6,611 research outputs found

    The revolution in data gathering systems

    Get PDF
    Data acquisition systems used in NASA's wind tunnels from the 1950's through the present time are summarized as a baseline for assessing the impact of minicomputers and microcomputers on data acquisition and data processing. Emphasis is placed on the cyclic evolution in computer technology which transformed the central computer system, and finally the distributed computer system. Other developments discussed include: medium scale integration, large scale integration, combining the functions of data acquisition and control, and micro and minicomputers

    An inventory of aeronautical ground research facilities. Volume 1: Wind tunnels

    Get PDF
    A survey of wind tunnel research facilities in the United States is presented. The inventory includes all subsonic, transonic, and hypersonic wind tunnels operated by governmental and private organizations. Each wind tunnel is described with respect to size, mechanical operation, construction, testing capabilities, and operating costs. Facility performance data are presented in charts and tables

    New devices for flow measurements: Hot film and burial wire sensors, infrared imagery, liquid crystal, and piezo-electric model

    Get PDF
    An experimental program aimed at identifying areas in low speed aerodynamic research where infrared imaging systems can make significant contributions is discussed. Implementing a new technique, a long electrically heated wire was placed across a laminar flow. By measuring the temperature distribution along the wire with the IR imaging camera, the flow behavior was identified

    Convective response of a wall-mounted hot-film sensor in a shock tube

    Get PDF
    Shock tube experiments were performed in order to determine the response of a single hot-film element of a sensor array to transiently induced flow behind weak normal shock waves. The experiments attempt to isolate the response due only to the change in convective heat transfer at the hot-film surface mounted on the wall of the shock tube. The experiments are described, the results being correlated with transient boundary layer theory and compared with an independent set of experimental results. One of the findings indicates that the change in the air properties (temperature and pressure) precedes the air mass transport, causing an ambiguity in the sensor response to the development of the velocity boundary layer. Also, a transient, local heat transfer coefficient is formulated to be used as a forcing function in an hot-film instrument model and simulation which remains under investigation

    Rotorcraft Airloads Measurements-Extraordinary Costs, Extraordinary Benefits

    Get PDF
    The first airloads measurements were made in the 1950s at NACA Langley on a 15.3-foot model rotor, stimulated by the invention of miniaturized pressure transducers. The inability to predict higher harmonic loads in those early years led the U. S. Army to fund airloads measurements on the CH-34 and the UH-1A aircraft. Nine additional comprehensive airloads tests have been done since that early work, including the recent test of an instrumented UH-60A rotor in the 40- by 80-Foot Wind Tunnel at NASA Ames. This historical narrative discusses the twelve airloads tests and how the results were integrated with analytical efforts. The recent history of the UH-60A Airloads Workshops is presented and it is shown that new developments in analytical methods have transformed our capability to predict airloads that are critical for design

    Aeronautical Engineering: A special bibliography with indexes, supplement 67, February 1976

    Get PDF
    This bibliography lists 341 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1976

    Twenty-five years of aerodynamic research with IR imaging: A survey

    Get PDF
    Infrared imaging used in aerodynamic research evolved during the last 25 years into a rewarding experimental technique for investigation of body-flow viscous interactions, such as heat flux determination and boundary layer transition. The technique of infrared imaging matched well its capability to produce useful results, with the expansion of testing conditions in the entire spectrum of wind tunnels, from hypersonic high-enthalpy facilities to cryogenic transonic wind tunnels. With unique achievements credited to its past, the current trend suggests a change in attitude towards this technique: from the perception as an exotic, project-oriented tool, to the status of a routine experimental procedure

    JT9D engine diagnostics. Task 2: Feasibility study of measuring in-service flight loads

    Get PDF
    The feasibility of measuring JT9D propulsion system flight inertia loads on a 747 airplane is studied. Flight loads background is discussed including the current status of 747/JT9D loads knowledge. An instrumentation and test plan is formulated for an airline-owned in-service airplane and the Boeing-owned RA001 test airplane. Technical and cost comparisons are made between these two options. An overall technical feasibility evaluation is made and a cost summary presented. Conclusions and recommendations are presented in regard to using existing inertia loads data versus conducting a flight test to measure inertia loads

    Advanced turboprop testbed systems study

    Get PDF
    The proof of concept, feasibility, and verification of the advanced prop fan and of the integrated advanced prop fan aircraft are established. The use of existing hardware is compatible with having a successfully expedited testbed ready for flight. A prop fan testbed aircraft is definitely feasible and necessary for verification of prop fan/prop fan aircraft integrity. The Allison T701 is most suitable as a propulsor and modification of existing engine and propeller controls are adequate for the testbed. The airframer is considered the logical overall systems integrator of the testbed program

    Evaluation and application of a new interferometry technique for compressible flow research

    Get PDF
    A new method for obtaining large scale interferograms of flow fields in real time was investigated. The method was based on the point diffraction interferometry technique. The method was modified to accommodate the higher laser power required in recording transonic and supersonic flow fields. Basic tests were conducted in unsteady flows and flows about circulation control airfoils at transonic speeds. It was found that vibration was not a significant factor in the application of the system. In the case of the circulation control airfoils, the real-time viewing allowed the identification of the Coanda jet interaction with the external flow and the shedding of large scale vortices. The method proved to be very sensitive to the optical quality of the wind tunnel windows. The results obtained were compared with earlier interferograms obtained using interferometry. These results were in qualitative agreement
    corecore