21,474 research outputs found

    Design and simulation of a multi-function MEMS sensor for health and usage monitoring.

    Get PDF
    Health and usage monitoring as a technique for online test, diagnosis or prognosis of structures and systems has evolved as a key technology for future critical systems. The technology, often referred to as HUMS is usually based around sensors that must be more reliable than the system or structure they are monitoring. This paper proposes a fault tolerant sensor architecture and demonstrates the feasibility of realising this architecture through the design of a dual mode humidity/pressure MEMS sensor with an integrated temperature function. The sensor has a simple structure, good linearity and sensitivity, and the potential for implementation of built-in-self-test features. We also propose a re-configurable sensor network based on the multi-functional sensor concept that supports both normal operational and fail safe modes. The architecture has the potential to significantly increase system reliability and supports a reduction in the number of sensors required in future HUMS devices. The technique has potential in a wide range of applications, especially within wireless sensor networks

    A new wireless biosensor for intra-vaginal temperature monitoring

    Get PDF
    Wireless Body Sensors for medical purposes offer valuable contributions to improve patients’ healthcare, including diagnosis and/or therapeutics monitoring. Body temperature is a crucial parameter in healthcare diagnosis. In gynecology and obstetrics it is measured at the skin’s surface, which is very influenced by the environment. This paper proposes a new intra-body sensor for long-term intra-vaginal temperature collection. The embedded IEEE 802.15.4 communication module allows the integration of this sensor in a Wireless Sensor Network (WSN) for remote data access and monitoring. We present the sensor architecture, the construction of the corresponding testbed, and its performance evaluation. This sensor may be used in different medical applications, including preterm labor prevention and fertility and ovulation period detection. The features of the constructed testbed were validated in laboratory tests verifying its accuracy and performance

    A New Wireless Biosensor for Intra-Vaginal Temperature Monitoring

    Get PDF
    Wireless Body Sensors for medical purposes offer valuable contributions to improve patients’ healthcare, including diagnosis and/or therapeutics monitoring. Body temperature is a crucial parameter in healthcare diagnosis. In gynecology and obstetrics it is measured at the skin’s surface, which is very influenced by the environment. This paper proposes a new intra-body sensor for long-term intra-vaginal temperature collection. The embedded IEEE 802.15.4 communication module allows the integration of this sensor in a Wireless Sensor Network (WSN) for remote data access and monitoring. We present the sensor architecture, the construction of the corresponding testbed, and its performance evaluation. This sensor may be used in different medical applications, including preterm labor prevention and fertility and ovulation period detection. The features of the constructed testbed were validated in laboratory tests verifying its accuracy and performance

    Data management of on-line partial discharge monitoring using wireless sensor nodes integrated with a multi-agent system

    Get PDF
    On-line partial discharge monitoring has been the subject of significant research in previous years but little work has been carried out with regard to the management of on-site data. To date, on-line partial discharge monitoring within a substation has only been concerned with single plant items, so the data management problem has been minimal. As the age of plant equipment increases, so does the need for condition monitoring to ensure maximum lifespan. This paper presents an approach to the management of partial discharge data through the use of embedded monitoring techniques running on wireless sensor nodes. This method is illustrated by a case study on partial discharge monitoring data from an ageing HVDC reactor

    Research status and progress of intelligent wearable system for first aid based on body area network

    Get PDF
    With the rise of electronic health services, wireless body area network (WBAN) technology has attracted great international attention. The body area network can obtain human vital sign parameters in its natural state, and support applications in areas such as clinical diagnosis and treatment, emergency rescue and treatment, and health information services. This article introduces the concept of body area network and the electronic medical architecture of body area network, summarizes the advantages of body area network: in low data rate scenarios, the system power consumption of body area network is much lower than that of other wireless communication standards, providing more choices for special frequency bands for medical equipment (500 MHz to 5 GHZ), thereby reducing the interference problem between different communications; proposing bottlenecks and hot spots of body area network: ultra-low power consumption requirements of sensor nodes and hardware resource constraints with limited computing power, and data security protection problems in body area network sensor nodes; the application of body area network in emergency scenarios was analyzed, and the hot spots of body area network research in the field of emergency were summarized and predicted: the development of ultra-low-power chips, wearable wireless nodes, intelligent medical terminals, health and monitoring instruments and other devices and equipment

    Impact of Mobile and Wireless Technology on Healthcare Delivery services

    Get PDF
    Modern healthcare delivery services embrace the use of leading edge technologies and new scientific discoveries to enable better cures for diseases and better means to enable early detection of most life-threatening diseases. The healthcare industry is finding itself in a state of turbulence and flux. The major innovations lie with the use of information technologies and particularly, the adoption of mobile and wireless applications in healthcare delivery [1]. Wireless devices are becoming increasingly popular across the healthcare field, enabling caregivers to review patient records and test results, enter diagnosis information during patient visits and consult drug formularies, all without the need for a wired network connection [2]. A pioneering medical-grade, wireless infrastructure supports complete mobility throughout the full continuum of healthcare delivery. It facilitates the accurate collection and the immediate dissemination of patient information to physicians and other healthcare care professionals at the time of clinical decision-making, thereby ensuring timely, safe, and effective patient care. This paper investigates the wireless technologies that can be used for medical applications, and the effectiveness of such wireless solutions in a healthcare environment. It discusses challenges encountered; and concludes by providing recommendations on policies and standards for the use of such technologies within hospitals

    How 5G wireless (and concomitant technologies) will revolutionize healthcare?

    Get PDF
    The need to have equitable access to quality healthcare is enshrined in the United Nations (UN) Sustainable Development Goals (SDGs), which defines the developmental agenda of the UN for the next 15 years. In particular, the third SDG focuses on the need to “ensure healthy lives and promote well-being for all at all ages”. In this paper, we build the case that 5G wireless technology, along with concomitant emerging technologies (such as IoT, big data, artificial intelligence and machine learning), will transform global healthcare systems in the near future. Our optimism around 5G-enabled healthcare stems from a confluence of significant technical pushes that are already at play: apart from the availability of high-throughput low-latency wireless connectivity, other significant factors include the democratization of computing through cloud computing; the democratization of Artificial Intelligence (AI) and cognitive computing (e.g., IBM Watson); and the commoditization of data through crowdsourcing and digital exhaust. These technologies together can finally crack a dysfunctional healthcare system that has largely been impervious to technological innovations. We highlight the persistent deficiencies of the current healthcare system and then demonstrate how the 5G-enabled healthcare revolution can fix these deficiencies. We also highlight open technical research challenges, and potential pitfalls, that may hinder the development of such a 5G-enabled health revolution
    corecore