
1

Algebraic Watchdog: Mitigating Misbehavior in
Wireless Network Coding

MinJi Kim∗, Muriel Médard∗, João Barros†

Abstract—We propose a secure scheme for wireless network
coding, called the algebraic watchdog. By enabling nodes to detect
malicious behaviors probabilistically and use overheard messages
to police their downstream neighbors locally, the algebraic
watchdog delivers a secure global self-checking network. Unlike
traditional Byzantine detection protocols which are receiver-
based, this protocol gives the senders an active role in checking
the node downstream. The key idea is inspired by Marti et al.’s
watchdog-pathrater, which attempts to detect and mitigate the
effects of routing misbehavior.

As an initial building block of a such system, we first focus on
a two-hop network. We present a graphical model to understand
the inference process nodes execute to police their downstream
neighbors; as well as to compute, analyze, and approximate the
probabilities of misdetection and false detection. In addition,
we present an algebraic analysis of the performance using an
hypothesis testing framework that provides exact formulae for
probabilities of false detection and misdetection.

We then extend the algebraic watchdog to a more general
network setting, and propose a protocol in which we can establish
trust in coded systems in a distributed manner. We develop a
graphical model to detect the presence of an adversarial node
downstream within a general multi-hop network. The structure
of the graphical model (a trellis) lends itself to well-known
algorithms, such as the Viterbi algorithm, which can compute
the probabilities of misdetection and false detection. We show
analytically that as long as the min-cut is not dominated by the
Byzantine adversaries, upstream nodes can monitor downstream
neighbors and allow reliable communication with certain prob-
ability. Finally, we present simulation results that support our
analysis.

I. INTRODUCTION

There have been numerous contributions to secure wireless
networks, including key management, secure routing, Byzan-
tine detection, and various protocol designs (for a general
survey on this topic, see [1][2][3][4][5][6][7][8]). Countering
these types of threats is particularly important in military
communications and networking, which are highly dynamic
in nature and must not fail when adversaries succeed in
compromising some of the nodes in the network. We consider
the problem of Byzantine detection. The traditional approach is
receiver-based – i.e. the receiver of the corrupted data detects
the presence of an upstream adversary. However, this detection
may come too late as the adversary is partially successful in
disrupting the network (even if it is detected). It has wasted

This work was partially presented at IEEE ISIT 2009 (Seoul, Korea) titled
“An Algebraic Watchdog for Wireless Network Coding”, and at IEEE ITW
2010 (Dublin, Ireland) titled “A Multi-hop Multi-source Algebraic Watchdog”.∗M. Kim and M. Médard ({minjikim, medard}@mit.edu) are with the
Research Laboratory of Electronics at the Massachusetts Institute of Tech-
nology, MA USA. †J. Barros (jbarros@fe.up.pt) is with the Instituto de
Telecommunicações, Faculdade de Engenharia da Universidade do Porto,
Portugal.

network bandwidth, while the source is still unaware of the
need for retransmission.

Reference [9] introduces a protocol for routing wireless net-
works, called the watchdog and pathrater, in which upstream
nodes police their downstream neighbors using promiscuous
monitoring. Promiscuous monitoring means that if a node v
is within range of a node v′, it can overhear communication
to and from v′ even if those communication do not directly
involve v. This scheme successfully detects adversaries and
removes misbehaving nodes from the network by dynamically
adjusting the routing paths. However, the protocol requires a
significant overhead (12% to 24%) owing to increased control
traffic and numerous cryptographic messages [9].

Our goal is to design and analyze a watchdog-inspired
protocol for wireless networks using network coding. We
propose a new scheme called the algebraic watchdog, in
which nodes can detect malicious behaviors probabilistically
by taking advantage of the broadcast nature of the wireless
medium. Although we focus on detecting malicious or mis-
behaving nodes, the same approach can be applied to faulty
or failing nodes. Our ultimate goal is a robust self-checking
network. The key difference between the our work [10] and
that of [9] is that we allow network coding. Network coding
[11][12] is advantageous as it not only increases throughput
and robustness against failures and erasures but also it is
resilient in dynamic/unstable networks where state information
may change rapidly or may be hard to obtain.

The key challenge in algebraic watchdog is that, by incor-
porating network coding, we can no longer recognize packets
individually. In [9], a node v can monitor its downstream
neighbor v′ by checking that the packet transmitted by v′ is
a copy of what v transmitted to v′. However, with network
coding, this is no longer possible as transmitted packets are a
function of the received packets. Furthermore, v may not have
full information regarding the packets received at v′; thus,
node v is faced with the challenge of inferring the packets
received at v′ and ensuring that v′ is transmitting a valid
function of the received packets. We note that [13] combines
source coding with watchdog; thus, [13] does not face the
same problem as the algebraic watchdog.

The paper is organized as follows. In Section II, we briefly
discuss the intuition behind algebraic watchdog. In Section III,
we present the background and related material. In Section
IV, we introduce our problem statement and network model.
In Section V, we analyze the protocol for a simple two-hop
network, first algebraically in Section V-B and then graphically
in Section V-A. In Section VI, we extend the analysis for
algebraic watchdog to a more general two-hop network, and
in Section VIII, we present an algebraic watchdog protocol for
a multi-hop network. We present simulation results in Section

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/9342663?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

S
0v

1

v
2

v
3

v
5

v
6

v
7

S
1

v
4

v
8

Fig. 1: An example network.

IX, which confirm our analysis and show that an adversary
within the network can be detected probabilistically by up-
stream nodes. In Section X, we summarize our contribution
and discuss some future work.

II. INTUITION

Consider a network in which the sources are well-behaving
(If the sources are malicious, there is no “uncorrupted” in-
formation flow to protect). In such a case, the sources can
monitor their downstream neighbors as shown in Figure 1.
Assume that nodes v1, v2, v3, and v4 are sources. Nodes in
S0 = {v1, v2, v3} can monitor v5 collectively or indepen-
dently. In addition, v3 and v4 can monitor v6. This enforces
v5 and v6 to send valid information. Note that we do not make
any assumption on whether v5 and v6 are malicious or not –
they are forced to send valid information regardless of their
true nature.

If it is the case that v5 and v6 are well-behaving, then we can
employ the same scheme at v5 or v6 to check v7’s behavior.
Thus, propagating trust within the network. Now, what if v5
or v6 are malicious? If both v5 and v6 are malicious, all flows
to v7 are controlled by malicious nodes – i.e. flows through
v7 are completely compromised. Therefore, even if v7 is well-
behaving, there is nothing that v7 or v1, v2, v3, v4 can do to
protect the flow through v7. The only solution in this case
would be to physically remove v5 and v6 from the network or
to construct a new path to v7.

The intuition is that as long as the min-cut to any node is
not dominated by malicious nodes, then the remaining well-
behaving nodes can check its neighborhood and enforce that
the information flow is delivered correctly to the destination.
For example, assume that only v6 is malicious and v5 is well-
behaving in Figure 1. Since v3 and v4 monitor v6, we know
that despite v6 being malicious, v6 is forced to send valid
information. Then, v7 receives two valid information flows,
which it is now responsible of forwarding. If v7 is well-
behaving, we do not have any problem. If v7 is malicious,
it may wish to inject errors to the information flow. In this
case, v7 is only liable to v5; but it is liable to at least one
well-behaving node v5. Thus, it is not completely free to inject
any error it chooses; it has to ensure that v5 cannot detect its
misbehavior, which may be difficult to accomplish.

In this paper, we show that this is indeed the case. We
first start by studying a two-hop network, which would be
equivalent to focusing on the operations performed by nodes
in S0 to check v5. Then, we discuss how we can propagate
this two-hop policing strategy to a multi-hop scenario.

III. BACKGROUND

A. Secure Network Coding

Network coding, first introduced in [11], allows algebraic
mixing of information in the intermediate nodes. This mixing
has been shown to have numerous performance benefits. It is
known that network coding maximizes throughput for mul-
ticast [11] and increases robustness against failures [12] and
erasures [14]. However, a major concern for network coded
systems is their vulnerability to Byzantine adversaries. A sin-
gle corrupted packet generated by a Byzantine adversary can
contaminate all the information to a destination, and propagate
to other destinations quickly. For example, in random linear
network coding [14], one corrupted packet in a generation (i.e.
a fixed set of packets) can prevent a receiver from decoding
any data from that generation even if all the other packets it
has received are valid.

There are several papers that attempt to address this prob-
lem. One approach is to correct the errors injected by the
Byzantine adversaries using network error correction [15].
Reference [15] bounds the maximum achievable rate in an
adversarial setting, and generalizes the Hamming, Gilbert-
Varshamov, and Singleton bounds. Jaggi et al. [16] propose a
distributed, rate-optimal, network coding scheme for multicast
network that is resilient in the presence of Byzantine adver-
saries for sufficiently large field and packet size. Reference
[17] generalizes [16] to provide correction guarantees against
adversarial errors for any given field and packet size. In
[18], Kim et al. compare the cost and benefit associated with
these Byzantine detection schemes in terms of transmitted bits
by allowing nodes to employ the detection schemes to drop
polluted data.

B. Secure Routing Protocol: Watchdog and Pathrater

The problem of securing networks in the presence of Byzan-
tine adversaries has been studied extensively, e.g. [5][6][7][8].
The watchdog and pathrater [9] are two extensions to the
Dynamic Source Routing [19] protocol that attempt to detect
and mitigate the effects of routing misbehavior. The watchdog
detects misbehavior based on promiscuous monitoring of the
transmissions of the downstream node to confirm if this relay
correctly forwards the packets it receives. If a node bound
to forward a packet fails to do so after a certain period of
time, the watchdog increments a failure rating for that node
and a node is deemed to be misbehaving when this failure
rating exceeds a certain threshold. The pathrater then uses the
gathered information to determine the best possible routes by
avoiding misbehaving nodes. This mechanism, which does not
punish these nodes (it actually relieves them from forwarding
operations), provides an increase in the throughput of networks
with misbehaving nodes [9].

C. Hypothesis Testing

Hypothesis testing is a method of deciding which of the two
hypotheses, denoted H0 and H1, is true, given an observation
denoted as U . In this paper, H0 is the hypothesis that v is well-
behaving, H1 is that v is malicious, and U is the information

3

gathered from overhearing. The observation U is distributed
differently depending whether H0 or H1 is true, and these
distributions are denoted as PU |H0

and PU |H1
respectively.

An algorithm is used to choose between the hypotheses
given the observation U . There are two types of error associ-
ated with the decision process:

• Type 1 error, False detection: Accepting H1 when H0 is
true (i.e. considering a well-behaving v to be malicious),
and the probability of this event is denoted γ.

• Type 2 error, Misdetection: Accepting H0 when H1 is
true (i.e. considering a malicious v to be well-behaving),
and the probability of this event is denoted β.

The Neyman-Pearson theorem gives the optimal decision rule
that given the maximal tolerable β, we can minimize γ by
accepting hypothesis H0 if and only if log

PU|H0

PU|H1

≥ t for
some threshold t dependant on γ. For more thorough survey
on hypothesis testing in the context of authentication, see [20].

IV. PROBLEM STATEMENT

We shall use elements from a field, and their bit-
representation. We use the same character in italic font (i.e.
x) for the field element, and in bold font (i.e. x) for the
bit-representation. We use underscore bold font (i.e. x) for
vectors. For arithmetic operations in the field, we shall use
the conventional notation (i.e. +,−, ·). For bit-operation, we
shall use ⊕ for addition, and ⊗ for multiplication.

We also require polynomial hash functions defined as fol-
lows (for a more detailed discussion on this topic, see [21]).

Definition 4.1 (Polynomial hash functions): For a finite
field F and d ≥ 1, the class of polynomial hash functions
on F is defined as follows:

Hd(F) = {ha|a = 〈a0, ..., ad〉 ∈ Fd+1},
where ha(x) =

∑d
i=0 aix

i for x ∈ F.
We model a wireless network with a hypergraph G =

(V,E1, E2), where V is the set of the nodes in the network,
E1 is the set of hyperedges representing the connectivity
(wireless links), and E2 is the set of hyperedges represent-
ing the interference. We use the hypergraph to capture the
broadcast nature of the wireless medium. If (v1, v2) ∈ E1

and (v1, v3) ∈ E2 where v1, v2, v3 ∈ V , then there is an
intended transmission from v1 to v2, and v3 can overhear
this transmission (possibly incorrectly). There is a certain
transition probability associated with the interference channels
known to the nodes, and we model them with binary channels,
BSC(pij) for (vi, vj) ∈ E2.

A node vi ∈ V transmits coded information xi by trans-
mitting a packet pi, where pi = [ai,hIi ,hxi

,xi] is a {0, 1}-
vector. A valid packet pi is defined as below:

• ai corresponds to the coding coefficients αj , j ∈ Ii,
where Ii ⊆ V is the set of nodes adjacent to vi in E1,

• hIi corresponds to the hash h(xj), vj ∈ Ii where h(·) is
a δ-bit polynomial hash function,

• hxi
corresponds to the polynomial hash h(xi),

• xi is the n-bit representation of xi =
∑

j∈I αjxj ∈
(F2n).

x
i

a
i

h
Ii

h
xi

Protected with error

correcting codes
xi=

�
aj xj

Fig. 2: A valid packet pi sent by well-behaving vi.

Figure 2 illustrates the structure of a valid packet. For simplic-
ity, we assume the payload xi to be a single symbol. We design
and analyze our protocol for a single symbol. However, the
protocol applies (and therefore, the analysis) to packets with
multiple symbols by applying the protocol on each symbol
separately.

The payload xi is coded with a (n, ki)-code Ci with
minimum distance di. Code Ci is an error-correcting code of
rate Ri =

ki

n = 1− di

n , and is tailored for the forward commu-
nication. For instance, v1 uses code C1, chosen appropriately
for the channel (v1, vj) ∈ E1, to transmit the payload x1.

We assume that the payload xi is n-bits, and the hash h(·) is
δ-bits. We assume that the hash function used, h(·), is known
to all nodes, including the adversary. In addition, we assume
that ai, hIi and hxi

are part of the header information, and are
sufficiently coded to allow the nodes to correctly receive them
even under noisy channel conditions. Protecting the header
sufficiently will induce some overhead, but the assumption
remains a reasonable one to make. First, the header is smaller
than the message itself. Second, even in the routing case, the
header and the state information need to be coded sufficiently.
Third, the hashes hIi and hxi

are contained within one hop.
A node that receives pi = [ai,hIi ,hxi

,xi] does not need to
repeat hIi , only hxi

. Therefore, the overhead associated with
the hashes is proportional to the in-degree of a node, and does
not accumulate with the routing path length.

Assume that vi transmits pi = [ai,hIi ,hxi
, x̂i], where x̂i =

xi ⊕ e, e ∈ {0, 1}n. If vi is misbehaving, then e 6= 0. Our
goal is to detect with high probability when e 6= 0. Even if
|e| is small (i.e. the hamming distance between x̂i and xi is
small), the algebraic interpretation of x̂i and xi may differ
significantly. For example, consider n = 4, x̂i = [0000], and
xi = [1000]. Then, e = [1000] and |e| = 1. However, the
algebraic interpretations of x̂i and xi are 0 and 8, respectively.
Thus, even a single bit flip can alter the message significantly.

A. Threat Model
We assume powerful adversaries, who can eavesdrop their

neighbor’s transmissions, has the power to inject or corrupt
packets, and are computationally unbounded. Thus, the adver-
sary will find x̂i that will allow its misbehavior to be unde-
tected, if there is any such x̂i. However, the adversary does not
know the specific realization of the random errors introduced
by the channels. We denote the rate at which an adversary
injects error (i.e. performs bit flips to the payload) to be padv .
The adversaries’ objective is to corrupt the information flow
without being detected by other nodes.

Our goal is to detect probabilistically a malicious behavior
that is beyond the channel noise, represented by BSC(pik).
Note that the algebraic watchdog does not completely elim-
inate errors introduced by the adversaries; its objective is to

4

v
1

v
2

v
m-1

v
m

p1

p2

pm-1

pm

v
m+1

v
m+2

pm+1

edges in E
2

edges in E
1

Fig. 3: A small neighborhood of a wireless network with v1.
v

1

v
2

p1

p2

v
3

v
4

p3

edges in E
2

edges in E
1

Fig. 4: A wireless network with m = 2.

limit the errors introduced by the adversaries to be at most
that of the channel. Channel errors (or those introduced by
adversaries below the channel noise level) can be corrected
using appropriate error correction schemes, which will be
necessary even without Byzantine adversaries in the network.

The notion that adversarial errors should sometimes be
treated as channel noise has been introduced previously in
[18]. Under heavy attack, attacks should be treated with special
attention; while under light attack, the attacks can be treated
as noise and corrected using error-correction schemes. The
results in this paper partially reiterate this idea.

V. TWO-HOP NETWORK: AN EXAMPLE

Consider a network (or a small neighborhood of nodes in a
larger network) with nodes v1, v2, ...vm, vm+1, vm+2. Nodes
vi, i ∈ [1,m], want to transmit xi to vm+2 via vm+1. A
single node vi, i ∈ [1,m], cannot check whether vm+1 is
misbehaving or not even if vi overhears xm+1, since without
any information about xj for j ∈ [1,m], xm+1 is completely
random to vi. On the other hand, if vi knows xm+1 and xj

for all j ∈ [1,m], then vi can verify that vm+1 is behaving
with certainty; however, this requires at least m−1 additional
reliable transmissions to vi.

We take advantage of the wireless setting, in which nodes
can overhear their neighbors’ transmissions. In Figure 3, we
use the solid lines to represent the intended channels E1, and
dotted lines for the interference channels E2 which we model
with binary channels as mentioned in Section IV. Each node
checks whether its neighbors are transmitting values that are
consistent with the gathered information. If a node detects that
its neighbor is misbehaving, then it can alert other nodes in
the network and isolate the misbehaving node.

In the next subsections, we shall use an example with m =
2, as shown Figure 4. We introduce the graphical model which
explains how a node vi checks its neighbor’s behavior. Then,
we use an algebraic approach to analyze and compute γ and
β for this example network with m = 2. In this section, we
assume for simplicity that nodes do not code the payload –
i.e. an error-correcting code of rate Ri = 1 is used.

Layer 1

[x�2,h(x2)]

Layer 2

x2

Start

node

Layer 4

[x�3,h(x3)]

Layer 3

x3

End

node

Fig. 5: A graphical model from v1’s perspective

Note that a malicious v3 would not inject errors in hx3 only,
because the destination v4 can easily verify if hx3 is equal
to h(x3). Therefore, hx3 and x3 are consistent. In addition,
v3 would not inject errors in hxj

, j ∈ I3, as each node vj
can verify the hash of its message. On the other hand, a
malicious v3 can inject errors in a3, forcing v4 to receive
incorrect coefficients α̃j’s instead of αj’s. However, any error
introduced in a3 can be translated to errors in x3 by assuming
that α̃j’s are the correct coding coefficients. Therefore, we are
concerned only with the case in which v3 introduces errors in
x3 (and therefore, in hx3 such that hx3 = h(x3)).

A. Graphical model approach

We present a graphical approach to model the problem for
m = 2 systematically, and to explain how a node may check
its neighbors. This approach may be advantageous as it lends
easily to already existing graphical model algorithms as well
as some approximation algorithms.

We shall consider the problem from v1’s perspective. As
shown in Figure 6, the graphical model has four layers:
Layer 1 contains 2n+h vertices, each representing a bit-
representation of [x̃2,h(x2)]; Layer 2 contains 2n vertices,
each representing a bit-representation of x2; Layer 3 contains
2n vertices corresponding to x3; and Layer 4 contains 2n+h

vertices corresponding to [x̃3,h(x3)]. Edges exist between
adjacent layers as follows:

• Layer 1 to Layer 2: An edge exists between a vertex
[v,u] in Layer 1 and a vertex w in Layer 2 if and only if
h(w) = u. The edge weight is normalized such that the
total weight of edges leaving [v,u] is 1, and the weight
is proportional to:

P(v| Channel statistics and w is the original message),

which is the probability that the inference channel outputs
message v given an input message w.

• Layer 2 to Layer 3: The edges represent a permutation.
A vertex v in Layer 2 is adjacent to a vertex w in Layer
3 if and only if w = c + α2v, where c = α1x1 is a
constant, v and w are the bit-representation of v and w,
respectively. The edge weights are all 1.

• Layer 3 to Layer 4: An edge exists between a vertex v
in Layer 3 and a vertex [w,u] in Layer 4 if and only if
h(v) = u. The edge weight is normalized such that the
total weight leaving v is 1, and is proportional to:

P(w| Channel statistics and v is the original message).

Node v1 overhears the transmissions from v2 to v3 and from
v3 to v4; therefore, it receives [x̃2,h(x2)] and [x̃3,h(x3)],

5

corresponding to the starting point in Layer 1 and the desti-
nation point in Layer 4 respectively. By computing the sum
of the product of the weights of all possible paths between the
starting and the destination points, v1 computes the probability
that v3 is consistent with the information gathered.

This graphical model illustrates sequentially and visually
the inference process v1 executes. Furthermore, by using
approximation algorithms and pruning algorithms, we may be
able to simplify the computation as well as the structure of
the graph. In addition, the graphical approach may be extend
to larger networks, as we shall discuss in Section VI.

B. Algebraic approach

We explain the inference process described above using the
graphical model introduced in Section V-A. Consider v1. By
assumption, v1 correctly receives a2, a3, hI2 , hI3 , hx2 , and
hx3 . In addition, v1 receives x̃2 = x2 + e′ and x̃3 = x3 + e′′,
where e′ and e′′ are outcomes of the interference channels.
Given x̃j for j = {2, 3} and the transition probabilities, v1
computes rj→1 such that the sum of the probability that the
interference channel from vj and v1 outputs x̃j given x ∈
B(x̃j, rj→1) is greater or equal to 1− ε where ε is a constant,
and B(x, r) is a n-dimensional ball of radius r centered at x.
Now, v1 computes X̃j = {x | h(x) = h(xj)} ∩ B(x̃j, rj→1)
for j = {2, 3}. Then, v1 computes α1x1+α2x̂ for all x̂ ∈ X̃2.
Then, v1 intersects X̃3 and the computed α1x1+α2x̂’s. If the
intersection is empty, then v1 claims that R is misbehaving.

The set {x | h(x) = h(x2)} represents the Layer 2 vertices
reachable from the starting point ([x̃2,h(x2)] in Layer 1),
and X̃2 is a subset of the reachable Layer 2 vertices such
that the total edge weight (which corresponds to the transition
probability) from the starting point is greater than 1 − ε.
Then, computing α1x1+α2x̂ represents the permutation from
Layers 2 to 3. Finally, the intersection with X̃3 represents
finding a set of Layer 3 vertices such that they are adjacent to
the destination point ([x̃3,h(x3)] in Layer 4) and their total
transition probability to the destination point is greater than
1− ε.

Lemma 5.1: For n sufficiently large, the probability of false
detection, γ ≤ ε for any arbitrary small constant ε.

Proof: Assume that v3 is not malicious, and transmits x3

and hx3 consistent with v4’s check. Then, for n sufficiently
large, v1 can choose r2→1 and r3→1 such that the probability
that the bit representation of x3 = α1x1 + α2x2 is in X̃3 and
the probability that x2 ∈ X̃2 are greater than 1− ε. Therefore,
X̃3 ∩{α1x1 +α2x̂ | ∀x̂ ∈ X̃2} 6= ∅ with probability arbitrary
close to 1. Therefore, a well-behaving v3 passes v1’s check
with probability at least 1− ε. Thus, γ ≤ ε.

Lemma 5.2: The probability that a malicious v3 is unde-
tected from v1’s perspective is given by

min

{
1,

∑r1→2

k=0

(
n
k

)

2(h+n)
·
∑r2→1

k=0

(
n
k

)

2(h+n)
·
∑r3→1

k=0

(
n
k

)

2h

}
.

Proof: Assume that v3 is malicious and injects errors
into x3. Consider an element z ∈ X̃3, where z = α1x1 +
α2x2+ e = α1x1+α2(x2+ e2) for some e and e2. Note that,
since we are using a field of size 2n, multiplying an element

from the field by a randomly chosen constant has the effect
of randomizing the product. Here, we consider two cases:

Case 1: If x2 + e2 /∈ X̃2, then v3 fails v1’s check.
Case 2: If x2+e2 ∈ X̃2, then v3 passes v1’s check; however,

v3 is unlikely to pass v2’s check. This is because α1x1 +
α2(x2+e2) = α1x1+α2x2+α2e2 = α1(x1+e1)+α2x2 for
some e1. Here, for uniformly random α1 and α2, e1 is also
uniformly random. Therefore, the probability that v3 will pass
is the probability that the uniformly random vector x1 + e1
belongs to X̃1 = {x | h(x) = h(x1)}∩B(x̃1, r1→2) where v2
overhears x̃1 from v1, and the probability that the interference
channel from v1 to v2 outputs x̃1 given x ∈ B(x̃1, r1→2) is
greater than 1− ε.

P(A malicious v3 passes v2’s check)

= P(x1 + e1 ∈ X̃1) =
V ol(X̃1)

2n
,

where V ol(·) is equal to the number of {0, 1}-vectors in the
given set. Since V ol(B(x, r)) =

∑r
k=0

(
n
k

) ≤ 2n, and the
probability that h(x) is equal to a given value is 1

2h
, V ol(X̃1)

is given as follows:

V ol(X̃1) =
V ol(B(x̃1, r1→2))

2h
=

∑r1→2
k=0

(
n
k

)

2h
.

Therefore, from v1’s perspective, the probability that a z ∈ X̃3

passes the checks, P(z passes check), is:

0 ·P(x2 + e2 /∈ X̃2) +

∑r1→2

k=0

(
n
k

)

2(h+n)
·P(x2 + e2 ∈ X̃2).

Similarly, P(x2 + e2 ∈ X̃2) =
∑r2→1

k=0 (nk)
2(h+n) , and V ol(X̃3) =∑r3→1

k=0 (nk)
2h

. Then, the probability that v3 is undetected from
v1’s perspective is the probability that at least one z ∈ X̃3

passes the check:

P(A malicious v3 is undetected from v1’s perspective)

= min{1,P(z passes check) · V ol(X̃3)}.
Note that P(z passes check) · V ol(X̃3) is the expected num-
ber of z ∈ X̃3 that passes the check; thus, given a high
enough P(z passes check), would exceed 1. Therefore, we
take min{1,P(z passes check) · V ol(X̃3)} to get a valid
probability. This proves the statement.

Lemma 5.3: The probability that a malicious v3 is unde-
tected from v2’s perspective is given by

min

{
1,

∑r1→2

k=0

(
n
k

)

2(h+n)
·
∑r2→1

k=0

(
n
k

)

2(h+n)
·
∑r3→2

k=0

(
n
k

)

2h

}
,

where v2 overhears x̃3 from v3, and the probability that
the interference channel from v3 to v2 outputs x̃3 given
x ∈ B(x̃3, r3→2) is greater than 1− ε.

Proof: By similar analysis as in proof of Lemma 5.2.
Theorem 5.1: The probability of misdetection, β, is:

β = min

{
1,

∑r1→2

k=0

(
n
k

)

2(h+n)
·
∑r2→1

k=0

(
n
k

)

2(h+n)
· 1

2h

r∑

k=0

(
n

k

)}
,

where r = min{r3→1, r3→2}.

6

Proof: The probability of misdetection is the minimum
of the probability that v1 and v2 do not detect a malicious v3.
Therefore, by Lemma 5.2 and 5.3, the statement is true.

Theorem 5.1 shows that the probability of misdetection
β decreases with the hash size, as the hashes restrict the
space of consistent codewords. In addition, since r1→2, r2→1,
r3→1, and r3→2 represent the uncertainty introduced by the
interference channels, β increases with them. Lastly and the
most interestingly, β decreases with n, since

∑r
k=0

(
n
k

)
< 2n

for r < n. This is because network coding randomizes the
messages over a field whose size is increasing exponentially
with n, and this makes it difficult for an adversary to introduce
errors without introducing inconsistencies.

We can apply Theorem 5.1 even when v1 and v2 can-
not overhear each other. In this case, both r1→2 and r2→1

equal to n, giving the probability of misdetection, β =
min{1,∑r

k=0

(
n
k

)
/8h} where r = min{r3→1, r3→2}. Here,

β highly depends on h, the size of the hash, as v1 and v2 are
only using their own message and the overheard hashes.

The algebraic approach results in an analysis with exact
formulae for γ and β. In addition, these formulae are con-
ditional probabilities; as a result, they hold regardless of a
priori knowledge of whether v3 is malicious or not. However,
performing algebraic analysis is not very extensible with
growing m.

VI. ALGEBRAIC WATCHDOG FOR TWO-HOP NETWORK

We extend the algebraic watchdog to a more general two-
hop network, as in Figure 3. We shall develop upon the trellis
introduced in Section V, and formally present a graphical
representation of the inference process performed by a node
performing algebraic watchdog on its downstream neighbor.

There are three main steps in performing the algebraic
watchdog. First, we need to infer the original messages from
the overheard information, which is captured by the transition
matrix in Section VI-A. The second step consists of forming
an opinion regarding what the next-hop node vm+1 should be
sending, which is inferred using a trellis structure as shown
in Section VI-B and a Viterbi-like algorithm in Section VI-C.
Finally, we combine the inferred information with what we
overhear from vm+1 to make a decision on how vm+1 is
behaving, as discussed in Section VI-D. Figure 6 illustrates
these three steps.

A. Transition matrix

We define a transition matrix Ti to be a 2n(1−H(
di
n))+δ ×

2n(1−H(
di
n)) matrix, where H(·) is the entropy function.

Ti(x̃i, y) =

{
pi(x̃i,y)

N , if h(y) = h(xi)

0, otherwise
,

pi(x̃i, y) = p
∆(x̃i,y)
i1 (1− pi1)

n−∆(x̃i,y),

N =
∑

{y|h(y)=h(xi)}
pi(x̃i, y),

where ∆(x,y) gives the Hamming distance between code-
words x and y. In other words, v1 computes X̃i = {x|h(x) =
h(xi)} to be the list of candidates of xi. For any overheard

pair [x̃i,h(xi)], there are multiple candidates of xi (i.e. |X̃i|)
although the probabilities associated with each inferred xi are
different. This is because there are uncertainties associated
with the wireless medium, represented by BSC(pi1).

For each x ∈ X̃i, pi(x̃i, x) gives the probability of x being
the original codeword sent by node vi given that v1 overheard
x̃i under BSC(pi1). Since we are only considering x ∈ X̃i,
we normalize the probabilities using N to get the transition
probability Ti(x̃i, x). Note Ti(x̃i, y) = 0 if h(y) 6= h(xi).

The structure of Ti heavily depends on the collisions of
the hash function h(·) in use. Note that the structure of Ti

is independent of i, and therefore, a single transition matrix
T can be precomputed for all i ∈ [1,m] given the hash
function h(·). A graphical representation of T is shown in
Figure 6a. For simplicity of notation, we represent T as a
matrix; however, the transition probabilities can be computed
efficiently using hash collision lists as well.

B. Watchdog trellis

Node v1 uses the information gathered to generate a trellis,
which is used to infer the valid linear combination that
vm+1 should transmit to vm+2. As shown in Figure 6b, the
trellis has m layers: each layer may contain up to 2n states,
each representing the inferred linear combination so far. For
example, Layer i consist of all possible values of

∑i
j=1 αjxj .

The matrices Ti, i ∈ [2,m], defines the connectivity of the
trellis. Let s1 and s2 be states in Layer i − 1 and Layer i,
respectively. Then, an edge (s1, s2) exists if and only if

∃ x such that s1 + αix = s2, Ti(x̃i, x) 6= 0.

We denote we(·, ·) to be the edge weight, where we(s1, s2) =
Ti(x̃i, x) if edge (s1, s2) exists, and zero otherwise.

C. Viterbi-like algorithm

We denote w(s, i) to be the weight of state s in Layer i.
Node v1 selects a start state in Layer 1 corresponding to α1x1,
as shown in Figure 6. The weight of Layer 1 state is w(s, 1) =
1 if s = α1x1, zero otherwise. For the subsequent layers,
multiple paths can lead to a given state, and the algorithm
keeps the aggregate probability of reaching that state. To be
more precise, w(s, i) is:

w(s, i) =
∑

∀s′∈Layer i−1

w(s′, i− 1) · we(s
′, s).

By definition, w(s, i) is equal to the total probability of
s =

∑i
j=1 αjxj given the overheard information. Therefore,

w(s,m) gives the probability that s is the valid linear com-
bination that vm+1 should transmit to vm+2. It is important
to note that w(s,m) is dependent on the channel statistics,
as well as the overheard information. For some states s,
w(s,m) = 0, which indicates that state s can not be a valid
linear combination; only those states s with w(s,m) > 0 are
the inferred candidate linear combinations.

The algorithm introduced above is a dynamic program, and
is similar to the Viterbi algorithm. Therefore, tools developed
for dynamic programming/Viterbi algorithm can be used to
compute the probabilities efficiently.

7

Overheard

information

[
��

i,h(xi)]

Inferred

information

xi

Start node

(Overheard)

Layer 1�
1x1

Start

state

Layer 2�
1x1 +

�
2x2

Layer 3�
1x1 +

�
2x2 +

�
3x3

Layer m-1�
1
�

i
�

m-1
�

ixi

Layer m�
1
�

i
�

m
�

ixi

Overheard

information���
m+1,h(xm+1)]

Inferred

information

xm+1

End node

(Overheard)

s1

s2

s3
Inferred

linear

combinations�
1
�

i
�

m � ixi

(a) Transition matrix Ti(
	

i,xi) (b) Trellis for Algebraic Watchdog (c) Inverse transition matrix T-1(xm+1,
	

m+1)

Fig. 6: Graphical representation of the inference process at node v1. In the trellis, the transition probability from Layer i− 1
to Layer i is given by Ti(x̃i, xi), which is shown in (a).

D. Decision making

Node v1 computes the probability that the overheard x̃m+1

and h(xm+1) are consistent with the inferred w(·,m) to make
a decision regarding vm+1’s behavior. To do so, v1 constructs
an inverse transition matrix T−1, which is a 2n(1−

dm+1
n) ×

2n(1−
dm+1

n)+δ matrix whose elements are defined as follows:

T−1(y, x̃m+1) =

{
pm+1(x̃m+1,y)

M , if h(y) = h(xm+1)

0, otherwise
,

M =
∑

{y|h(y)=h(xm+1)}
pm+1(x̃m+1, y).

Unlike T introduced in Section VI-A, T−1(x, x̃m+1) gives
the probability of overhearing [x̃m+1, h(xm+1)] given that
x ∈ {y|h(y) = h(xm+1)} is the original codeword sent by
vm+1 and the channel statistics. Note that T−1 is identical
to T except for the normalizing factor M. A graphical
representation of T−1 is shown in Figure 6c.

In Figure 6c, s1 and s3 are the inferred candidate linear
combinations, i.e. w(s1,m) 6= 0 and w(s2,m) 6= 0; the
end node indicates what node v1 has overheard from vm+1.
Note that although s1 is one of the inferred linear combina-
tions, s1 is not connected to the end node. This is because
h(s1) 6= h(xm+1). On the other hand, h(s2) = h(xm+1); as a
result, s2 is connected to the end node although w(s2,m) = 0.
We define an inferred linear combination s as matched if
w(s,m) > 0 and h(s) = h(xm+1).

Node v1 uses T−1 to compute the total probability p∗ of
hearing [x̃m+1, h(xm+1)] given the inferred linear combina-
tions by computing the following equation:

p∗ =
∑

∀s
w(s,m) · T−1(s, x̃m+1).

Probability p∗ is the probability of overhearing x̃m+1 given
the channel statistics; thus, measures the likelihood that vm+1

is consistent with the information gathered by v1. Node v1 can
use p∗ to make a decision on vm+1’s behavior. For example,
v1 can use a threshold decision rule to decide whether vm+1 is
misbehaving or not: v1 claims that vm+1 is malicious if p∗ ≤ t
where t is a threshold value determined by the given channel
statistics; otherwise, v1 claims vm+1 is well-behaving.

Depending on the decision policy used, we can use the
hypothesis testing framework to analyze the probability of
false positive and false negative. Section V provides such

analysis for the simple two-hop network with a simple decision
policy – if the inferred linear combination and the message
overheard from the next hop node is non-empty, we declare the
node well-behaving. However, the main purpose of this paper
is to propose a method in which we can compute p∗, which
can be used to establish trust within a network. We note that it
would be worthwhile to look into specific decision policies and
their performance (i.e. false positive/negative probabilities) as
in [10].

VII. ANALYSIS FOR TWO-HOP NETWORK

We provide an analysis for the performance of algebraic
watchdog for two-hop network.

Theorem 7.1: Consider a two-hop network as shown in
Figure 3. Consider vj , j ∈ [1,m]. Then, the number of
matched codewords is:

2
n
[∑

i 6=j,i∈[1,m+1]

(
H(pij)−H(

di
n)

)
−1

]
−mδ

.

Proof: Without loss of generality, we consider v1. The
proof uses on concepts and techniques developed for list-
decoding [22]. We first consider the overhearing of vk’s trans-
mission, k ∈ [2,m]. Node v1 overhears x̃k from vk. The noise
introduced by the overhearing channel is characterized by
BSC(pk1); thus, E[∆(xk, x̃k)] = npk1. Now, we consider the
number of codewords that are within B(x̃k, npk1), the Ham-
ming ball of radius npk1 centered at x̃k is |B(x̃k, npk1)| =
2n(H(pk1)−H(

dk
n)). Node v1 overhears the hash h(xk); thus,

the number of codewords that v1 considers is reduced to
2n(H(pk1)−H(

dk
n))−δ . Using this information, v1 computes the

set of inferred linear combinations, i.e. s where w(s,m) > 0.
Note that v1 knows precisely the values of x1. Therefore, the
number of inferred linear combinations is upper bounded by:

∏

k∈[2,m]

(
2
n
(
H(pk1)−H(

dk
n)

)
−δ

)
(1)

= 2
n
[∑

k∈[2,m]

(
H(pk1)−H(

dk
n)

)]
−(m−1)δ (2)

Due to the finite field operations, these inferred linear combi-
nations are randomly distributed over the space {0, 1}n.

Now, we consider the overheard information, x̃m+1 from
the downstream node vm+1. By similar analysis as above,
we can derive that there are 2n(H(pm+1,1)−H(

dm+1
n))−δ code-

words in the hamming ball B(x̃m+1, npm+1,1) with hash

8

foreach node v do
According to the schedule, transmit and receive data;
if v decides to check its neighborhood then

Listen to neighbors’ transmissions;
foreach downstream neighbor v′ do

Perform Two-hop Algebraic Watchdog on v′;
end

end
end

Algorithm 1: Distributed algebraic watchdog at v.

value h(xm+1). Thus, the probability that a randomly chosen
codeword in the space of {0, 1}n is in B(x̃m+1, npm+1,1) ∩
{x|h(x) = h(xm+1)} is give by

2n(H(pm+1,1)−H(
dm+1

n))−δ

2n
. (3)

Then, the expected number of matched codewords is the
product of Equations (2) and (3).

If we assume that the hash is of length δ = εn, then the
statement in Theorem 7.1 is equal to:

2
n
[∑

i6=j,i∈[1,m+1] H(pij)−
(∑

i6=j,i∈[1,m+1] H(
di
n)+1+mε

)]
. (4)

This highlights the tradeoff between the quality of overhearing
channel and the redundancy (introduced by Ci’s and the hash
h). If enough redundancy is introduced, then Ci and h together
form an error-correcting code for the overhearing channels;
thus, allows exact decoding to a single matched codeword.

The analysis also shows how adversarial errors can be inter-
preted. Assume that vm+1 wants to inject errors at rate padv .
Then, node v1, although has an overhearing BSC(pm+1,1),
effectively experiences an error rate of padv + pm+1,1 −
padv · pm+1,1. Note that this does not change the set of
the inferred linear combinations; but it affects x̃m+1. Thus,
overall, adversarial errors affect the set of matched codewords
and the distribution of p∗. As we shall see in Section IX, the
difference in distribution of p∗ between a well-behaving relay
and adversarial relay can be used to detect malicious behavior.

VIII. PROTOCOL FOR ALGEBRAIC WATCHDOG

We use the two-hop algebraic watchdog from Section VI
in a hop-by-hop manner to ensure a globally secure network.
In Algorithm 1, we present a distributed algorithm for nodes
to secure the their local neighborhood. Each node v trans-
mits/receives data as scheduled; however, node v randomly
chooses to check its neighborhood, at which point node v
listens to neighbors transmissions to perform the two-hop
algebraic watchdog from Section VI.

Corollary 8.1: Consider vm+1 as shown in Figure 3. As-
sume that the downstream node vm+2 is well-behaving, and
thus, forces hxm+1 = h(xm+1). Let pi be the packet received
by vm+1 from parent node vi ∈ P (v). Then, if there exists at
least one well-behaving parent vj ∈ P (v), vm+1 cannot inject
errors beyond the overhearing channel noise (pm+1,j) without
being detected.

Section VII noted that presence of adversarial error (at a rate
above the channel noise) can be detected by a change in dis-
tribution of p∗. Corollary 8.1 does not make any assumptions
on whether packets pi’s are valid or not. Instead, the claim
states that vm+1 transmits a valid packet given the packets pi

it has received.
Corollary 8.2: Node v can inject errors beyond the channel

noise only if either of the two conditions are satisfied:
1) All its parent nodes P (v) = {u|(u, v) ∈ E1} are

colluding Byzantine nodes;
2) All its downstream nodes, i.e. receivers of the transmis-

sion pi, are colluding Byzantine nodes.
Remark: In Case 1), v is not responsible to any well-

behaving nodes. Node v can transmit any packet without
the risk of being detected by any well-behaving parent node.
However, then, the min-cut to v is dominated by adversaries,
and the information flow through v is completely compromised
– regardless of whether v is malicious or not.

In Case 2), v can generate any hash value since its down-
stream nodes are colluding adversaries. Thus, it is not liable to
transmit a consistent hash, which is necessary for v’s parent
nodes to monitor v’s behavior. However, note that v is not
responsible in delivering any data to a well-behaving node.
Even if v were well-behaving, it cannot reach any well-
behaving node without going through a malicious node in
the next hop. Thus, the information flow through v is again
completely compromised.

Therefore, Corollary 8.2 shows that the algebraic watchdog
can aid in ensuring correct delivery of data when the following
assumption holds: for every intermediate node v in the path
between source to destination, v has at least one well-behaving
parent and at least one well-behaving child – i.e. there exists
at least a path of well-behaving nodes. This is not a trivial
result as we are not only considering a single-path network,
but also multi-hop, multi-path network.

IX. SIMULATIONS

We present MATLAB simulation results that show the
difference in distribution of p∗ between the well-behaving and
adversarial relay. We consider a setup in Figure 3. We set all
pi1, i ∈ [2,m] to be equal, and we denote this probability as
ps = pi1 for all i. We denote padv to be the probability at
which the adversary injects error; thus, the effective error that
v1 observes from an adversarial relay is combined effect of
pm+1,1 and padv . The hash function h(x) = ax+ b mod 2δ

is randomly chosen over a, b ∈ Fδ
2.

We set n = 10; thus, the coding field size is 210. A typical
packet can have a few hundreds to tens of thousand bits.
Thus, a network coded packet with n = 10 could have a few
tens to a few thousands of symbols over which to perform
algebraic watchdog. It may be desirable to randomize which
symbols a node performs algebraic watchdog on, or when to
perform algebraic watchdog. This choice depends not only on
the security requirement, but also on the computational and
energy budget of the node.

For each set of parameters, we randomly generate symbols
from F210 (n = 10 bits) and run algebraic watchdog. For

9

each symbol, under a non-adversarial setting, we assume
that only channel randomly injects bit errors to the symbol;
under adversarial setting, both the channel and the adversary
randomly inject bit errors to the symbol. For each set of
parameters, we run the algebraic watchdog 1000 times. Thus,
this is equivalent to running the algebraic watchdog on a
moderately-sized packet (10,000 bits) or over several smaller
packets, which are network coded using field size of F210 .

For simplicity, nodes in the simulation do not use error-
correcting codes; thus, di = 0 for all i. This limits the power of
the algebraic watchdog; thus, the results shown can be further
improved by using error correcting codes Ci.

We denote p∗adv and p∗relay as the value of p∗ when the relay
is adversarial and is well-behaving, respectively. We denote
varadv and varrelay to be the variance of p∗adv and p∗relay . We
shall show results that show the difference in distribution of
p∗adv and p∗relay from v1’s perspective. Note that this illustrates
that only one good parent node, i.e. v1 in our simulations, is
sufficient to notice the difference in distribution of p∗adv and
p∗relay . Thus, confirming our analysis in Section VIII. With
more parent nodes performing the check independently, we
can improve the probability of detection.

Our simulation results coincide with our analysis and in-
tuition. Figure 7 shows that adversarial above the channel
noise can be detected. First of all, for all values of padv > 0,
p∗adv < p∗relay; thus, showing that adversarial errors can be
detected. Furthermore, the larger the adversarial error injection
rate, the bigger the difference in the distributions of p∗adv and
p∗relay . When adversarial error rate is small, then the effective
error v1 sees in the packet can easily be construed as that
of the channel noise, and thus, if appropriate channel error
correcting code is used, can be corrected by the downstream
node. As a result, the values/distributions of p∗relay and p∗adv
are similar. However, as the adversarial error rate increases,
there is a divergence between the two distributions. Note
that the difference in the distributions of p∗relay and p∗adv
is not only in the average value. The variance varrelay is
relatively constant throughout (varrelay is approximately 0.18
throughout). On the other hand, varadv generally decreases
with increase in padv . For small padv , the variance varadv is
approximately 0.18; while for large padv , the variance varadv
is approximately 0.08. This trend intuitively shows that, with
increase in padv , not only do we detect that the adversarial
relay more often (since the average value of p∗adv decreases),
but we are more confident of the decision.

Figure 8 shows the affect of the size of the hash. With
increase in redundancy (by using hash functions of length δ),
v1 can detect malicious behavior better. This is true regardless
of whether the relay is well-behaving or not. Node v1’s ability
to judge its downstream node increases with δ. Thus, p∗adv
for δ is generally higher than that of δ′ where δ > δ′. This
holds for p∗relay as well. However, for any fixed δ, node v1
can see a distinction between p∗relay and p∗adv as shown in
Figure 8. A similar trend to that of Figure 7 can be seen
for the distributions of p∗adv and p∗relay for each value of δ.
The interesting result is that even for δ = 0, i.e. we include
no redundancy or hash, node v1 is able to distinguish an
adversarial relay from a well-behaving relay.

0 0.05 0.1 0.15 0.2
0.005

0.01

0.015

0.02

0.025

0.03

p
adv

p*

p*
relay

p*
adv

Fig. 7: The average value of p∗ with well-behaving relay
(denoted p∗relay) and adversarial relay (denoted p∗adv) over
1000 random iterations of algebraic watchdog. The error bars
represent the variance, varrelay and varadv . We set m = 3,
n = 10, δ = 2, and ps = pm+1,1 = 10%. We vary padv , the
adversary’s error injection rate.

0 0.05 0.1 0.15 0.2
0

0.01

0.02

0.03

0.04

0.05

p
adv

p*

p*
relay

 with δ=3

p*
relay

 with δ=2

p*
relay

 with δ=1

p*
relay

 with δ=0

p*
adv

 with δ=3

p*
adv

 with δ=2

p*
adv

 with δ=1

p*
adv

 with δ=0

Fig. 8: The average value of p∗ with well-behaving relay
(denoted p∗relay) and adversarial relay (denoted p∗adv) over
1000 random iterations of algebraic watchdog. We vary the
value of δ, the length of the hash function used, and padv, the
adversary’s error injection rate. The error bars represent the
variance, varrelay and varadv . We set m = 3, n = 10, and
ps = pm+1,1 = 10%.

Results in Figure 9 confirms our intuition that the better
v1’s ability to collect information from vi’s, ıne1, the better its
detection ability. If node v1 is able to infer better or overhear xi

with little or no errors, the better its inference on what the relay
node should be transmitting. Thus, as overhearing channel
progressively worsens (ps increases), v1’s ability to detect
malicious behavior deteriorates; thus, unable to distinguish
between a malicious and a well-behaving relay.

Finally, we note the effect of m, the number of nodes in
the network, in Figure 10. Node v1’s ability to check vm+1 is
reduced with m. When m increases, the number of messages
v1 has to infer increases, which increases the uncertainty
within the system. However, it is important to note that as
m increases, there are more nodes vi’s, i ∈ [1,m] that can
independently perform checks on vm+1. This affect is not
captured by the results shown in Figure 10.

X. CONCLUSIONS AND FUTURE WORK

We proposed the algebraic watchdog, in which nodes can
verify their neighbors probabilistically and police them locally

10

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

p
s
=p

m+1,1

p*

(a) Linear scale

0 0.05 0.1 0.15 0.2
10

−3

10
−2

10
−1

10
0

p
s
=p

m+1,1

p*
(b) Log scale

Fig. 9: The average value of p∗ with well-behaving relay
(denoted p∗relay) and adversarial relay (denoted p∗adv) over
1000 random iterations of algebraic watchdog. We vary the
value of ps = pm+1,1, the quality of overhearing channels.
The error bars represent the variance, varrelay and varadv .
We set m = 3, n = 10, and padv = 10%.

1 2 3 4 5 6
0

0.05

0.1

0.15

m

p*

p*
relay

p*
adv

(a) Linear scale

1 2 3 4 5 6

10
−2

10
−1

m

p*

p*
relay

p*
adv

(b) Log scale

Fig. 10: The average value of p∗ with well-behaving relay
(denoted p∗relay) and adversarial relay (denoted p∗adv) over
1000 random iterations of algebraic watchdog. We vary the
value of m, the number of nodes using vm+1 as a relay. The
error bars represent the variance, varrelay and varadv . We set
m = 3, n = 10, and ps = pm+1,1 = padv = 10%.

by the means of overheard messages in a coded network. Using
the algebraic watchdog scheme, nodes can compute a proba-
bility of consistency, p∗, which can be used to detect malicious
behavior. Once a node has been identified as malicious, these
nodes can either be punished, eliminated, or excluded from the
network by using reputation based schemes such as [9][23].

We first presented a graphical model and an analysis of the
algebraic watchdog for two-hop networks. We then extended
the algebraic watchdog to multi-hop, multi-source networks.
We provided a trellis-like graphical model for the detection
inference process, and an algorithm that may be used to
compute the probability that a downstream node is consistent
with the overheard information. We analytically showed how
the size of the hash function, minimum distance of the error-
correcting code used, as well as the quality of the overhearing
channel can affect the probability of detection. Finally, we
presented simulation results that support our analysis and
intuition.

Our ultimate goal is to design a network in which the
participants check their neighborhood locally to enable a
secure global network - i.e. a self-checking network. Possi-
ble future work includes developing inference methods and

approximation algorithms to decide efficiently aggregate local
trust information to a global trust state.

REFERENCES

[1] J.-P. Hubaux, L. Buttyán, and S. Capkun, “The quest for security in
mobile ad hoc networks,” in Proceedings of the 2nd ACM MobiHoc.
ACM, 2001, pp. 146–155.

[2] L. Zhou and Z. Haas, “Securing ad hoc networks,” Network, IEEE,
vol. 13, no. 6, pp. 24 –30, 1999.

[3] J. Douceur, “The sybil attack,” in Peer-to-Peer Systems, ser. Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 2002, vol.
2429, pp. 251–260.

[4] C. Karlof and D. Wagner, “Secure routing in wireless sensor networks:
attacks and countermeasures,” Ad Hoc Networks, vol. 1, no. 2-3, pp. 293
– 315, 2003.

[5] R. Perlman, “Network layer protocols with Byzantine robustness,” Ph.D.
dissertation, Massachusetts Institute of Technology, Cambridge, MA,
October 1988.

[6] M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in
Symposium on Operating Systems Design and Implementation (OSDI),
February 1999.

[7] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals
problem,” ACM Transactions on Programming Languages and Systems,
vol. 4, pp. 382–401, 1982.

[8] P. Papadimitratos and Z. J. Haas, “Secure routing for mobile ad hoc
networks,” in Prceedings of the SCS Communication Networks and
Disbributed Systems Modeling and Simulation Conference, 2002.

[9] S. Marti, T. J. Giuli, K. Lai, and M. Baker, “Mitigating routing
misbehavior in mobile ad hoc networks,” in Proceedings of the 6th
annual international conference on Mobile computing and networking.
ACM, 2000, pp. 255–265.

[10] M. Kim, M. Médard, J. Barros, and R. Kötter, “An algebraic watchdog
for wireless network coding,” in Proceedings of IEEE ISIT, June 2009.

[11] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network infor-
mation flow,” IEEE Transactions on Information Theory, vol. 46, pp.
1204–1216, 2000.

[12] R. Koetter and M. Médard, “An algebraic approach to network coding,”
IEEE/ACM Transaction on Networking, vol. 11, pp. 782–795, 2003.

[13] G. Liang, R. Agarwal, and N. Vaidya, “When watchdog meets coding,”
in Proceedings of IEEE INFOCOM, March 2010.

[14] D. Lun, M. Médard, R. Koetter, and M. Effros, “On coding for reliable
communication over packet networks,” Physical Communication, vol. 1,
no. 1, pp. 3–20, March 2008.

[15] R. W. Yeung and N. Cai, “Network error correction,” Communications
in Information and Systems, no. 1, pp. 19–54, 2006.

[16] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and M. Médard,
“Resilient network coding in the presence of Byzantine adversaries,” in
Proceedings of IEEE INFOCOM, March 2007, pp. 616 – 624.

[17] R. Koetter and F. R. Kschischang, “Coding for errors and erasures in
random network coding,” IEEE Transactions on Information Theory,
vol. 54, no. 8, pp. 3579–3591.

[18] M. Kim, M. Médard, and J. Barros, “Countering Byzantine adversaries
with network coding: An overhead analysis,” in Proceedings of MIL-
COM, 2008.

[19] D. B. Johnson, “Routing in ad hoc networks of mobile hosts,” in
Proceedings of the Workshop on Mobile Computing Systems and Ap-
plications, 1994, pp. 158–163.

[20] U. M. Maurer, “Authentication theory and hypothesis testing,” IEEE
Transaction on Information Theory, vol. 46, pp. 1350–1356, 2000.

[21] M. Dietzfelbinger, J. Gil, Y. Matias, and N. Pippenger, “Polynomial
hash functions are reliable,” in Proceedings of the 19th International
Colloquium on Automata, Languages and Programming, vol. 623.
Springer-Verlag, 1992, pp. 235–246.

[22] P. Elias, “List decoding for noisy channels,” Technical Report 335,
Research Laboratory of Electronics, MIT, 1957.

[23] S. Ganeriwal, L. K. Balzano, and M. B. Srivastava, “Reputation-based
framework for high integrity sensor networks,” ACM Transactions on
Sensor Networks, vol. 4, no. 3, pp. 1–37, 2008.

