1,077 research outputs found

    Energy-delay tradeoff in wireless network coding

    Get PDF
    A queueing model for wireless communication network in which network coding is employed is introduced. It is shown that networks with coding are closely related to queueing networks with positive and negative customers. Analytical upper and lower bounds on the energy consumption and the delay are obtained using a Markov reward approach. The tradeoff between minimizing energy consumption and minimizing delay is investigated. Exact expressions are given for the minimum energy consumption and the minimum delay attainable in a network

    Wireless network coding for multi-hop relay channels

    Get PDF
    Future wireless communication systems are required to meet growing demands for high spectral eļæ½ciency, low energy consumption and high mobility. The advent of wireless network coding (WNC) has oļæ½ered a new opportunity to improve network throughput and transmission reliability by exploiting interference in intermediate relays. Combined with network coding and self-information cancelation, WNC for two-way relay channels (TWRCs) has come to the forefront. This dissertation focuses on exploiting WNC in multi-hop two-way relay channels (MH-TRCs). Particularly, a multi-hop wireless network coding (MH-WNC) scheme is designed for the generalized L-node K-message MH-TRC. Theoretical studies on the network throughput and performance bounds achieved by the MH-WNC scheme with diļæ½erent relaying strategies (i.e., amplify-and-forward (AF) and compute-and-forward (CPF)) are carried out. Furthermore, by introducing diļæ½erent numbers of transmission time intervals into the MH-WNC, a multiple-time-interval (Multi-TI) MH-WNC is proposed to determine an optimal MH-WNC which can achieve the best outage performance for all-scale MH-TRCs. Finally, this study extends the research on WNC one step forward from two-user networks to multi-user networks. An extended CPF joint with a dominated solution for maximizing the overall computation rate is proposed for the multi-way relay channel (mRC) in the last chapter. The contributions of this dissertation are multifold. First, the proposed MHWNC scheme with fixed two transmission time intervals can achieve a significantly improved network throughput compared to the non-network coding (Non-NC) scheme in the generalized L-node K-message MH-TRC. Theoretical results are derived for both multi-hop analog network coding (MH-ANC) and multi-hop compute-and-forward (MH-CPF). Moreover, both theoretical and numerical results demonstrate that the two MH-WNC schemes can be applied to different scale MH-TRCs to achieve a better outage performance compared to the conventional Non-NC scheme (i.e., MH-ANC for the non-regenerative MH-TRC with a small number of nodes, and MH-CPF for the regenerative MH-TRC with a large number of nodes.). Furthermore, a Multi-TI MH-WNC scheme is generalized with a special binary-tree model and characteristic matrix. The determined optimal MH-WNC scheme is able to provide the best outage performance and outperform the Non-NC scheme in all scale MH-TRCs. Last but not least, this dissertation provides a preliminary investigation of WNC in mRCs. The proposed dominated solution for maximizing the overall computation rate can ensure that all the nodes in the mRC successfully recover their required messages. Moreover, the extended CPF strategy is proven superior to Non-NC in the mRC with a small number of users

    Algebraic Watchdog: Mitigating Misbehavior in Wireless Network Coding

    Get PDF
    We propose a secure scheme for wireless network coding, called the algebraic watchdog. By enabling nodes to detect malicious behaviors probabilistically and use overheard messages to police their downstream neighbors locally, the algebraic watchdog delivers a secure global self-checking network. Unlike traditional Byzantine detection protocols which are receiver-based, this protocol gives the senders an active role in checking the node downstream. The key idea is inspired by Marti et al.'s watchdog-pathrater, which attempts to detect and mitigate the effects of routing misbehavior. As an initial building block of a such system, we first focus on a two-hop network. We present a graphical model to understand the inference process nodes execute to police their downstream neighbors; as well as to compute, analyze, and approximate the probabilities of misdetection and false detection. In addition, we present an algebraic analysis of the performance using an hypothesis testing framework that provides exact formulae for probabilities of false detection and misdetection. We then extend the algebraic watchdog to a more general network setting, and propose a protocol in which we can establish trust in coded systems in a distributed manner. We develop a graphical model to detect the presence of an adversarial node downstream within a general multi-hop network. The structure of the graphical model (a trellis) lends itself to well-known algorithms, such as the Viterbi algorithm, which can compute the probabilities of misdetection and false detection. We show analytically that as long as the min-cut is not dominated by the Byzantine adversaries, upstream nodes can monitor downstream neighbors and allow reliable communication with certain probability. Finally, we present simulation results that support our analysis.Comment: 10 pages, 10 figures, Submitted to IEEE Journal on Selected Areas in Communications (JSAC) "Advances in Military Networking and Communications

    Queueing analysis of wireless network coding

    Get PDF
    We consider a wireless communication device that uses network coding and acts as a relay for two connections. We analyze a two-dimensional continuous-time queueing model of the system and show that steady-state performance can be expressed in the solution of a Riemann-Hilbert boundary value problem. From this solution we derive the expected energy consumption and expected packet delay
    • ā€¦
    corecore