81,636 research outputs found

    Select Committee on Wind Turbines final report

    Get PDF
    The committee recommends the Commonwealth Government create an Independent Expert Scientific Committee on Industrial Sound responsible for providing research and advice to the Minister for the Environment on the impact on human health of audible noise (including low frequency) and infrasound from wind turbines. Recommendation 1: final 6.5 The committee recommends that an Independent Expert Scientific Committee on Industrial Sound (IESC) be established by law, through provisions similar to those which provide for the Independent Expert Scientific Committee on Coal Seam Gas and Large Coal Mining Development. 6.6 The provisions establishing the IESC on Industrial Sound should state that the Scientific Committee must conduct \u27independent, multi-disciplinary research into the adverse impacts and risks to individual and community health and wellbeing associated with wind turbine projects and any other industrial projects which emit sound and vibration energy\u27

    The small wind turbine field lab

    Get PDF
    The emerging market of small wind turbines (SWT) is characterised by a large variety of turbine types as well as turbine performance. The abundance of more ‘exotic’ types of vertical axis wind turbines (VAWT) next to the more traditional horizontal axis wind turbines (HAWT) shows that this market is still developing. However, some technologies have proven to possess the same potential typically only found in larger wind turbines. To study the (lack of) performance of current small wind turbine but also to demonstrate their potential, Ghent University decided to launch the Small Wind Turbine Field Lab (SWT Field Lab). This fully scientifically equipped field lab, funded by the Hercules Foundation, offers the possibility to not only monitor the energy yield of the turbine, but also collect information on how to optimise the grid integration, measure mechanical stress and structural strength of turbine components, assess the generator design and tower construction, perform acoustic measurements and finding ways to reduce noise production, even simulate siting of wind turbines, e.g. in rural areas or on industrial parks. All of these parameters are correlated with meteorological data measured on-site. The field lab, based in the inner port of Ostend, provides provisions for placement of up to ten small wind turbines, with seven turbines already partaking in the field trials. The project members aim to use the project results to identify and remove performance limiting factors in the design of small wind turbine, and to demonstrate the feasibility of using small wind turbines for decentralised renewable energy production. With this and similar research projects, the emerging market of small wind turbines can grow beyond its current state of infancy, comparable to the market evolution of large wind turbines

    Dynamics and stability of wind turbine generators

    Get PDF
    Synchronous and induction generators are considered. A comparison is made between wind turbines, steam, and hydro units. The unusual phenomena associated with wind turbines are emphasized. The general control requirements are discussed, as well as various schemes for torsional damping such as speed sensitive stabilizer and blade pitch control. Integration between adjacent wind turbines in a wind farm is also considered

    Techno-economic comparison of operational aspects for direct drive and gearbox-driven wind turbines

    Get PDF
    The majority of wind turbines currently in operation have the conventional Danish concept design-that is, the three-bladed rotor of such turbines is indirectly coupled with an electrical generator via a gearbox. Recent technological developments have enabled direct drive wind turbines to become economically feasible. Potentially, direct drive wind turbines may enjoy higher levels of availability due to the removal of the gearbox from the design. However, this is only a theory: so far not substantiated by detailed analytic calculation. By providing such a calculation, this paper enables us to quantitatively evaluate technical and economic merits of direct drive and gearbox-driven wind turbines

    Provision of Ancillary Services with Variable Speed Wind Turbines

    Get PDF
    In recent years, the amount of wind turbines in the power system has increased tremendously. As the current wind turbines do not participate in the provision of ancillary services such as frequency control and voltage control, this may compromise the proper functioning of the electric power system. However, since the modern wind turbines are equipped with a power-electronic converter, they can assist in the provision of ancillary services. To achieve this, additional control loops have to be added to the wind turbine controller. In this paper, an overview of the different ancillary services is given. The ability to provide them with wind turbines is discussed. Since frequency and voltage control are the most important, these two services are further elaborated. It can be concluded that wind turbines are suited to provide frequency control, especially when they are operated slightly below their maximum power point. They can also assist in voltage control, while operation in the maximum power point is usually possible, so few energy is lost. These are important outcomes, since wind turbines which provide ancillary services can contribute in allowing a higher penetration of renewable energy in the power system without compromising its proper functioning

    The small wind turbine field lab extensive field tests for small wind turbines

    Get PDF
    This paper describes the research possibilities at the Small Wind Turbine Field Lab and the involved research groups of Ghent University, covering different aspects of a small wind energy system. In contrast to large and medium-sized wind turbines, small wind turbines are still plagued by relatively high production and purchase costs, and low reliability and energy yield. Furthermore, most of them have not been subjected to a field test program. Power-Link, the energy knowledge platform of Ghent University, has for three years operated a modest field test site for small wind turbines, that drew the attention of a lot of manufacturers of small wind turbines. In response, Ghent University decided to launch the Small Wind Turbine Field Lab (SWT Field Lab), to subject small wind turbines to more extensive field tests. Now not only the energy yield is tested, but also topics such as grid integration, structural strength, noise propagation, generator and drive train design and tower construction are studied. All of these parameters are correlated with meteorological data measured on-site

    Economic feasibility of small wind turbines for domestic consumers in Egypt based on the new feed-in tariff

    Get PDF
    This paper provides an overview of the wind power potential at different regions in Egypt, along the Mediterranean and Red Sea, and the Western desert. A further technical and economic assessment is conducted for the electricity generation with 8 different small wind turbines at 17 locations. The annual electricity generation from selected wind turbines is evaluated. The obtained data are presented and discussed investigating the net present value and the payback period analyzing the profitability of selected wind turbines. The dependence of the turbine profitability from the feed-in tariff is specifically addressed

    Alcoa wind turbines

    Get PDF
    An overview of Alcoa's wind energy program is given with emphasis on the the development of a low cost, reliable Darrieus Vertical Axis Wind Turbine System. The design layouts and drawings for fabrication are now complete, while fabrication and installation to utilize the design are expected to begin shortly

    State of the Art in the Optimisation of Wind Turbine Performance Using CFD

    Get PDF
    Wind energy has received increasing attention in recent years due to its sustainability and geographically wide availability. The efficiency of wind energy utilisation highly depends on the performance of wind turbines, which convert the kinetic energy in wind into electrical energy. In order to optimise wind turbine performance and reduce the cost of next-generation wind turbines, it is crucial to have a view of the state of the art in the key aspects on the performance optimisation of wind turbines using Computational Fluid Dynamics (CFD), which has attracted enormous interest in the development of next-generation wind turbines in recent years. This paper presents a comprehensive review of the state-of-the-art progress on optimisation of wind turbine performance using CFD, reviewing the objective functions to judge the performance of wind turbine, CFD approaches applied in the simulation of wind turbines and optimisation algorithms for wind turbine performance. This paper has been written for both researchers new to this research area by summarising underlying theory whilst presenting a comprehensive review on the up-to-date studies, and experts in the field of study by collecting a comprehensive list of related references where the details of computational methods that have been employed lately can be obtained

    A concurrent precursor inflow method for Large Eddy Simulations and applications to finite length wind farms

    Get PDF
    In order to enable simulations of developing wind turbine array boundary layers with highly realistic inflow conditions a concurrent precursor method for Large Eddy Simulations is proposed. In this method we consider two domains simultaneously, i.e. in one domain a turbulent Atmospheric Boundary Layer (ABL) without wind turbines is simulated in order to generate the turbulent inflow conditions for a second domain in which the wind turbines are placed. The benefit of this approach is that a) it avoids the need for large databases in which the turbulent inflow conditions are stored and the correspondingly slow I/O operations and b) we are sure that the simulations are not negatively affected by statically swept fixed inflow fields or synthetic fields lacking the proper ABL coherent structures. Sample applications are presented, in which, in agreement with field data a strong decrease of the power output of downstream wind-turbines with respect to the first row of wind-turbines is observed for perfectly aligned inflow.Comment: 13 pages, 5 figure
    • …
    corecore