is the set of symmetric n × n matrices. X ∈ Sn
+ ⇔

zT Xz ≥ 0, ∀z.
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Figure B.5 illustrates the boundary of positive semidefinite cone in S2. Here,

X =




x y

y z


 ∈ S2

+ ⇔ x ≥ 0, z ≥ 0, xz ≥ y2.

0

0.5

1

−1
−0.5

0
0.5

1
0

0.5

1

 x y

 z

Figure B.5 Boundary of positive semidefinite cone in S2.

B.1.2 Convex Functions

Convex function: A function f : Rn → R is convex if the domain where f is

defined, denoted as dom f , is a convex set and

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2) (B.1)

for all x1,x2 ∈ dom f , 0 ≤ θ ≤ 1. In geometric visualization, the inequality means

that the graph segment of the function f between (x1, f(x1)) and (x2, f(x2)) is

strictly below the line segment connecting the two points (see Figure B.6 for an

illustration). A function f is said to be concave if −f is a convex function.

Besides the definition of a convex function, there are several ways to verify the

convexity of a function f :
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( )( )1 1, fx x

( )( )2 2, fx x

Figure B.6 Graph of a convex function. The line segment between any two points

on the graph lies above the graph.

• First order condition: if f is differentiable, i.e., the gradient of f :

∇f(x) =

(
∂f

∂x1

,
∂f

∂x2

, . . . ,
∂f

∂xn

)

exists at each x ∈ dom f , the first order condition states that f is convex if

and only if

f(y) ≥ f(x) +∇f(x)T (y − x), for all y ∈ dom f. (B.2)

• Second order condition: if f is twice-differentiable, i.e., the Hessian ∇2f(x):

∇2f(x)ij =
∂2f(x)

∂xi∂xj

exists at each x ∈ dom f , the second order condition states that f is convex if

and only if

∇2f(x) º 0 for all x ∈ dom f. (B.3)

• Show that f is obtained from simpler convex functions by operations that pre-

serves convexity, such as: nonnegative weighted sum, composition of affine func-

tion, pointwise maximum and supremum, minimization, and perspective.

Quasiconvex function: A function f : Rn → R is quasiconvex if dom f is convex

and the sub-level sets

Sα = {x ∈ dom f |f(x) ≤ α} (B.4)

is convex for all α. A convex function is also quasiconvex, but the inverse is not

true. A function f is said to be quasiconcave if −f is a quasiconvex function. If a

function is both quasiconvex and quasiconcave, it is quasilinear. Figure B.7 illustrates

a quasiconvex function on R.
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α

β

a b c

Figure B.7 Graph of a quasiconvex function on R. The sublevel set Sα is the

interval [b, c], which is convex. The sublevel set Sβ is the interval [a,∞),

which is also convex.

B.2 Convex Optimization

A convex optimization problem has the following standard form

minimize
x

f0(x) (B.5)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

x ∈ S,

where x is the optimization variable, f0 is the objective function, fi and hi are in-

equality and equality constraint functions, respectively.

A set of points for which the objective and all the constraints are defined,

S =
m⋂

i=0

dom fi ∩
p⋂

i=1

dom hi,

is called the domain of the optimization problem (B.5). Problem (B.5) is said to be

feasible if there exists at least one solution in the domain S, i.e., S is not empty. It

is called infeasible otherwise.

B.2.1 Classes of Convex Optimization

Linear programming (LP): all the functions fi and hi are affine.

Linear fractional programming: is similar to LP, except the the objective function
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is now in the form

f0(x) =
cT x + d

eT x + f
,

and dom f0(x) = {x|eT x + f ≥ 0}. While a linear fractional problem is not readily

in a convex form, a change in variables y = x
eT x+f

and z = d
eT x+f

can effectively

transform it into a LP, which is convex.

Quadratic programming (QP): when the objective function is in quadratic form:

f0(x) = xT Ax + bT x + c, and A is positive semidefinite. If the constraints are

also in quadratic form, the problem is called a quadratically constrained quadratic

programming (QCQP).

Second order conic programming (SOCP): when the inequalities are SOC con-

straints:

‖Aix + bi‖ ≤ cTi x + di,

the optimization problem is called an SOC program. SOCP is more general than

QCQP and LP.

Semidefinite programming (SDP): a semidefinite program has the following form

minimize
x

cT x (B.6)

subject to x1F 1 + x2F 2 + . . . + xnF n + G ¹ 0

Ax = b,

with F i, G ∈ Sn
+. Here, the inequality constraint is called linear matrix inequality

(LMI). It is noted that multiple LMI constraints can be equivalently presented as a

single LMI.

B.2.2 Lagrangian Duality

The basis of Lagrangian duality is to augment the objective function with a

weighted-sum of the constraint functions. With this method, a constrained opti-

mization problem can be expressed as a non-constrained problem. The Lagrangian
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L : Rn × Rm × Rp → R associated with Problem (B.5) is formed as

L(x,λ,ν) = f0(x) +
m∑

i=1

λifi(x) +
p∑

i=1

νihi(x), (B.7)

where λi ≥ 0 and νi ≥ 0 are the Lagrangian multipliers associated with fi(x) ≤ 0

and hi(x) = 0 constraints, respectively. The parameters λi and νi are also called dual

variables. The Lagrangian dual function g : Rm × Rn → R is defined as

g(λ,ν) = inf
x∈S

L(x,λ,ν) = inf
x∈S

(
f0(x) +

m∑

i=1

λifi(x) +
p∑

i=1

νihi(x)

)
. (B.8)

Since the dual function is the pointwise infimum of a family of affine function of

(λ,ν), it is always concave, regardless of the convexity of the original problem (B.5).

Moreover, it is easy to verify that g(λ,ν) ≤ f0(x) for every feasible point x, and

λi ≥ 0, νi ≥ 0. This important property yields the lower bound on the optimal value

p? of Problem (B.5), i.e., g(λ, ν) ≤ p?. Then, the best lower bound can be obtained

from the Lagrangian dual function

maximize
λ,ν

g(λ, ν) (B.9)

subject to λ º 0.

This optimization problem is called the Lagrangian dual problem of the primal prob-

lem (B.5). The reason to establish the dual problem is that the dual problem is

usually easier to solve than the primal problem. Furthermore, not only the dual

problem does reveal the result to the primal problem, it may also provide some in-

sights and interesting interpretation to the structure of the solutions. Sometimes the

dual problem leads to an efficient or distributed method to solve the original problem.

Suppose that d? is the optimal value of (B.9). The difference p? − d? is called the

dual gap between the primal and dual problems. The dual gap is always nonnegative.

Strong duality holds if the dual gap is 0. In general, if the primal problem is convex,

the dual gap will be 0. If strong duality holds, and x?, λ?
i , ν?

i are optimal solutions,
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they must satisfy the KKT conditions:

fi(x
?) ≤ 0, i = 1, . . . , m, hi(x

?) = 0, i = 1, . . . , p,

λ? º 0,

λ?
i fi(x

?) = 0, i = 1, . . . , m,

∇f0(x
?) +

m∑

i=1

λ?
i∇fi(x

?) +
p∑

i=1

ν?
i∇hi(x

?) = 0.

Likewise, if x̃, λ̃i, ν̃i satisfy the KKT conditions for a convex problem, they are

optimal. Solving the KKT conditions is equivalent to solving the primal and dual

problems. Thus, the KKT conditions are necessary and sufficient for optimality in

convex programming.

−1.5 −1 −0.5 0 0.5 1 1.5
−4

−2

0

2

4

6

x

Figure B.8 Lower bound from the Lagrangian dual function. The solid curve is the

objective function f0, and the dashed curve is the constraint function

f1. The feasible set is the interval [−1, 1], indicated by the two “dash-

dot” vertical lines. The optimal point and value are x? = −1, p? = −2.

The dot curves show L(x, λ) for λ = 0.2, 0.6, 1.0, . . . , 2.6. Each of these

has a minimum value smaller than p?, since on the feasible set and for

λ ≥ 0, we have L(x, λ) ≤ f0.

Figure B.8 illustrates an example of an optimization problem of a nonconvex

function with one inequality constraint. Also plotted in the figure are Lagrangian dual
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functions associated with different values of the Lagrangian multiplier λ. The figure

clearly shows the lower bound of the original function established by the Lagrangian

dual functions. In Figure B.9, we plot the dual function g(λ) for the problem in

Figure B.8. Even though the primal function is not convex, the dual function is

strictly concave. The figure also shows the strong duality in this problem as the

maximum value of the dual function is the same as the minimum value of the primal

function.

0 1 2 3 4
−3

−2.8

−2.6

−2.4

−2.2

−2

λ

 g
(λ

)

Figure B.9 Dual function g(λ) for the problem in Figure B.8. f0 is not convex,

but the dual function is strictly concave. The horizontal dashed line

shows p?, which is the upper-bound on g(λ). Strong duality holds in

this problem, as the maximum value d? of g(λ) satisfies d? = p?.

B.3 Projection on a Set

The projection PC(x0) of a point x0 ∈ Rn to a closed set C ⊆ Rn is equivalent

to finding the point x ∈ C that makes the Euclidean distance ‖x − x0‖ between x

and x0 minimized. Mathematically, the projection can be stated as an optimization

problem

minimize
x

‖x− x0‖ (B.10)

subject to x ∈ C.
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In general, there can be more than one projection of x0 in C. However, if C is

a convex set, the projection is a convex QP and its solution is unique. If C is a

halfspace, i.e., C = {x | aT x ≤ b}, the projection of x0 on C is given by a closed-form

solution [37]:

PC(x0) =





x0 + (b− aT x0)a/‖a‖2 if aT x0 > b

x0 if aT x0 ≤ b.
(B.11)

In Chapters 5 and 6, the update of Q(t) requires the projection on the set SQ =

{Q : tr(QP ) ≤ tr(P ),Q º 0}. That is Q(t+1) = PSQ

{
Q(t) + atdiag

{∑N
n=1 wnwH

n Dn

}}
,

PSQ

{
Q

(t+1)
0

}
. Since SQ is convex, the projection can be found uniquely by convex

QP. However, as the projected point Q
(t+1)
0 º 0, the special structure of the set SQ

allows a simple and fast algorithm to find PSQ

{
Q

(t+1)
0

}
as explained next.

Note that Q is always a diagonal matrix of size R × R, so the projection is

performed in the R dimension vector space. Let x = diag(Q). The projection of

Q
(t+1)
0 on the set SQ is equivalent to the projection of x0 = diag(Q

(t+1)
0 ) on the set

C = {x : aT x ≤ b, x º 0}, where a = diag(P ), and b = tr(P ).

Denote C0 = {x : x º 0}, C1 = {x : aT x ≤ b}. Clearly, C = C0 ∪ C1. If the set

C were the half-space C1, the projection would be in the closed-form solution as in

(B.11). Thus, by performing the simple projection x1 = PC1 (x0) first, and verifying

if x1 ∈ C0 is true, then x1 will also be the projection of x0 on C. On the other hand,

if x1 /∈ C0, the following iterative steps would ensure a fast projection to the true

projection of x0:

1. Set the iteration index t = 1, and at = a.

2. Repeat:

• Note down all the indices i’s such that [xt]i < 0.

• Define ãt = at except for the indices i’s, set [ãt]i = 0. Similarly, define

x̃t = xt except for the indices i’s, set [x̃t]i = 0. Furthermore, define the

set Ct+1 = {x : ãTt x ≤ b}.
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• Perform the projection xt+1 = PCt+1 (x̃t) by the closed-form solution in

(B.11).

3. If xt+1 ∈ C0, then xt+1 is the projection of x0 onto the set C. Otherwise, set

t = t + 1 and return to Step 2.
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Y
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Figure B.10 Examples of projection in 2-D and 3-D vector spaces.

The process of projecting x0 on the set C is illustrated by examples in Figure

B.10. It should be pointed out that all the elements of x0 are always nonnegative.

In a 2-D vector space, C is defined as the set bounded by the triangle OXY , where

the Cartesian coordinates of X and Y are (b/[a]1, 0) and (0, b/[a]2), respectively.

Now, investigate the projection of 3 points A0, B0, and C0 on C. At first, make the

projection of A0, B0, and C0 on C1, which is the line connecting X and Y , to get to

the points A1, B1, and C1. It can be seen that as the two coordinate values of A1 are

positive, i.e., A1 ∈ C0, A1 is also the true projection of A0 in C. On the other hand,

one of two coordinate values of B1 and C1 is negative, B1 and C1 cannot be the true

projections of B0 and C0 on C, respectively.

By following the process described above, the first coordinate value of B1 is set at

0 to get to the newly defined point B̃1. Also defined is the half-space C2 = {x : [x]2 ≤
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b/[a]2). The next step is to make the projection of B̃1 on C2 to get to the point B2,

which is Y . Obviously, B2 is the projection of B0 on C as it is the closest point to

B0. Similarly, the projection of C0 on C is done by making the projection of C̃1 to

the point C2, which is X.

As examples in a 3-D vector space, A1 is the true projection of A0 on C, whereas

B1 is not the true projection of B0 on C. By following the process described above,

the first coordinate of B1 is set at 0 to get to the newly defined point B̃1. Then,

the projection of B̃1 to the set C2, which is the line Y Z, is taken. The resultant

projected point B2 is also the projection of B0 on C. It can be verified that B0B2 is

perpendicular to Y Z. Thus, B2 is the point in XY and also the point in the triangle

XY Z that is closest to B0.

In a higher dimension vector space, the process described above works in the same

manner. Numerous simulations show that the proposed algorithm needs only one or

two iterations to converge and achieves a much faster processing time compared to

that by solving the QP with cvx package [48].
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C. Rayleigh-Ritz Theorem

Theorem 1. Rayleigh-Ritz (From [28]): Let A be an n × n Hermitian matrix, and

let the eigenvalues of A be ordered as:

λmin = λ1 ≤ λ2 ≤ · · · ≤ λn−1 ≤ λn = λmax.

Then,

λ1x
Hx ≤ xHAx ≤ λnxHx for all x ∈ Cn (C.1)

λmax = λn = max
x6=0

xHAx

xHx
. (C.2)

λmin = λ1 = min
x6=0

xHAx

xHx
. (C.3)

Proof. Since A is Hermitian, by singular value decomposition [28], there exists a n×n

unitary matrix U such that A = UΛUH with Λ = diag(λ1, . . . , λn). For any x ∈ Cn,

one has

xHAx = xHUΛUHx =
(
UHx

)H
Λ

(
UHx

)
=

N∑

i=1

λi

∣∣∣[UHx]i
∣∣∣
2
.

Since each term
∣∣∣[UHx]i

∣∣∣
2

is nonnegative, one has

λ1

N∑

i=1

∣∣∣[UHx]i
∣∣∣
2 ≤ xHAx =

N∑

i=1

λi

∣∣∣[UHx]i
∣∣∣
2 ≤ λn

N∑

i=1

∣∣∣[UHx]i
∣∣∣
2
.

As U is unitary,

N∑

i=1

∣∣∣[UHx]i
∣∣∣
2

=
∥∥∥UHx

∥∥∥
2

= xHUUHx = xHx.

Thus,

λ1x
Hx ≤ xHAx ≤ λnxHx.
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If x is an eigenvector of A corresponding to the eigenvalue λ1, then xHAx = xHλ1x =

λ1x
Hx. Thus,

λ1 = min
x6=0

xHAx

xHx
.

Similarly for λn,

λn = max
x6=0

xHAx

xHx
,

which is obtained when x is an eigenvector of A corresponding to the largest eigen-

value λn.

Corollary 1. (From [60]) Let A be an n× n Hermitian matrix, and B be an n× n

positive definite Hermitian. Furthermore, let B be decomposed into Cholesky factors

as B = LLH. Then,
xHAx

xHBx
≤ λmax for all x ∈ Cn, (C.4)

where λmax is the largest eigenvalue of L−1A(LH)−1. The equality holds if x =

c(LH
n )−1umax, where c is any non-zero constant and umax is the norm-1 eigenvector

of L−1A(LH)−1 corresponding to λmax.

Proof. Let x̃ = LHx, then apply the Ritz-Rayleigh theorem in (C.1), one has

xHAx

xHBx
=

x̃HL−1A(LH)−1x̃

x̃Hx̃
≤ λmax.

The equality holds if x̃ is an eigenvector of L−1A(LH)−1 corresponding to λmax. Thus,

x = c(LH
n )−1umax.

For a special case of A = aaH, then L−1aaH(LH)−1 has rank 1. Its only eigen-

vector is L−1a, and its only non-zero eigenvalue is its trace. As a result, the equality

holds if x = c(LH)−1L−1a = cBa.
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