169 research outputs found

    Performance analysis of diversity techniques in wireless communication systems: Cooperative systems with CCI and MIMO-OFDM systems

    Get PDF
    This Dissertation analyzes the performance of ecient digital commu- nication systems, the performance analysis includes the bit error rate (BER) of dier- ent binary and M-ary modulation schemes, and the average channel capacity (ACC) under dierent adaptive transmission protocols, namely, the simultaneous power and rate adaptation protocol (OPRA), the optimal rate with xed power protocol (ORA), the channel inversion with xed rate protocol (CIFR), and the truncated channel in- version with xed transmit power protocol (CTIFR). In this dissertation, BER and ACC performance of interference-limited dual-hop decode-and-forward (DF) relay- ing cooperative systems with co-channel interference (CCI) at both the relay and destination nodes is analyzed in small-scale multipath Nakagami-m fading channels with arbitrary (integer as well as non-integer) values of m. This channel condition is assumed for both the desired signal as well as co-channel interfering signals. In addition, the practical case of unequal average fading powers between the two hops is assumed in the analysis. The analysis assumes an arbitrary number of indepen- dent and non-identically distributed (i.n.i.d.) interfering signals at both relay (R) and destination (D) nodes. Also, the work extended to the case when the receiver employs the maximum ratio combining (MRC) and the equal gain combining (EGC) schemes to exploit the diversity gain

    Lower and upper bound form of outage probability in one-way AF full-duplex relaying network under impact of direct link

    Get PDF
    This paper proposed and investigated the one-way amplify-and-forward (AF) full-duplex relaying network under impact of direct link. For the system performance analysis, the exact and lower and upper bound form of the system outage probability (OP) are investigated and derived. In this system model, authors assume that the E uses the MRC (maximal ratio combining) technique. Finally, we can see that the analytical and the simulation values overlap to verify the analytical section using the Monte Carlo simulation. Also, we investigate the influence of the system primary parameters on the proposed system OP

    Outage Probability Analysis of Full-Duplex Amplify-and-Forward MIMO Relay Systems

    Get PDF
    abstract: Multiple-input multiple-output systems have gained focus in the last decade due to the benefits they provide in enhancing the quality of communications. On the other hand, full-duplex communication has attracted remarkable attention due to its ability to improve the spectral efficiency compared to the existing half-duplex systems. Using full-duplex communications on MIMO co-operative networks can provide us solutions that can completely outperform existing systems with simultaneous transmission and reception at high data rates. This thesis considers a full-duplex MIMO relay which amplifies and forwards the received signals, between a source and a destination that do not a have line of sight. Full-duplex mode raises the problem of self-interference. Though all the links in the system undergo frequency flat fading, the end-to-end effective channel is frequency selective. This is due to the imperfect cancellation of the self-interference at the relay and this residual self-interference acts as intersymbol interference at the destination which is treated by equalization. This also leads to complications in form of recursive equations to determine the input-output relationship of the system. This also leads to complications in the form of recursive equations to determine the input-output relationship of the system. To overcome this, a signal flow graph approach using Mason's gain formula is proposed, where the effective channel is analyzed with keen notice to every loop and path the signal traverses. This gives a clear understanding and awareness about the orders of the polynomials involved in the transfer function, from which desired conclusions can be drawn. But the complexity of Mason's gain formula increases with the number of antennas at relay which can be overcome by the proposed linear algebraic method. Input-output relationship derived using simple concepts of linear algebra can be generalized to any number of antennas and the computation complexity is comparatively very low. For a full-duplex amplify-and-forward MIMO relay system, assuming equalization at the destination, new mechanisms have been implemented at the relay that can compensate the effect of residual self-interference namely equal-gain transmission and antenna selection. Though equal-gain transmission does not perform better than the maximal ratio transmission, a trade-off can be made between performance and implementation complexity. Using the proposed antenna selection strategy, one pair of transmit-receive antennas at the relay is selected based on four selection criteria discussed. Outage probability analysis is performed for all the strategies presented and detailed comparison has been established. Considering minimum mean-squared error decision feedback equalizer at the destination, a bound on the outage probability has been obtained for the antenna selection case and is used for comparisons. A cross-over point is observed while comparing the outage probabilities of equal-gain transmission and antenna selection techniques, as the signal-to-noise ratio increases and from that point antenna selection outperforms equal-gain transmission and this is explained by the fact of reduced residual self-interference in antenna selection method.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Outage and Rate Evaluation of Drone based Decode and Forward Cooperation for Hybrid Fading Channels

    Get PDF
    In this paper, we consider a drone as a relay in Cooperative Communication (CC) to improve the network performance in an upcoming wireless network. Drone Assisted CC (DACC) is more useful when the central coordinator (base station) gets disrupted. In such a scenario, the drone works as an aerial relay and provides CC diversity to the end-users. In this article, a Decode-and-Forward (DF) protocol is used as a relaying scheme at the drone, and the Maximal Ratio Combining (MRC) scheme is used at the end-users for combining the direct and relayed signal. Here, we assume Nakagami faded channel among Airto- Ground (A2G) links and Rayleigh faded distribution between Ground-to-Ground (G2G) links. The performance of DA-CC is evaluated in a hybrid channel environment and compared based on drone height, rate, horizontal distance, and transmitted power with the existing Rayleigh and Nakagami faded distributions. The analytical expression of outage probability and the rate have been derived for analysis purposes, and Monte-Carlo simulations are used to verify the analytical results. This work can have security and surveillance applications to improve the network performance in the absence of a central base station

    Performance analysis for three cases of outage probability in one-way DF full-duplex relaying network with presence of direct link

    Get PDF
    In this paper, the one-way decode-and-forward (DF) full-duplex relaying network system with presence of direct link is investigated. In the analysis section, we derived the exact, lower, and upper bound for outage probability (OP) with maximal ratio combining (MRC) at the receiver. Furthermore, the system performance's analytical expressions are verified by using the Monte Carlo simulation. In addition, we investigated the effect of the main parameters on the OP of the proposed system. Finally, we can sate that the simulation curves overlap the analytical curves to convince the analysis section. This research can provide a novel recommendation for the communication network

    Proposed different relay selection schemes for improving the performance of cooperative wireless networks

    Get PDF
    Relay selection is a new method currently used to develop and improve cooperative wireless networks. One of the main advantages of this new technology is that it can achieve cooperative diversity gain without installing multiple antennas in the transmitter or receiver. Relay selection algorithms can be used to select one node to become a relay node from a set of N candidate relays with optimization criteria as the outage probability or frame error rate. The selection process is preferable to operate in a distributed fashion and offers only reasonable costs in terms of manufacturing complexity and flexible handling over wireless cooperative networks. In this work, different relay selection schemes are proposed to enhance the cooperative wireless networks in terms of different approaches including: 1) Relay selection-based destination feedback scheme, 2) Relay selection based a ready-to-send/clear-to-send (RTS/CTS) messages scheme, 3) Relay selection-based identification messages (IDM) table scheme, and 4) Relay selection-based relay power consuming scheme. The experimental results via suggested case study show that the performance of overall cooperative network is enhanced in terms of increasing throughput, energy saving (efficiency maximization), blocking reduction and outage reduction (PER minimization)

    A Tutorial on Nonorthogonal Multiple Access for 5G and Beyond

    Full text link
    Today's wireless networks allocate radio resources to users based on the orthogonal multiple access (OMA) principle. However, as the number of users increases, OMA based approaches may not meet the stringent emerging requirements including very high spectral efficiency, very low latency, and massive device connectivity. Nonorthogonal multiple access (NOMA) principle emerges as a solution to improve the spectral efficiency while allowing some degree of multiple access interference at receivers. In this tutorial style paper, we target providing a unified model for NOMA, including uplink and downlink transmissions, along with the extensions tomultiple inputmultiple output and cooperative communication scenarios. Through numerical examples, we compare the performances of OMA and NOMA networks. Implementation aspects and open issues are also detailed.Comment: 25 pages, 10 figure
    • …
    corecore