136 research outputs found

    Self-Organizing Mobility Control in Wireless Sensor and Actor Networks Based on Virtual Electrostatic Interactions

    Get PDF
    This paper introduces a new mobility control method for surveillance applications of wireless sensor and actor networks. The proposed method is based on virtual electrostatic forces which act on actors to coordinate their movements. The definition of virtual forces is inspired by Coulomb’s law from physics. Each actor calculates the virtual forces independently based on known locations of its neighbours and predetermined borders of the monitored area. The virtual forces generate movements of actors. This approach enables effective deployment of actors at the initial stage as well as adaptation of actors’ placement to variable conditions during execution of the surveillance task without the need of any central controller. Effectiveness of the introduced method was experimentally evaluated in a simulation environment. The experimental results demonstrate that the proposed method enables more effective organization of the actors’ mobility than state-of-the-art approaches

    Information-Centric Semantic Web of Things

    Get PDF
    In the Semantic Web of Things (SWoT) paradigm, a plethora of micro-devices permeates an environment. Storage and information processing are decentralized: each component conveys and even processes a (very) small amount of annotated metadata. In this perspective, the node-centric Internet networking model is inadequate. This paper presents a framework for resource discovery in semantic-enhanced pervasive environments leveraging an information-centric networking approach. Information gathered through different Internet of Things (IoT) technologies can be exploited by both ubiquitous and Web-based semantic-aware applications through a uniform set of operations. Experimental results and a case study support sustainability and effectiveness of the proposal

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Securing communication within the harms model for use with firefighting robots

    Get PDF
    Humans and robots must work together in increasingly complex networks to achieve a common goal. In this research, firefighting robots are a part of a larger, decentralized system of humans, agents, robots, machines, and sensors (HARMS). Although communication in a HARMS model has been utilized in previous research, this new study looks at the security considerations of the communications layer of the HARMS model. A network attack known as a man-in-the-middle attack is successfully demonstrated in this paper. Then, a secure communications protocol is proposed to help provide confidentiality and authentication of HARMS actors. This research is applied to any system that utilizes a HARMS network, including firefighting robots, to help ensure malicious entities cannot exploit communications by system actors. Instead, system actors that confirm their identity can communicate securely in a decentralized way for indistinguishable task completion. The results of this experiment are successful, indicating that secure communication can prevent man-in-the-middle attacks with minor differences in operation

    Multi-Robot Systems: Challenges, Trends and Applications

    Get PDF
    This book is a printed edition of the Special Issue entitled “Multi-Robot Systems: Challenges, Trends, and Applications” that was published in Applied Sciences. This Special Issue collected seventeen high-quality papers that discuss the main challenges of multi-robot systems, present the trends to address these issues, and report various relevant applications. Some of the topics addressed by these papers are robot swarms, mission planning, robot teaming, machine learning, immersive technologies, search and rescue, and social robotics

    Design principles of integrated information platform for emergency responses: The case of 2008 Beijing Olympic Games

    Get PDF
    This paper investigates the challenges faced in designing an integrated information platform for emergency response management and uses the Beijing Olympic Games as a case study. The research methods are grounded in action research, participatory design, and situation-awareness oriented design. The completion of a more than two-year industrial secondment and six-month field studies ensured that a full understanding of user requirements had been obtained. A service-centered architecture was proposed to satisfy these user requirements. The proposed architecture consists mainly of information gathering, database management, and decision support services. The decision support services include situational overview, instant risk assessment, emergency response preplan, and disaster development prediction. Abstracting from the experience obtained while building this system, we outline a set of design principles in the general domain of information systems (IS) development for emergency management. These design principles form a contribution to the information systems literature because they provide guidance to developers who are aiming to support emergency response and the development of such systems that have not yet been adequately met by any existing types of IS. We are proud that the information platform developed was deployed in the real world and used in the 2008 Beijing Olympic Games. Š 2012 INFORMS

    LOCALIZED MOVEMENT CONTROL CONNECTIVITY RESTORATION ALGORITHMS FOR WIRELESS SENSOR AND ACTOR NETWORKS

    Get PDF
    Wireless Sensor and Actor Networks (WSANs) are gaining an increased interest because of their suitability for mission-critical applications that require autonomous and intelligent interaction with the environment. Hazardous application environments such as forest fire monitoring, disaster management, search and rescue, homeland security, battlefield reconnaissance, etc. make actors susceptible to physical damage. Failure of a critical (i.e. cut-vertex) actor partitions the inter-actor network into disjointed segments while leaving a coverage hole. Maintaining inter-actor connectivity is extremely important in mission-critical applications of WSANs where actors have to quickly plan an optimal coordinated response to detected events. Some proactive approaches pursued in the literature deploy redundant nodes to provide fault tolerance; however, this necessitates a large actor count that leads to higher cost and becomes impractical. On the other hand, the harsh environment strictly prohibits an external intervention to replace a failed node. Meanwhile, reactive approaches might not be suitable for time-sensitive applications. The autonomous and unattended nature of WSANs necessitates a self-healing and agile recovery process that involves existing actors to mend the severed inter-actor connectivity by reconfiguring the topology. Moreover, though the possibility of simultaneous multiple actor failure is rare, it may be precipitated by a hostile environment and disastrous events. With only localized information, recovery from such failures is extremely challenging. Furthermore, some applications may impose application-level constraints while recovering from a node failure. In this dissertation, we address the challenging connectivity restoration problem while maintaining minimal network state information. We have exploited the controlled movement of existing (internal) actors to restore the lost connectivity while minimizing the impact on coverage. We have pursued distributed greedy heuristics. This dissertation presents four novel approaches for recovering from node failure. In the first approach, volunteer actors exploit their partially utilized transmission power and reposition themselves in such a way that the connectivity is restored. The second approach identifies critical actors in advance, designates them preferably as noncritical backup nodes that replace the failed primary if such contingency arises in the future. In the third approach, we design a distributed algorithm that recovers from a special case of multiple simultaneous failures. The fourth approach factors in application-level constraints on the mobility of actors while recovering from node failure and strives to minimize the impact of critical node failure on coverage and connectivity. The performance of proposed approaches is analyzed and validated through extensive simulations. Simulation results confirm the effectiveness of proposed approaches that outperform the best contemporary schemes found in literature
    • …
    corecore