567 research outputs found

    Unmanned Aerial Systems for Wildland and Forest Fires

    Full text link
    Wildfires represent an important natural risk causing economic losses, human death and important environmental damage. In recent years, we witness an increase in fire intensity and frequency. Research has been conducted towards the development of dedicated solutions for wildland and forest fire assistance and fighting. Systems were proposed for the remote detection and tracking of fires. These systems have shown improvements in the area of efficient data collection and fire characterization within small scale environments. However, wildfires cover large areas making some of the proposed ground-based systems unsuitable for optimal coverage. To tackle this limitation, Unmanned Aerial Systems (UAS) were proposed. UAS have proven to be useful due to their maneuverability, allowing for the implementation of remote sensing, allocation strategies and task planning. They can provide a low-cost alternative for the prevention, detection and real-time support of firefighting. In this paper we review previous work related to the use of UAS in wildfires. Onboard sensor instruments, fire perception algorithms and coordination strategies are considered. In addition, we present some of the recent frameworks proposing the use of both aerial vehicles and Unmanned Ground Vehicles (UV) for a more efficient wildland firefighting strategy at a larger scale.Comment: A recent published version of this paper is available at: https://doi.org/10.3390/drones501001

    Vision Based Control of Model Helicopters

    Get PDF

    System Identification of a Circulation Control Unmanned Aerial Vehicle

    Get PDF
    The advancement in automation and sensory systems in recent years has led to an increase the demand of UAV missions. Due to this increase in demand, the research community has gained interest in investigating UAV performance enhancing systems. Circulation Control (CC), which is an active control flow method used to enhance UAV lift, is a performance enhancing system currently studied. In prior research, experimental studies have shown that Circulation Control wings (CCW) implemented on class-I UAVs can reduce take-off distance by 54%. Wind tunnel tests reveal that CC improves aircraft payload capabilities through lift enhancement. Increasing aircraft payload capabilities causes an increase in UAV applications. Design and implementation of autopilot algorithms making the CC-based UAV capable af autonomous flight increases the number of applications for which it is suited. In this thesis, mathematical models of a CC-based UAV are derived and validated. The mathematical models are used to determine the effects of CC on the stability properties of the UAV. Capturing the dynamics of a CC-based UAV paves the way for designing autopilot algorithms for autonomous flights. Verification experiments demonstrate a good match between the model and UAV (RMS error \u3c 2.5) and good model predictive ability (Theil inequality coefficient is \u3c 0.19). Flight tests reveal the introduction of a nose down pitching moment effect due to CC which changes the trim flight values. Parameter estimation is performed to derive stability derivatives that capture the stability properties of the CC UAV

    Experimental Investigation of Shrouded Rotor Micro Air Vehicle in Hover and in Edgewise Gusts

    Get PDF
    Due to the hover capability of rotary wing Micro Air Vehicles (MAVs), it is of interest to improve their aerodynamic performance, and hence hover endurance (or payload capability). In this research, a shrouded rotor conguration is studied and implemented, that has the potential to oer two key operational benets: enhanced system thrust for a given input power, and improved structural rigidity and crashworthiness of an MAV platform. The main challenges involved in realising such a system for a lightweight craft are: design of a lightweight and stiff shroud, and increased sensitivity to external flow disturbances that can affect flight stability. These key aspects are addressed and studied in order to assess the capability of the shrouded rotor as a platform of choice for MAV applications. A fully functional shrouded rotor vehicle (disk loading 60 N/m2) was designed and constructed with key shroud design variables derived from previous studies on micro shrouded rotors. The vehicle weighed about 280 g (244 mm rotor diameter). The shrouded rotor had a 30% increase in power loading in hover compared to an unshrouded rotor. Due to the stiff, lightweight shroud construction, a net payload benefit of 20-30 g was achieved. The different components such as the rotor, stabilizer bar, yaw control vanes and the shroud were systematically studied for system efficiency and overall aerodynamic improvements. Analysis of the data showed that the chosen shroud dimensions was close to optimum for a design payload of 250 g. Risk reduction prototypes were built to sequentially arrive at the nal conguration. In order to prevent periodic oscillations in flight, a hingeless rotor was incorporated in the shroud. The vehicle was successfully flight tested in hover with a proportional-integral-derivative feedback controller. A flybarless rotor was incorporated for efficiency and control moment improvements. Time domain system identification of the attitude dynamics of the flybar and flybarless rotor vehicle was conducted about hover. Controllability metrics were extracted based on controllability gramian treatment for the flybar and flybarless rotor. In edgewise gusts, the shrouded rotor generated up to 3 times greater pitching moment and 80% greater drag than an equivalent unshrouded rotor. In order to improve gust tolerance and control moments, rotor design optimizations were made by varying solidity, collective, operating RPM and planform. A rectangular planform rotor at a collective of 18 deg was seen to offer the highest control moments. The shrouded rotor produced 100% higher control moments due to pressure asymmetry arising from cyclic control of the rotor. It was seen that the control margin of the shrouded rotor increased as the disk loading increased, which is however deleterious in terms of hover performance. This is an important trade-off that needs to be considered. The flight performance of the vehicle in terms of edgewise gust disturbance rejection was tested in a series of bench top and free flight tests. A standard table fan and an open jet wind tunnel setup was used for bench top setup. The shrouded rotor had an edgewise gust tolerance of about 3 m/s while the unshrouded rotor could tolerate edgewise gusts greater than 5 m/s. Free flight tests on the vehicle, using VICON for position feedback control, indicated the capability of the vehicle to recover from gust impulse inputs from a pedestal fan at low gust values (up to 3 m/s)

    Teleoperated visual inspection and surveillance with unmanned ground and aerial vehicles,” Int

    Get PDF
    Abstract—This paper introduces our robotic system named UGAV (Unmanned Ground-Air Vehicle) consisting of two semi-autonomous robot platforms, an Unmanned Ground Vehicle (UGV) and an Unmanned Aerial Vehicles (UAV). The paper focuses on three topics of the inspection with the combined UGV and UAV: (A) teleoperated control by means of cell or smart phones with a new concept of automatic configuration of the smart phone based on a RKI-XML description of the vehicles control capabilities, (B) the camera and vision system with the focus to real time feature extraction e.g. for the tracking of the UAV and (C) the architecture and hardware of the UAV
    corecore