5 research outputs found

    An overview of internet of things

    Get PDF
    The internet of things is an emerging technology that is currently present in most processes and devices, allowing to improve the quality of life of people and facilitating the access to specific information and services. The main purpose of the present article is to offer a general overview of internet of things, based on the analysis of recently published work. The added value of this article lies in the analysis of the main recent publications and the diversity of applications of internet of things technology. As a result of the analysis of the current literature, internet of things technology stands out as a facilitator in business and industrial performance but above all in improving the quality of life. As a conclusion to this document, the internet of things is a technology that can overcome the challenges in terms of security, processing capacity and data mobility, as long as the development related to other technologies follows its expected course

    Performance Analysis of AF Relaying With Selection Combining in Nakagami-m Fading

    Get PDF
    This paper investigates the performance analysis of a selection combining scheme, which utilizes a variable gain amplify and forward relay over a Nakagami-m fading channel. A selection combiner at a destination node chooses the better link between a relay channel and a direct channel. We derived exact closed-form expressions for moments of signal to noise ratio (SNR), ergodic capacity, and average symbol error probability. Simulation examples confirm that our exact formulas offer a more accurate analysis tool for selection combining than other prevailing approximations without extra complexity. The derived expressions serve as a useful tool for system design due to their validity for any SNR and arbitrary system parameters

    Wireless information and power transfer for IoT applications in overlay cognitive radio networks

    Full text link
    © 2014 IEEE. This paper proposes and investigates an overlay spectrum sharing system in conjunction with the simultaneous wireless information and power transfer to enable communications for the Internet of Things (IoT) applications. Considered is a cooperative cognitive radio network, where two IoT devices (IoDs) exchange their information and also provide relay assistance to a pair of primary users (PUs). Different from most existing works, in this paper, both IoDs can harvest energy from the radio-frequency signals received from the PUs. By utilizing the harvested energy, they provide relay cooperation to PUs and realize their own communications. For harvesting energy, a time-switching-based approach is adopted at both IoDs. With the proposed scheme, one round of bidirectional information exchange for both primary and IoT systems is performed in four phases, i.e., one energy harvesting phase and three information processing phases. Both IoDs rely on the decode-and-forward operation to facilitate relaying, whereas the PUs employ selection combining technique. For investigating the performance of the considered network, this paper first provides exact expressions of user outage probability (OP) for the primary and IoT systems under Nakagami-m fading. Then, by utilizing the expressions of user OP, the system throughput and energy efficiency are quantified together with the average end-to-end transmission time. Numerical and simulation results are provided to give useful insights into the system behavior and to highlight the impact of various system/channel parameters
    corecore