60 research outputs found

    Pade-Type Model Reduction of Second-Order and Higher-Order Linear Dynamical Systems

    Full text link
    A standard approach to reduced-order modeling of higher-order linear dynamical systems is to rewrite the system as an equivalent first-order system and then employ Krylov-subspace techniques for reduced-order modeling of first-order systems. While this approach results in reduced-order models that are characterized as Pade-type or even true Pade approximants of the system's transfer function, in general, these models do not preserve the form of the original higher-order system. In this paper, we present a new approach to reduced-order modeling of higher-order systems based on projections onto suitably partitioned Krylov basis matrices that are obtained by applying Krylov-subspace techniques to an equivalent first-order system. We show that the resulting reduced-order models preserve the form of the original higher-order system. While the resulting reduced-order models are no longer optimal in the Pade sense, we show that they still satisfy a Pade-type approximation property. We also introduce the notion of Hermitian higher-order linear dynamical systems, and we establish an enhanced Pade-type approximation property in the Hermitian case

    Fast methods for full-wave electromagnetic simulations of integrated circuit package modules

    Get PDF
    Fast methods for the electromagnetic simulation of integrated circuit (IC) package modules through model order reduction are demonstrated. The 3D integration of multiple functional IC chip/package modules on a single platform gives rise to geometrically complex structures with strong electromagnetic phenomena. This motivates our work on a fast full-wave solution for the analysis of such modules, thus contributing to the reduction in design cycle time without loss of accuracy. Traditionally, fast design approaches consider only approximate electromagnetic effects, giving rise to lumped-circuit models, and therefore may fail to accurately capture the signal integrity, power integrity, and electromagnetic interference effects. As part of this research, a second order frequency domain full-wave susceptance element equivalent circuit (SEEC) model will be extracted from a given structural layout. The model so obtained is suitably reduced using model order reduction techniques. As part of this effort, algorithms are developed to produce stable and passive reduced models of the original system, enabling fast frequency sweep analysis. Two distinct projection-based second order model reduction approaches will be considered: 1) matching moments, and 2) matching Laguerre coefficients, of the original system's transfer function. Further, the selection of multiple frequency shifts in these schemes to produce a globally representative model is also studied. Use of a second level preconditioned Krylov subspace process allows for a memory-efficient way to address large size problems.Ph.D.Committee Chair: Swaminathan Madhavan; Committee Member: Papapolymerou John; Committee Member: Chatterjee Abhijit; Committee Member: Peterson Andrew; Committee Member: Sitaraman Sures

    Optimised small scale reative compensation for Eskom's Albany-Wesley 66/22Kv transmission system

    Get PDF
    Reactive power compensation, as generated by capacitors, has been used to mitigate the constraints of power transmission and improve the power transfer of the transmission system of the South African power utility, Eskom‟s 66/22kV Albany-Wesley transmission system. An investigation was carried out on a number of current compensation schemes, and their operations, by means of load flow analysis. Different capacitor qualities and technologies were applied to alter the transmission line characteristics that resulted in acceptable voltage regulation. This resulted in easing the load on the lines and transformers and hence reducing line losses. For long transmission lines, utilities need voltage support, as provided for by different voltage compensators, to keep the terminal voltage within standard voltage regulation, and meet the designed power demand. The approach to large and small scale compensation was tested and the outcomes revealed distinct patterns that were used to confirm the hypothesis and improve the transfer of power. The templating temperature and thermal perspective as used by Eskom on line design was discussed and used to design a new transmission line. Load flow solutions were also used to plan and design the optimised transmission system as well as to determine the specification and location of the compensating capacitor banks. Capacitor banks, as a source of reactive power, were used to model the compensation in this research. Electrical protection and faults associated with the capacitors banks were discussed, as prevention to total blackout or load shedding on the transmission line in case of established contingency. Long term investment plans, to meet future electricity demands, require substantial investment hence a financial survey was carried out. Finally this dissertation selects a viable solution to meet the electrical power demands and then recommends a way forward for the Eskom‟s 66/22kV Albany-Wesley line

    Worst case crosstalk noise for nonswitching victims in high-speed buses

    Full text link

    Computationally efficient modeling and simulation of large scale systems

    Get PDF
    A method of simulating operation of a VLSI interconnect structure having capacitive and inductive coupling between nodes thereof. A matrix X and a matrix Y containing different combinations of passive circuit element values for the interconnect structure are obtained where the element values for each matrix include inductance L and inverse capacitance P. An adjacency matrix A associated with the interconnect structure is obtained. Numerical integration is used to solve first and second equations, each including as a factor the product of the inverse matrix X.sup.1 and at least one other matrix, with first equation including X.sup.1Y, X.sup.1A, and X.sup.1P, and the second equation including X.sup.1A and X.sup.1P

    Renewal of a linear electrical network simulator into Ada

    Get PDF
    A dissertation submitted to the Faculty of Engineering, University of the Witwatersrand, Johannesburg, in fulfilment Of the requirements for the degree of Master of Science in Engineering. Johannesburg, 1993Renewal is the extraction of the intellectual content (algorithms, data structures) from an existing program, and then puilding a new more maiatainable program using more modem progra1Tlming methods and languages. A survey of software structure on maintenance. highlighted the different hierarchies produced by functional and object-oriented design methods. Elecsim, a linear circuit sL~ulator written in Pascal, was chosen as the existing program to be renewed, The new version follows the approach of decoupling the user interface and introducing an explicit scheduler. The object-oriented design technique is used extensively. Other issues addressed include online-help and. documentation for the program. Conclusions are drawn which are generally applicable from the specificlessons learnt from the Elecsim/Elector case study.MT201

    Development of techniques for detection and dissolution enhancement of mineral deposits in petroleum pipelines using ultrasound.

    Get PDF
    Scale formation in petroleum pipelines causes progressive flow reductions, leading to large production losses and operating costs. The composition and thickness of the scale deposits vary widely, but with present technology they cannot be accurately quantified or monitored. Remedial treatments such as chemical de-scaling etc. are therefore largely based on guesswork, which can lead to expensive chemical wastage and production shutdowns. This project is intended to address some of the above problems using ultrasonic techniques. Work presented in this thesis branches out into two main areas of interest, namely: (a) developments concerning location of deposits from both top-side and down-hole locations; and (b) developments relating to enhancement of scale removal, using ultrasound. With regard to top-side scale detection, the major challenge in this work was to develop a technique by which acoustic signatures are synthetically generated, which can be used with the techniques previously developed for pipeline inspection. This required the determination of a suitable type of transducer and the study of its radiation characteristics in developing comprehensive mathematical models for artificially generating reference echoes. The model allowed the first three multiple echoes (in steel objects) to be computed for given test parameters. Close agreement of the synthesised echoes with practical measurements was demonstrated with good repeatability. An essential requirement for the detection of deposits in down-hole is the accurate alignment of the test probes with respect to the pipe-wall. In this regard, a novel technique for remote alignment of the transducers was successfully formulated. It is based on identifying symmetrical properties of the signals received from the test probe itself when scanned around the correct angular position with respect to the target. However, through extensive practical measurements, it was found that an important requirement for applying this technique is to know in advance whether a particular combination of probe, target diameter and separation distance would give satisfactory angular resolution. Extensive practical examination of these factors showed that no general conclusion can easily be drawn with respect to this requirement. Therefore a mathematical model was successfully developed, which would predict the suitability of given probe/target parameters. It has been reported in previous studies that ultrasonic irradiation could greatly enhance the chemical dissolution of localised deposits during de-scaling operations. In this regard, a major challenge was to improve the efficiency of power transducers radiating into confined spaces at elevated temperatures. That required the study of radiation characteristics of ultrasonic power transducers and compensation techniques to regain loss of efficiency at elevated temperatures. Alternative types of transducers - based on flexural-horn designs - were also investigated and their relative merits presented. Significant findings related to the performance variations of ultrasonic transducers and transmission cables at elevated temperatures have been made. After examining the transducer efficiency drop with temperature, a closed-loop compensation strategy was proposed for maintaining optimal performance. The matching requirements of the cables transmitting power from top-side to down-hole power transducers were also investigated as part of optimisation of ultrasonic power output. From this study it was found that, within the temperature range of interest, the cable in itself does not require changes to the matching requirements as the environmental temperature fluctuates. However, it was noted that the transducer impedance changes rapidly with temperature and therefore a unified compensation strategy incorporating both cable and transducer impedances was proposed as a better solution. Overall, the main objectives of the project concerning pipeline scale detection were well achieved, namely: (a) modelling of a suitable type of ultrasonic transducer to synthesise the reference multiple echoes to aid top-side scale detection; and (b) development of a remote sensing technique for ultrasonic probe alignment in downhole pipes. With regard to dissolution enhancement, techniques for enhancing power output of ultrasonic transducers to aid dissolution enhancement of scale deposits have been determined. Further work includes the improvements to software algorithms developed and hardware integration to achieve the expected performance of the techniques presented

    The roles of pars flaccida in middle ear acoustic transmission

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1996.Includes bibliographical references (p. 190-195).by Su Wooi Teoh Teoh.M.S

    Coupled resonator based wireless power transfer for bioelectronics

    Get PDF
    Implantable and wearable bioelectronics provide the ability to monitor and modulate physiological processes. They represent a promising set of technologies that can provide new treatment for patients or new tools for scientific discovery, such as in long-term studies involving small animals. As these technologies advance, two trends are clear, miniaturization and increased sophistication i.e. multiple channels, wireless bi-directional communication, and responsiveness (closed-loop devices). One primary challenge in realizing miniaturized and sophisticated bioelectronics is powering. Integration and development of wireless power transfer (WPT) technology, however, can overcome this challenge. In this dissertation, I propose the use of coupled resonator WPT for bioelectronics and present a new generalized analysis and optimization methodology, derived from complex microwave bandpass filter synthesis, for maximizing and controlling coupled resonator based WPT performance. This newly developed set of analysis and optimization methods enables system miniaturization while simultaneously achieving the necessary performance to safely power sophisticated bioelectronics. As an application example, a novel coil to coil based coupled resonator arrangement to wirelessly operate eight surface electromyography sensing devices wrapped circumferentially around an able-bodied arm is developed and demonstrated. In addition to standard coil to coil based systems, this dissertation also presents a new form of coupled resonator WPT system built of a large hollow metallic cavity resonator. By leveraging the analysis and optimization methods developed here, I present a new cavity resonator WPT system for long-term experiments involving small rodents for the first time. The cavity resonator based WPT arena exhibits a volume of 60.96 x 60.96 x 30.0 cm3. In comparison to prior state of the art, this cavity resonator system enables nearly continuous wireless operation of a miniature sophisticated device implanted in a freely behaving rodent within the largest space. Finally, I present preliminary work, providing the foundation for future studies, to demonstrate the feasibility of treating segments of the human body as a dielectric waveguide resonator. This creates another form of a coupled resonator system. Preliminary experiments demonstrated optimized coupled resonator wireless energy transfer into human tissue. The WPT performance achieved to an ultra-miniature sized receive coil (2 mm diameter) is presented. Indeed, optimized coupled resonator systems, broadened to include cavity resonator structures and human formed dielectric resonators, can enable the effective use of coupled resonator based WPT technology to power miniaturized and sophisticated bioelectronics
    corecore