6 research outputs found

    ユーザ負担の少ない肺機能測定用ウェアラブル機器の開発

    Get PDF

    E-health-IoT Universe: A Review

    Get PDF
    The Internet of Things (IoT) devices are able to collect and share data directly with other devices through the cloud environment, providing a huge amount of information to be gathered, stored and analyzed for data-analytics processes. The scenarios in which the IoT devices may be useful are amazing varying, from automotive, to industrial automation or remote monitoring of domestic environment. Furthermore, has been proved that healthcare applications represent an important field of interest for IoT devices, due to the capability of improving the access to care, reducing the cost of healthcare and most importantly increasing the quality of life of the patients. In this paper, we analyze the state-of-art of IoT in medical environment, illustrating an extended range of IoT-driven healthcare applications that, however, still need innovative and high technology-based solutions to be considered ready to market. In particular, problems regarding characteristics of response-time and precision will be examined.  Furthermore, wearable and energy saving properties will be investigated in this paper and also the IT architectures able to ensure security and privacy during the all data-transmission process. Finally, considerations about data mining applications, such as risks prediction, classification and clustering will be provided, that are considered fundamental issues to ensure the accuracy of the care processes

    Wearable bluetooth triage healthcare monitoring system

    Get PDF
    Triage is the first interaction between a patient and a nurse/paramedic. This assessment, usually performed at Emergency departments, is a highly dynamic process and there are international grading systems that according to the patient condition initiate the patient journey. Triage requires an initial rapid assessment followed by routine checks of the patients’ vitals, including respiratory rate, temperature, and pulse rate. Ideally, these checks should be performed continuously and remotely to reduce the workload on triage nurses; optimizing tools and monitoring systems can be introduced and include a wearable patient monitoring system that is not at the expense of the patient’s comfort and can be remotely monitored through wireless connectivity. In this study, we assessed the suitability of a small ceramic piezoelectric disk submerged in a skin-safe silicone dome that enhances contact with skin, to detect wirelessly both respiration and cardiac events at several positions on the human body. For the purposes of this evaluation, we fitted the sensor with a respiratory belt as well as a single lead ECG, all acquired simultaneously. To complete Triage parameter collection, we also included a medical-grade contact thermometer. Performances of cardiac and respiratory events detection were assessed. The instantaneous heart and respiratory rates provided by the proposed sensor, the ECG and the respiratory belt were compared via statistical analyses. In all considered sensor positions, very high performances were achieved for the detection of both cardiac and respiratory events, except for the wrist, which provided lower performances for respiratory rates. These promising yet preliminary results suggest the proposed wireless sensor could be used as a wearable, hands-free monitoring device for triage assessment within emergency departments. Further tests are foreseen to assess sensor performances in real operating environments

    e health iot universe a review

    Get PDF
    The Internet of Things (IoT) devices are able to collect and share data directly with other devices through the cloud environment, providing a huge amount of information to be gathered, stored and analyzed for data-analytics processes. The scenarios in which the IoT devices may be useful are amazing varying, from automotive, to industrial automation or remote monitoring of domestic environment. Furthermore, has been proved that healthcare applications represent an important field of interest for IoT devices, due to the capability of improving the access to care, reducing the cost of healthcare and most importantly increasing the quality of life of the patients. In this paper, we analyze the state-of-art of IoT in medical environment, illustrating an extended range of IoT-driven healthcare applications that, however, still need innovative and high technology-based solutions to be considered ready to market. In particular, problems regarding characteristics of response-time and precision will be examined. Furthermore, wearable and energy saving properties will be investigated in this paper and also the IT architectures able to ensure security and privacy during the all data-transmission process. Finally, considerations about data mining applications, such as risks prediction, classification and clustering will be provided, that are considered fundamental issues to ensure the accuracy of the care processes
    corecore