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Abstract
The advancement in automation and sensory systems in recent years has led to an in-

crease the demand of UAV missions. Due to this increase in demand, the research com-

munity has gained interest in investigating UAV performance enhancing systems. Circu-

lation Control (CC), which is an active control flow method used to enhance UAV lift, is

a performance enhancing system currently studied. In prior research, experimental studies

have shown that Circulation Control wings (CCW) implemented on class-I UAVs can re-

duce take-off distance by 54%. Wind tunnel tests reveal that CC improves aircraft payload

capabilities through lift enhancement. Increasing aircraft payload capabilities causes an

increase in UAV applications. Design and implementation of autopilot algorithms making

the CC-based UAV capable af autonomous flight increases the number of applications for

which it is suited. In this thesis, mathematical models of a CC-based UAV are derived and

validated. The mathematical models are used to determine the effects of CC on the stability

properties of the UAV. Capturing the dynamics of a CC-based UAV paves the way for de-

signing autopilot algorithms for autonomous flights. Verification experiments demonstrate

a good match between the model and UAV (RMS error < 2.5) and good model predictive

ability (Theil inequality coefficient is < 0.19). Flight tests reveal the introduction of a nose

down pitching moment effect due to CC which changes trim flight values. Parameter es-

timation is performed to derive stability derivatives that capture the stability properties of

the CC UAV.
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Chapter 1

Introduction

The research in the field of aviation and the continuous improvement of avionics sys-

tems has led to an increase in the usage of Unmanned Aerial Vehicles (UAVs). Today,

UAVs are commonly used for aerial photography, landscape surveying, pipeline inspec-

tion, and many more applications due to their ability to perform highly dynamic maneu-

vers, relatively low cost of manufacturing, and elimination of the need of an on board pilot.

However, the small size and low payload capabilities of UAVs restrict their applicability to

limited missions. Therefore, enhancement of UAV performance is currently a highly active

research topic. Circulation Control (CC) is an active flow control method that has been

shown to increase aircraft payload through implementation of a Circulation Control Wing

(CCW) [10, 11, 12, 13, 14]. Lift enhancement introduces numerous opportunities for new

UAV applications such as: reduction in take-off distance, increase of payload capabilities,

increase of maximum take-off weight, or delay of aircraft stall. However, implementation

of such applications requires extensive understanding of the effects of CCW on aircraft

dynamics which in turn is required to design robust autopilot algorithms. Due to the lack

of experimental studies on CCW UAVs, there exists little information describing effects

of CCW on aircraft aerodynamic properties and there remain many challenges that require

1



resolution before the CC applications can be implemented. In this thesis, a system identifi-

cation procedure for capturing mathematical models and performing parameter estimation

of an Unmanned Circulation Control Aerial Vehicle (UC2AV ) is presented.

1.1 Motivation

System identification research performed on class-I UAVs has paved the way for im-

plementation of autopilot algorithms, understanding of UAV dynamics, and understanding

UAV limitations. Researchers have successfully designed system identification algorithms

capable of capturing dynamics introduced by accessory items such as high lift devices

(flaps, slats...etc.) [15, 16, 17, 18]. An emerging high-lift device is the Circulation Con-

trol Wing. Kanistras et al. [10] have shown that CCW can reduce take-off distance of

a small-scale UAV by 54% (Figure 1.1). Further potential applications of CCW are in-

crease in payload capability, increase in maximum take-off weight, or slow speed aerial

photography. In order to increase the viability of a CCW UAV capable of performing the

aforementioned tasks, an UC2AV platform capable of autonomous flight is researched and

implemented. Mathematical models of the UC2AV have been captured to allow designing

autopilot controller algorithms. This thesis summarizes the research to capture UC2AV

mathematical models through simulation flights, flight testing, and a system identification

algorithm.
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Figure 1.1: CC results in enhancement of lift which leads to reduction in take-off distance.

1.2 Problem Statement

Research on CC in wind tunnel environments and through flight tests has shown that CC

has desirable effects on the performance of a UAV. However, wind tunnel tests reveal that

CC changes the aircraft’s aerodynamic coefficients and introduces a nose down pitching

moment effect [13, 9]. These are indications that the stability and control derivatives used

to study an aircraft’s stability properties are affected by CC. Due to the complexity of

designing an efficient UC2AV, the extra weight caused by the addition of a CC system on

a UAV, space requirements, and the CC air mass flow rate requirements, few CC-based

UAVs have taken flight and the effects of CC on the aerodynamic properties of a UAV

remain largely unknown. The following research questions have motivated this work:

• How does CC effect the aerodynamic properties of a Class-I (less than 55 lbs) UAV?

• What are the static and dynamic stability properties of a UC2AV?

• Can linear mathematical models of a UC2AV aimed for controller design be captured

using flight testing?

• Can the models capture the CC induced nose down pitching moment effect?
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1.3 Methodology

The research focuses on determining a suitable method for performing parameter esti-

mation and derivation of mathematical models of the UC2AV to study the effects of CC on

stability and control properties without relying on wind tunnel tests.

The proposed system identification procedure is first tested in a simulation environment.

X-Plane flight simulation software is used to create simulation models of the UC2AV and to

perform simulation flight tests. The data obtained from simulation tests are processed with

Matlab and Simulink. Derivation of mathematical models is performed using CIFER flight

identification software. Once the proposed procedure is verified and simulation models are

obtained, flight tests are held with the UC2AV in two separate phases, first, with the CC

system turned off, and second, with the CC system turned on. CIFER is used again to derive

the mathematical models (Figure 1.2). The obtained models are then used to determine the

effects of CC on the stability and control derivatives.
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Figure 1.2: The proposed method of approach.

1.4 Summary of Contributions

The primary contribution of this work is the derivation of mathematical models of a

UC2AV and investigation of the effects of CC on the mathematical models of the aircraft.

To the best of the authors knowledge, there has not been any work on experimental deriva-

tion of mathematical models of CC-based UAVs. The contributions of this work are sum-

marized as follows:

• Two sets of mathematical models of the UC2AV (CC on and off) are derived and

validated.

• X-Plane Simulation models for the UC2AV that can be used for software in the loop
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simulation testing of autopilot algorithms are created and validated using flight data.

• Stability and control derivatives of the UC2AV required for designing autopilot algo-

rithms are identified.

1.5 Organization of the Thesis

The remainder of the thesis is organized as follows: Chapter 2 presents a literature

review of circulation control studies highlighting the effects of CC on aircraft dynamic

properties and presents a review of system identification algorithms used on class-I fixed

wing UAVs. Chapter 3 presents the system identification procedure, the stability properties

of a conventional fixed wing UAV and how such properties are affected by CC, along with

the mathematical models to be identified. Chapter 4 presents the mathematical models

obtained through simulation. Chapter 5 presents the mathematical models obtained through

flight testing and the estimated stability and control parameters of the UC2AV. Chapter 6

contains the concluding remarks and future work recommendations.
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Chapter 2

Literature Review

There have been many studies conducted to investigate the effects of CC on aircraft

aerodynamic properties [11, 9, 19, 20, 21, 8]. Such studies have concluded that CC can be

used to enhance aircraft lift but that CC can also cause an increase in drag and a negative

pitching moment. Kanistras et al. [11, 22] conducted wind tunnel experiments and flight

tests of CC-based UAV and concluded that CC can be used for lift enhancement in UAV

platforms as well. Conventional UAV platforms offer numerous advantages over manned

aircraft such as the ability to perform highly dynamic maneuvers. Such advantages led to

an increase in the demand for autonomous UAV missions. However, payload limitations

reduce the number of conventional UAV applications. In order to keep up with demand,

researchers have developed many system identification methods to identify the dynamic

models of a UAV. Identification of dynamic models in turn allows for the design of au-

tonomous UAV platforms. The chapter begins by presenting background information on

CC research in literature and concludes by presenting a comprehensive literature review on

UAV system identification methods.
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2.1 Circulation Control Background

Circulation Control is an active flow control method that can be used to enhance UAV

lift properties [10, 11]. Research conducted proves CC to be the most efficient lift aug-

mentation method when compared to traditional high lift devices such as (flaps, slats,etc.)

[22]. CC uses the Coanda effect phenomena for lift enhancement. The tendency of fluids

to remain attached to a curved surface is called the Coanda effect. Figure (2.1) shows water

attaching to the curved surface of a spoon, this is an illustration of the Coanda effect. A

CCW uses the Coanda effect by blowing air at high velocity through slots placed at the

trailing edge of the wing (Figure 2.2). Due to the Coanda effect, the curved surface of the

wing, and the balance of static pressure, the airflow remains attached to the wing surface

and the separation point moves towards the trailing edge of the wing. These changes of the

aerodynamics of the wing cause lift enhancement.

Figure 2.1: Illustration of the Coanda effect [23].
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Figure 2.2: Coanda effect seen on a CCW [24].

There have been many wind tunnel studies investigating the effects of CC on the aero-

dynamic properties of an aircraft [12, 13, 20, 24]. The knowledge gained from such studies

is used to optimize and tune a CC design for implementation on an aircraft. Englar in [19]

developed a CC airfoil to improve subsonic aircraft lift and cruise performance. Englar

defines a momentum blowing coefficient parameter (Cµ) to quantify the intensity of CC

blowing. Momentum coefficient of blowing is a crucial parameter when evaluating CC

systems (Equation 2.1), it depends on mass flow at the slot (ṁj), air velocity (Vj), free

stream velocity (V∞), the dynamic pressure (q∞), and the wing surface area (S)

Cµ =
ṁjVj
q∞S

(2.1)

Englar performed wind tunnel tests to investigate the effects of CC on aircraft lift and

pitching moment by varying momentum blowing parameter Cµ, slot height (and slot num-

bers), and angle of attack. The results obtained indicate enhancement in lift and introduc-

tion of a nose down pitching moment effect (Figure 2.3).

9



Figure 2.3: Pitching moment variations with Cµ [19].

It can be seen that the negative pitching moment introduced is directly proportional to

Cµ. This implies a change in the aircraft trim values. Englar proposes resolving the negative

pitching moment either by leading edge blowing or through aircraft control surfaces.

Cagle in [20] presents a CC wind tunnel model that implements unsteady CC pulsed

blowing to reduce the total air mass required. The wind tunnel model is used to conduct a

study to investigate some of the concerns associated with CCW techniques. The primary

concerns investigated are the source of air for internal flow, increase in drag due to bluff

trailing edge, nose down pitching moment, and the unknown noise effects of CC. As in

[19], Cagle defines the Cµ parameter to quantify the intensity of blowing and to use as the

primary control parameter. Results indicate lift enhancement that is directly proportional

to Cµ (Figure 2.4), a reduction in drag at velocity ratio of 1.2 (
Ujet
Uo

= 1.2, where Ujet is

the velocity of air at the on board air supply unit and Uo is the exit velocity of air at the

CC slots), however the results also indicate an increase in drag at high Cµ values (Figure

2.5), and improvements in lift enhancement with pulsed blowing when compared to steady

blowing (Figure 2.6).
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Figure 2.4: Lift enhancement due to CC blowing [20].

Figure 2.5: CC lift vs. AoA [20].

Figure 2.6: Lift enhancement caused by pulsed blowing at 35 Hz and varying duty cycle
(orange) and steady blowing (blue) [20].
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The results obtained by Englar and Cagle indicate drastic changes to aircraft aerody-

namic properties due to CC. Such changes have an effect on aircraft stability, controllabil-

ity, and dynamic properties. Therefore, it is crucial to understand the new aircraft properties

before implementing autonomous CC based UAVs. The remainder of this Chapter presents

an overview of the system identification methods used in literature to identify UAV dy-

namic properties.

2.2 System Identification Methods

System identification is the process of determining mathematical models of aircraft

dynamics from input-output information [1]. Inputs signals designed to excite aircraft dy-

namics are applied to the control surfaces and system identification methods are used to

capture the mathematical models of the aircraft. There are two methods for capturing

mathematical models; parametric methods and nonparametric methods. Parametric meth-

ods are performed when the structure of the mathematical models is known and flight tests

are performed to capture the aircraft parameters, this process is also called Parameter Esti-

mation. Nonparametric methods identify the models from impulse or frequency responses

without knowledge of model structure. Hoffer et al. [1] conducted a study summarizing the

system identification methods used on small-scale UAVs. The study identifies five primary

elements of UAV system identification (Figure 2.7):

i Input Signals: Inputs signals designed to excite the UAV dynamics are applied to the

control surfaces. This is a crucial step in the system identification process as unexcited

dynamic modes or the lack of persistent excitation (dynamic modes excited for short

periods of time) will result in the dynamic modes not being captured in the identified

mathematical models.
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Figure 2.7: System identification process [1].

ii Data Collection: There are a number of sensory instrumentation requirements to be

considered for accurate model identification. For example, flight data can be extremely

noisy due to inherent sensor noise, structural vibrations, and electromagnetic interfer-

ence. To overcome such issues, adequate signal filtering procedures have to be imple-

mented to obtain low signal to noise ratios. Also, sensor sampling rates must be greater

than the dynamic frequencies to capture the dynamic modes.

iii Selection of the Model Structure: The model structure to be identified is largely depen-

dent on the end application. For example, if the end application is parameter estimation

then the identified model must include the parameters of interest.

iv Selection of System ID Method: The system ID method implemented depends on the

dynamics of the UAV to be captured and the application of the captured model (Figure

2.8). The UAV dynamics can be time varying or invariant; static or dynamic; linear or

nonlinear; and continuous or discrete. Different system ID methods are better suited

for different UAV dynamics.
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v Optimization and Verification of the Model: The identified model requires validation

using flight data that were not used for model identification. This is done to test the

identified model’s ability to predict UAV response. Testing criteria are designed to

quantify the model predictive ability such as root mean error analysis or Theil Inequal-

ity Coefficient analysis.

Figure 2.8: System identification method selection [1].

Literature shows that system identification algorithms have been implemented for a

variety of applications ranging from parameter estimation, controller design, online system

ID, and fault detection (Tables 2.1 and 2.2). Tables 2.1 and 2.2 summarize the system

identification methods and their applications [1].

In the remainder of this section, the various nonparametric system identification algo-

rithms are presented starting by presenting classical methods such as equation-error and
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Table 2.1: System identification methods and their applications - part 1 [1].

Reference Data Source Model System ID Application
[15] MCS SS LS Post-stall dynamics

[25] MCS SS LS
Longitudinal
acceleration

model

[26] -
Second order

ARX LS
Motor and servo

modeling

[27] IMU, GPS, DP Linear SS
Recursive FTR

(LS in FD) RT modeling

[16] - SS FD LS CSD

[28] IMU
Fourth Order

ARX LS
Loitering flight model

for improved CSD

[29]
IMU,GPS,

altimeter, and PS SS OEM Nonlinear CSD

[30]
IMU, GPS,

and BS Linear SS TD OEM & MLM
Framework for

flight CSD

[31] - Linear ARX
SOM-based local

linear modeling scheme

Development of
a set of

inverse controllers

[17]
IMU,PS,silde-slip

potentiometer,
& AoA encoder

ARX NN
Results validated using
RT hardware in the loop

[32] IMU NonLinear SS Model ID CSD

[33] IMU SS Batch LS
Support & validate
autopilot hardware

and software
[34] IMU & GPS FD to SS CIFER CSD

[35] IMU & GPS
Fifth and First

Order ARX LS Fractional order CSD

[36]

IMU,GPS,ADS,
tachometer,

potentiometers,
& strain gauges

Mu-Markov
parametrization LS & Online Sys ID

[37]
IMU,PS,

& wind vane SS Square Root uKF
Online model ID

for control

[38]
IMU,PS,side-slip

potentiometer,
& AoA encoder

ARX NN
Comparison of RT
online and offline

NN models

[39] - ARX
Multi-network using
NN & batch wise LM

Online and offline NN
models for CSD

[40] - ARX & MPL
Recurrent NN &
batch wise LM

Online and offline
NN models for CSD
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Table 2.2: System identification methods and their applications - part 2 [1].

Reference Data Source Model System ID Application

[41]
IMU,GPS,
BS, and DP SS Online RLS

Control surface
fault detection

[42] -
Fourier

transform
SS

RT FTR

Fault detection and
real time estimation

of stability and
control derivatives

[43]
Carrier phase
differential

GPS
SS

Moshe Idan MLM
parameter estimation

OKID,
& subspace

comparison of three
system ID methods

[18] Wind tunnel SS FD

For SS: EEM LS
OEM MLM &

for FD:
LSR MLM FR

comparison of ID
methods

and survey of
manned and

unmanned aircraft

[32] IMU SS
Nonlinear mapping &

fuzzy ID
Comparison of

ID methods

[44]
IMU, GPS,

& PS
ARX,ARMAX,

& BJ PEM
Comparison of 3

models of
take-off dynamics

[45]
IMU, GPS,

& PS SS
GA based

parameter ID
& PEM

Comparison of the 2
system ID methods

[46] IMU SS EKF & EMID
Comparison of the

two methods

[47] IMU & GPS
Fifth and first-

order ARX LS
Comparison of &

fractional
order (PI) CSD

[3] IMU FD to SS CIFER

Baseline model used
to design informative

flight experiments
for FD sys. ID

[48]
IMU,GPS,

and PS

ARX for
discrete-time,

inverse, Z-transform
convert to continuous-
time & FD for small

order model

LS
Sys. ID method

proposal

[49]
IMU,GPS,

and PS SS
Nonlinear constrained
optimization algorithm

Undergradaute
education
in UAVs

[50] - ARX - Autopilot tuning
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output-error methods and Frequency domain methods. Afterwards, the artificial intelli-

gence methods enabled by recent technology advances in computation are presented.

2.2.1 Equation-Error and Output-Error Methods

The aim of equation-error methods is determining the aerodynamic parameter estimates

that minimize a least square cost function. The cost function is hence defined as the squared

difference between model parameters estimated and model parameters obtained through

flight testing. Equation-error methods are commonly used for parameter estimation pur-

poses (Tables 2.1 and 2.2).

Klein and Morelli have illustrated the use of equation-error methods for parameter esti-

mation in [51, 52]. Suppose that parameter estimation is to be performed to determine the

derivatives shown below:

CX = −CA =
(max − T )

q̄S
CY =

may
q̄S

CZ = −CN =
maz
q̄S

CD = −Cxcosα− CzsinαCL = −Czcosα + CXsinα

Cl =
Ix
q̄Sb

[ṗ− Ixz
Ix

(pq + ṙ +
Iz − Iy
Ix

)qr]

Cm =
Iy
q̄Sc̄

[q̇ +
(Ix − Iz)

Iy
pr +

Ixz
Iy

(p2 − r2)]

Cn =
Iz
q̄Sb

[ṙ − Ixz
Iz

(p− qr) +
(Iy − Ix)

Iz
pq]

(2.2)

The coefficients appearing in Equation (2.2) can be modeled and represented with mea-

surable aircraft states and controls. Although the models can vary depending on the aircraft

configuration, the typical linear models are:
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CL = CLαα + CLδsδs + CLo

CD = CDαα + CDδsδs + CDo

Cm = Cmαα + Cmq
qc̄

2Vo
+ Cmδsδs + Cmo

CY = CYββ + CYδr δr + CYo

Cl = Clββ + Clp
pb

2Vo
+ Clr

rb

2Vo
+ Clδaδa + Clδr δr + Clo

Cn = Cnββ + Cnp
pb

2Vo
+ Cnr

rb

2Vo
+ Cnδaδa + Cnδr δr + Cno

(2.3)

The equations above can be represented with a general model structure as shown:

z(i) = θo +
n∑
j=1

θjξj(j) + v(i) i = 1, 2, ..., N (2.4)

where z(i) are the output measurements, θ are the model parameters and are constant,

ξ are explanatory data vector and are called regressors, v(i) is measurement noise, and N

is the number of data points. Equation (2.4) is called a regressor function. Assuming that

the model parameters are unknown constants and that the measurement vector are affected

by random noise, estimates of model parameters θ̂ can be obtained using the Least Squares

method [52]. The least square method estimates θ̂ by minimizing the cost function J which

is the sum of the squared differences between the estimated parameters and the model

(Equation 2.5).

J(θ) =
1

2
(z −Xθ)T (z −Xθ) (2.5)

The estimator equation based on the least square is [52]:

θ̂ = (XTX)−1XT z (2.6)
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Parameter Estimation using least square algorithm has been performed on full-scale air-

craft [52] and class I UAVs (Tables 2.1 and 2.2). Hoffer in [2] implements a recursive least

square method and an Error Filtering Online Learning (EFOL) filter to identify the mathe-

matical models of a Minion UAV (Figure 2.9). The recursive least square method identifies

the parameters a and b in Equation (2.7) by measuring state values x, state derivatives ẋ,

and inputs u. However, not all measurements for state derivatives ẋ are available. EFOL is

implemented to measure the state derivatives as simply differentiating the states x leads to

noise amplification.

Figure 2.9: Minion UAV [2].

ẋ = ax+ bu (2.7)

The linear longitudinal models to be identified using recursive least square is repre-

sented in Equation (2.8) where the additional column vector ef1...4 is the errors associated

with measurements and parameter estimations.
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

∆u̇

∆ẇ

∆q̇

∆θ̇


=



Â11 Â12 Â13 Â14

Â21 Â22 Â23 Â24

Â31 Â32 Â33 0

0 0 1 0





∆u

∆w

∆q

∆θ


+



B̂1

B̂2

B̂3

0


∆δe +



ef1

ef2

ef3

ef4


(2.8)

EFOL is applied to filter high frequency noise and eliminate the use of differentiation

for estimating state derivatives ẋ. This is done by converting the model in Equation (2.8) to

the Laplace domain. The Laplace domain model is filtered with a low pass first order filter

Equation (2.9).

λ

s+ λ
(2.9)

To estimate unmeasured state derivatives, the low pass filter is modified as shown in

Equation (2.10). The modified filter can be implemented as shown in Equation (2.11)

which eliminates the need for differentiation.

λs

s+ λ
(2.10)

λ(1− λ

s+ λ
) (2.11)

The models are converted back to the time domain and rewritten to a linear model as

shown in Equation (2.12) where χ is the filtered state derivatives, θ̂ is parameter estimates,

ζ is the filtered states, and δ are the filtered errors. By introducing an additional covariance

matrix P , recursive least square algorithm can be implemented to estimate the change in

parameters and covariance as shown in Equations (2.13) and (2.14).

χ = θ̂ζ + δ (2.12)
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˙̂
θ = −P (t)ζ(t)δ θ(0) = θ0 (2.13)

Ṗ = −P (t)ζ(t)ζ(t)TP (t) P (0) = P0 (2.14)

Then the parameters are integrated:

θ̂ =

∫
˙̂
θdt (2.15)

P =

∫
Ṗ dt (2.16)

Implementation of the presented recursive least square algorithm requires flight data.

The system ID process uses seven sets of chirp maneuvers to calculate the models pre-

sented. Validation of the models is performed by comparing the response of the aircraft

to sine wave, doublet, and singlet inputs to the response of the models to the same inputs

(Figure 2.10).

Figure 2.10: Method of approach includes training and validation phases [2].
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The parameters of Equation (2.7) are identified using BLS (batch least squares) and

BLS with EFOL. The results obtained indicate that using BLS with EFOL does not degrade

the accuracy of the identified models (Table 2.3). Parameter estimation is performed using

the identified parameters of the longitudinal model to solve for the aerodynamic coefficients

of interest.

Table 2.3: Summary of the identified aerodynamic coefficients [2].

Parameter BLS mean BLS std EFOL mean EFOL std

CX -0.0064 0.0020 -0.0064 0.0020

CZ -0.026 0.0080 -0.026 0.0080

Cm -0.52 0.45 -0.53 0.46

CX,α 0.013 0.017 0.013 0.017

CZ,α -0.36 0.046 -0.36 0.046

Cm,α -17.56 4.62 -17.70 4.71

CX,q 0.00058 0.0023 0.00057 0.0023

CZ,q -0.027 0.0076 -0.027 0.0076

Cm,q -0.45 0.58 -0.43 0.59

CX,δe -0.0013 0.0079 -0.0013 0.0080

CZ,δe -0.055 0.027 -0.056 0.028

Cm,δe -15.10 2.27 -15.17 2.28

Sine maneuvers (Figure 2.11) are used to validate the identified model’s ability to re-

spond to elevator inputs. Doublet and singlet maneuvers (Figures 2.12 and 2.13) are used to

excite both short and long period dynamics. The main different between the doublet/singlet

and the sine wave maneuvers is that after the control signal is given, the aircraft is allowed

to freely oscillate at low frequencies. Therefore, these signals allow evaluate how well the

identified model captures the long period dynamics (Figures 2.14, 2.15, and 2.16).
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Figure 2.11: Sine maneuver input [2].

Figure 2.12: Doublet maneuver input [2].
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Figure 2.13: Singlet maneuver input [2].

Figure 2.14: The state comparison of flight data to the BLS and BLS with EFOL models
using sine wave inputs [2].
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Figure 2.15: The state comparison of flight data to the BLS and BLS with EFOL models
using doublet signal inputs [2].

Figure 2.16: The state comparison of flight data to the BLS and BLS with EFOL models
using singlet signal inputs [2].

The identified models are able to capture the oscillatory motion of the UAV when the

input is a sine wave. However, the models are not able to capture the oscillatory motion

25



when the input is a doublet or singlet input (Table 2.4). To resolve the issue, either the dou-

blet or singlet data can be used for model identification to increase the amount of training

data.

Table 2.4: Mean error values from comparison of flight data to the identified models [2].

Parameters Sine wave Doublet Singlet

BLS EFOL BLS EFOL BLS EFOL

u̇[m/s2] 0.6899 0.6902 0.8134 0.8151 0.8905 0.8969

ẇ[m/s2] 0.9170 0.9178 1.220 1.222 1.255 1.255

θ̇[deg/s] 5.184 5.202 2.951 2.979 3.661 3.672

u[m/s] 1.806 1.811 2.118 2.119 2.519 2.521

w[m/s] 0.6400 0.6411 0.4682 0.4686 0.4487 0.4497

q[deg/s] 5.184 5.202 2.951 2.979 3.661 3.672

θ[deg] 4.721 4.738 5.236 5.242 5.821 5.861

The presented equation error method is able to identify models with acceptable pre-

dictive ability. However, model validation indicates that the derived models are able to

capture the dynamics of the UAV only when the input provided is a sinusoidal signal. This

is expected as sinusoidal signals of varying frequencies (chirp signals) are used for model

derivation. Whereas the models are unable to accurately capture the UAV dynamics when

the input signals are not oscillatory (doublet or singlet inputs) even when extra care is taken

into eliminating data noise.

2.2.2 Frequency Domain Methods

The time domain methods presented in the previous section and shown in Tables 2.1

and 2.2 can be implemented in the frequency domain by converting the data recorded to
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the frequency domain using Fourier transform. Data conversion to frequency domain has

advantages such as: fewer data points, which leads to faster computation time. On average,

system identification of a UAV consists of identifying the dynamics of nine states (linear

accelerations, aerodynamic angles, AoA, side slip angle,etc.) and four control surfaces

(elevator, rudder, aileron, and throttle). For a 50 second maneuver sampled at 50 Hz,

this leads to 50 × 50 × 9 × 4 = 90, 000 data points to be processed. However, system

identification in the frequency domain significantly reduces the number of data points to

be processed by performing system identification at discrete frequency values (typically 20

values). The total data points becomes 20× 2× 9× 4 = 1440. Frequency domain system

identification, unlike time domain, does not require the identification of a noise model as

noise sources can be handled by the system identification algorithms [53]. Researchers

have implemented many system identification methods in the frequency domain (Tables

2.1 and 2.2). CIFER is the most commonly used software for system identification in the

frequency domain. The remainder of this section presents the use of CIFER in literature.

Dorobantu et al. [3] use CIFER and wind tunnel tests to identify linear longitudinal and

lateral models of a class-1 UAV (Figure 2.17). The longitudinal and lateral model struc-

tures are identified analytically using Newton-Euler equations and are linearized by assum-

ing small perturbation theory Equations (2.17 and 2.18). The model structure appearing in

the equations are expressed using stability/control derivatives and aircraft inertial and mass

measurements.
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Mlonẋ = Álonx+ B́lonδelev

Mlon =



m 0 0 0

0 m 0 0

0 0 Iy 0

0 0 0 1


Álon =



Xu Xw Xq −mWe −mgcosθe

Zu Zw Zq +mUe −mgsinθe

Mu Mw Mq 0

0 0 1 0


B́lon =



Xδelev

Zδelev

Mδelev

0


(2.17)

Mlatẋ = Álatx+ B́lon

 δail
δrud



Mlon =



m 0 0 0

0 Ix −Ixz 0

0 −Ixz Iz 0

0 0 0 1


Álon =



Yv Yp +mWe Yr −mUe mgcosθe

Lv Lp Lr 0

Nn Np Nr 0

0 1 tanθe 0



B́lon =



Yδail
Yδrud

Lδail
Yδrud

Nδail
Yδrud

0 0



(2.18)

Figure 2.17: Ultra Stick 25e flight test vehicle [3].
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Initial guess estimates for the stability and control derivatives are required by CIFER to

perform system identification. Initial guesses are obtained by performing wind tunnel tests

on a scaled model of the aircraft. The scaled aircraft is placed in a wind tunnel on a sting.

Tunnel airspeed is kept constant while the aerodynamic forces and moments are measured

by a sensor. Three wind tunnel tests are conducted: i) sweeping AoA ; ii) sweeping sideslip

angle; and iii) control surface deflections to estimate control derivatives. The values ob-

tained of the scaled model can be used to determine system gain and the frequency range

of interest.

Frequency sweep signals are applied to the control surfaces to excite system dynamics

(Figure 2.18). The sweep signals begin with a 2-3 seconds of trim flight, then sinusoidal

sweep signals are applied with continuously increasing frequency, and then the UAV is

flown in trim for another 2-3 seconds. Such sweep inputs allow for identification of trim

values and identification of the UAV dynamics in a range of discrete frequency values. In

order to guarantee sufficiently large signal to noise ratio, an output data amplitude of 10◦ is

required (Figure 2.18).

Figure 2.18: Sample of sweep input signal and UAV response [3].
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The recorded time-domain data is converted to the frequency domain using chirp Z-

transform by CIFER. Frequency spectrum function of the data is calculated and used in

CIFER’s optimization algorithm. CIFER identifies model parameters by minimizing the

cost function (J). The cost function that can be seen in Equation (2.19) is the squared

difference of magnitude and phase of the data and the identified model.

J =

NTF∑
l=1

(
20

nω
×

ωnω∑
ω1

Wγ[Wg(|T̂c| − |T |)2 +Wp(∠T̂c − ∠T̂ )2]

)
l

(2.19)

CIFER is used to derive stability and control derivatives that minimize the cost function

J and populate the model structures of Equations (2.17 and 2.18). Analyzing the identified

models by determining the eigenvalues allows for identifying the longitudinal and lateral

dynamic modes (Tables 2.5 and 2.6). Verification of the models is performed by apply-

ing doublet inputs to the control surfaces and comparing the response of the UAV to the

response of the models (Figure 2.19).

Table 2.5: Longitudinal dynamic modes of the UAV [3].

Mode Frequency (read/s) Damping Time Constant (sec)

Phugoid 0.497 0.724 12.652

Short Period 13.390 0.736 0.452

Actuator 50.266 0.800 0.125

Time Delay - - 0.045
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Table 2.6: Lateral dynamic modes of the UAV [3].

Mode Frequency (read/s) Damping Time Constant (sec)

Spiral 0.021 - 294.985

Dutch Roll 6.102 0.329 1.030

Roll 14.912 - 0.421

Figure 2.19: Captured flight data vs. model response [3].

Frequency domain system identification using CIFER provides key improvements over

time domain methods. Such improvements include the elimination of the requirement to

identify a noise model, the ability to directly estimate stability and control derivatives,

and reduction of computation time. Dorobantu et al. [3] have shown that CIFER can

successfully identify mathematical models with acceptable predictive ability. However,

the requirements placed on flight data and the necessity of initial guesses for stability and
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control derivatives are the main limitations of CIFER. CIFER requires persistent excitation

of dynamics for identification, which limits the identification of lower frequency dynamics.

2.2.3 Neural Network Methods

As described in [4], Artificial Neural Networks (ANN) are a machine learning algo-

rithm inspired by biological neural networks. They are highly interconnected identical pro-

cessing units which are arranged in an ordered topology. Recent advances in computational

power has enabled the implementation of ANN for system identification applications (Ta-

bles 2.1 and 2.2). A typical ANN consists of an input layer which has several input neurons,

an output layer which has several output neurons, and generally one hidden layer (Figure

2.20). The purpose of the hidden layer is summing the signals of the input layer, scale

them in accordance to the assigned weight of the neuron-neuron connection, and passing

the resulting signal to a threshold activation function (Figure 2.21).

Figure 2.20: ANN layers [4].
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Figure 2.21: The ANN hidden layer sums the input signals, multiplies them by assigned
weight values (wk0,1,...n), and passes the signal to a threshold activation function ψ [4].

ANN can be used for system identification by identifying the neuron-neuron weights

through a process called training. This creates an ANN that resembles the UAV dynamics.

Algorithms are implemented to identify the weights from known input (control surfaces)

and output (UAV response) flight data.

Harris in [4] uses an ANN method designed by Kirkpatrick in [54] for identifying the

dynamic models of the RMRC Anaconda UAV (Figure 2.22). Equation (2.20) shows a

standard state-space representation of a UAV model structure. x(k) is the system states, Φ

and Γ are the parameters to be identified, and u(k) is the input.

Figure 2.22: RMRC Anaconda UAV [4].
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x1(k + 1)

x2(k + 1)

 =

Φ11 Φ12

Φ21 Φ22


x1(k)

x2(k)

+

Γ1

Γ2

u(k) (2.20)

An ANN can be created to represent the model in Equation (2.20). To do so, the fol-

lowing have to be taken into consideration:

• The ANN must have no hidden layers, i.e. one input layer and one output layer. This

is to guarantee that the weight of the ANN are identical to the Φ and Γ parameters

(Figure 2.23).

• The threshold activation function has to be linear in order to not introduce nonlinear-

ities to the model.

• All nodes must have zero bias inputs.

Figure 2.23: ANN without hidden layers [4].
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The presented ANN is implemented using the Matlab Neural Network Toolbox [55].

The toolbox takes the control surface and system states time histories as inputs and gener-

ates the state-state matrices. However, before the ANN is used to identify the models of the

RMRC Anaconda UAV, the ANN is tested by identifying a simulation model of F-16XL

experimental jet fighter (Figure 2.9). F-16XL is chosen due its fast dynamics and large

number of control surfaces which make it a challenging identification problem. Mathe-

matical model of the F-16XL is separately derived using a well tested Observer/Kalman

(OKID) Identification Algorithm.

Figure 2.24: 16XL experimental fighter jet [4].

System identification of the F-16XL is done by applying step inputs to every control

surface of the aircraft separately to excite the system dynamics. This is done for the longi-

tudinal model and the lateral model. The identified models are then tested using Simulink

by comparing the output of the models to the output of the F-16XL and by performing

Theil Inequality Coefficient (TIC) analysis. TIC is a normalized measure of the aircraft

predictive ability, TIC = 1 indicates the aircraft has no predictive ability while TIC = 0

indicates the aircraft has perfect predictive ability (Figure 2.25 and Table 2.7).
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Figure 2.25: Left: Testing the identified longitudinal model vs. simulation data. Right:
Testing the identified lateral model vs. simulation data [4].

Table 2.7: F-16XL Theil coefficient values [4].

(a) Longitudinal (b) Lateral

Parameter TIC Parameter TIC

u 0.2484 β 0.6510

α 0.2681 p 0.4518

q 0.3805 r 0.6323

θ 0.2179 φ 0.5102

δT 0.1996 ψ 0.6477

The derived longitudinal model captures the longitudinal dynamics more accurately

than the lateral model captures the lateral dynamics (Figure 2.25 and Table 2.7). Harris

et al. in [4] set 0.35 as a TIC cutoff. As it can be seen, all but q parameter in the lon-

gitudinal model meet the cutoff and none of the parameters in the lateral model meet the

cutoff. However, Harris et al. [4] conclude through visual inspection of Figure 2.25 that

the identified model exhibits similar enough response to the F-16XL dynamics in order to

still be used.
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The ANN method is then used to identify the longitudinal and lateral models of the

RMRC Anaconda. Step inputs are applied to the RMRC Anaconda control surfaces to

excite system dynamics (Figure 2.26). The recorded data is passed through a low pass

filter as high frequency noise degrade the ANN algorithm performance. Matlab’s Neural

Network toolbox is used once more to perform system identification. The identified models

are then tested using Simulink by comparing the output of the models to the output of the

UAV and by performing Theil Inequality Coefficient analysis (Figure 2.27 and Table 2.8).

Figure 2.26: Left: Step inputs to excite longitudinal dynamics. Right: Step inputs to excite
lateral dynamics [4].

Figure 2.27: Testing the identified longitudinal model vs. flight data. Right: Testing the
identified lateral model vs. flight data [4].
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Table 2.8: TIC values for RMRC Anaconda [4].

(a) Longitudinal (b) Lateral

Parameter ANN OKID Parameter TIC OKID

u 0.4008 0.4032 β 0.5726 0.5682

α 0.6989 0.6985 p 0.3159 0.3533

q 0.4199 0.4125 r 0.4944 0.5391

θ 0.3675 0.3760 φ 0.5085 0.5141

Table 2.8 indicates that the identification of angle-of-attack parameter is poor. However,

the remaining parameter show acceptable identification results. The TIC values indicate

that the ANN algorithm’s prediction ability matches the prediction ability of the well tested

Observer/Kalman Identification Algorithm.

The presented neural network method accurately identifies the dynamics of the pitch

rate of change and roll rate of change variables. However, examination of the TIC values

and Figure (2.27) indicates poor model accuracy and predictive ability. This is likely due

to the limited duration of data used in the training phase. Training with doublet inputs

does not capture the dynamics of the UAV at a range of frequencies. The literature review

presented in this chapter has shown that output error and frequency domain methods using

CIFER have yielded better results.

2.3 Literature Review Remarks

This chapter presents an overview of the system identification methods used for fixed-

wing UAV modeling. A number of studies from the most common approaches are also

presented to give detail insights to the system identification methods. A number of ob-

servations can be made from the review presented: i) While all method implement an
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optimization algorithm (minimization of a cost function), algorithms that require greater

time history data tend to produce better models; ii) Equation-error methods can be used

to perform parameter estimation successfully, however, validation tests indicated that the

model can capture the UAV response only when the input provided has similar properties

(constant frequency or oscillatory properties) to the input used during system identification;

and iii) The UAV dynamics change with the input frequency, hence, using a doublet input

for system identification only captures the dynamics at a discrete frequency value.

The research presented in this thesis aims at deriving mathematical models for autopilot

algorithm development and for investigation the effects of CC on UAV stability properties.

Equation-error methods has shown that system identification method based on optimization

of a cost function can be used for parameter estimation. CIFER implements an optimization

algorithm in the frequency domain to perform parameter estimation and to derive mathe-

matical models. Therefore, this research uses CIFER to perform system identification and

parameter estimation of the UC2AV. Parameter estimation is performed in two separate oc-

casions; first, with the CC system turned off; and second, with the CC system turned on.

This allows for investigating the effects of CC on UAV stability properties.
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Chapter 3

System Identification Procedure

3.1 Introduction

This chapter provides detailed information of the system identification methodology

implemented in this thesis. The chapter begins by providing detailed description of the

UAV platforms including the CC system. The dynamic equations of motion of a UAV

are presented and mathematical models are derived for longitudinal and lateral motion.

The effects of CC on the UAV dynamics are also presented. The chapter concludes by

presenting the system identification method of approach along with explanation of how the

proposed methodology is implemented in simulation environment and flight testing.

3.2 Description of UAV Platforms

System identification is performed on two UAV platforms: the RMRC Anaconda; and

the UC2AV. This section provides a description of the two platforms.
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3.2.1 RMRC Anaconda

The RMRC Anaconda (Figure 3.1), which is a twin boom inverted V-tail UAV, is chosen

as the baseline UAV platform due to its payload capabilities and ample fuselage space for

the addition of a CC Air Supply Unit (ASU).

Figure 3.1: Stock RMRC Anaconda UAV.

The RMRC Anaconda has a wing span of 2060 mm, a total weight of 8 lbs, and has a

Clark YH airfoil. RMRC Anaconda specifications can be seen in Table 3.1

Table 3.1: RMRC Anaconda specifications [22].

Fuselage

Length L 0.8 m

Width Wmax 0.11 m

Height Hmax 0.16 m

Propeller

Diameter D 15 in

Pitch P 4 in

Number of Blades 2
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3.2.2 UC2AV

The UC2AV platform is created from the RMRC Anaconda by performing the following

modifications: i) An ASU unit is added in the fuselage of the RMRC Anaconda along with

an air intake inlet; ii) A CCW is manufactured that includes an Air Delivery System (ADS),

which consists of tubes used to deliver the air from the ASU to 0.4 mm CC slots located at

the trailing edge of the wing. (Figure 3.2)

Figure 3.2: The CC system [10].

The ASU is located inside the fuselage and at the center of gravity of the UC2AV. The

ASU unit includes a centrifugal compressor that draws air into the CC system through an

air intake duct located underneath the fuselage (Figure 3.3).

Figure 3.3: The ASU air intake duct is located underneath the fuselage [56].

The UC2AV configuration can be seen in Figure 3.4. Details of the CCW design and

implementation of UC2AV can be found in [10, 23].
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Figure 3.4: The UC2AV platform.

There are a number of important differences between the RMRC Anaconda and the

UC2AV (Table 3.2). The UC2AV has one-third aileron surface area of the RMRC Anaconda

and is nearly 3 lbs heavier.

Table 3.2: Comparison between RMRC Anaconda and UC2AV

Wing Span Airfoil Total Weight Aileron Area

RMRC Anaconda 2060 mm Clark YH 7.70 lbs 240 cm2

UC2AV 2060 mm NACA 0015 10.36 lbs 80 cm2

Identical servo motors and throttle motor are implemented on both UAVs. Ground

testing reveals that the servo motors are able to respond to all input signals.
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3.3 UAV Flight Dynamics

System identification is the process of representing aerodynamics forces and moments

in terms of measurable quantities such as control surface deflection angles, aerodynamic

angles (pitch, roll, and yaw), and aircraft linear velocities. These quantities are measured

with respect to the earth or body reference frames. Therefore, before proceeding to deriva-

tion of mathematical models, the required reference frames have to be defined.

Reference Frames

• Earth Axis xE, yE, zE . The origin of the earth reference frame can be any arbitrary

point on the surface of the earth. Positive xe points towards geographic north, positive

yE points towards east, and zE points towards the center of the earth. Ignoring the

motion of the earth results in making the earth axis identical to the inertial axis which

is used when applying Newton’s laws.

• Body Axis xB, yB, zE . The origin of the body axis frame is located at the center of

gravity of the aircraft. Positive xB points forward through the nose of the aircraft,

positive yB points in the same direction as the right wing, and positive zB points

downwards from the center of gravity.

The transnational and rotational dynamics of an aircraft can be obtained by treating

the aircraft as a rigid body and applying Newton’s Laws. A complete derivation of these

dynamics equations can be found in [57]. These equations represent the forces acting on

the aircraft (X ,Y ,Z), the moments (L,M ,N ), aerodynamic angular rates (q,p,r), and the

linear velocities (u,v,w) in reference to a fixed coordinate system.

44



Figure 3.5: The forces, moments, angular rates of change, and the linear velocities of an
aircraft [58].

The equations derived in [57] are non-linear. Deriving the non-linear UAV model is

a complex process and beyond the scope of this thesis. The non-linear equations are lin-

earized in accordance to the small perturbation theorem which assumes minimal devia-

tion from trim conditions, spinning motor effects are negligible, and wind velocity is zero.

These assumptions are valid and applicable to this research as the effects of Circulation

Control are present with small perturbation angles, the rotor angular momentum is small,

and all flight data is held in calm weather conditions ( wind speed< 5 mph). The linearized

equations are:

X0 + ∆X −mg(sin(θ0) + θcos(θ0))) = mu̇

Y0 + ∆Y +mgφcos(θ0) = m(v̇ + u0r)

Z0 + ∆Z +mg(cos(θ0)− θsin(θ0) = m(ẇ − u0q)

L0 + ∆L = Ixṗ− Izxṙ

M0 + ∆M = Iy q̇

N0 + ∆M = −Izxṗ+ Iz ṙ

θ̇ = q

φ̇ = p+ rtan(θ0), p = φ̇− ψsin(θ0)

ψ̇ = rsec(θ0)
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Further assumptions are made to simplify the linearized equations. The configuration

of the aircraft is assumed to be symmetric. A symmetric configuration implies that the

side force Y, rolling moment L, and yawing moment N are zero and that the derivatives of

the asymmetric and lateral moments and forces with respect to symmetric and longitudinal

parameters are zero. It is also assumed that derivatives with respect to rate of change

of motion variables are zero. These assumptions are standard in deriving linear dynamic

expressions of aircrafts. These equations are decoupled and presented as longitudinal and

lateral dynamics. State-space representations obtained of the decoupled dynamics can be

represented in the form:

ẋ = Ax+Bu

where x is the state variable matrix and u is the input control matrix. The state-space

representation of the longitudinal and lateral models to be identified are shown below:



u̇

ẇ

q̇

θ̇


=



Xu Xw 0 −gcos(θ0)

Zu Zw Zq +mu0 −gsin(θ0)

Mu Mw Mq 0

0 0 1 0





u

w

q

θ


+



Xδe Xδp

Zδe Zδp

Mδe Mδp

0 0


[
δe δp

]
(3.1)



v̇

ṗ

ṙ

φ̇


=



Yv Yp Yr − u0 gcos(θ0)

Lv Lp Lr 0

Nv Np Nr 0

0 1 tan(θ0) 0





v

p

r

φ


+



Yδa Yδr

Lδa Lδr

Nδa Nδr

0 0


[
δa δr

]
(3.2)

The models above are represented using dimensional stability and control derivatives.

The elements appearing in matrix A are the stability derivatives. Stability derivatives are

used to determine the effect changes in state variables have on the aerodynamic forces and
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moments. They are also a useful measure when studying the static stability of an aircraft as

it will be seen in section 3.3.1. Control derivatives which appear in matrix B, can be used

to determine the effects changes of the control surfaces (such as elevator deflection angle)

have on aerodynamic forces and moments.

3.3.1 Aircraft Stability Properties

Aerodynamic stability is defined by the ability of the aircraft to return to trim after

deviating from trim due to natural disturbances (weather disturbances) or control inputs.

There are two general types of aircraft stability: static stability and dynamic stability [58].

Static Stability:

An aircraft is said to be statically stable if its initial response to natural disturbances

(weather related) counter the disturbance making the aircraft return to its original state. A

statically stable aircraft is designed in such a way that aerodynamic forces and moments

act in the appropriate directions to return the aircraft to longitudinal and lateral trim [58].

Longitudinal Static Stability

Analysis of longitudinal static stability of a Circulation Control UAV is one of the

objectives of this research. Static stability is an important measure that influences the pilots

ability to fly an aircraft. Most aircraft are designed to be statically stable, however, many

highly dynamic aircraft are statically unstable and difficult to fly without the assistance of

an autopilot system [58].

Longitudinal static stability is mostly determined through the location of center of grav-

ity xcg and the aerodynamic neutral point or aerodynamic center point xac. The aerody-

namic neutral point is defined as the point where the pitching moment is constant for a

range of angles of attack and the point at which the lift forces act. Both xcg and xac are

measured from the leading edge of an aircraft. These two values are used to define a pa-
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rameter known as the static margin which is the difference between xcg and xac normalized

over the mean chord length c̄ (Figure 3.6) [58].

Figure 3.6: Side cross-section view of an aircraft depicting a statically stable aircraft where
static margin > 0 [59].

Static margins greater than 0 indicate that the center of gravity is located at the nose of

the aircraft and is ahead of the aerodynamic center which implies static stability. However,

too large static margins will make the aircraft ”nose heavy” and unresponsive to pilot inputs.

Longitudinal static stability can be represented with Pitching Moment Stability deriva-

tive (Cm) and AoA. Suppose an aircraft in trim flight experiences turbulences that deviate

it from trim AoA. A statically stable aircraft will experience a pitching moment in the op-

posite direction to AoA that returns the aircraft to trim [58]. The behavior is labeled as

positive pitch stiffness and is depicted in curve a of Figure 3.7. A statically unstable air-

craft on the other hand will experience a pitching moment in the same direction of AoA that

deviates the aircraft further from trim. This behavior is labeled as negative pitch stiffness

and is depicted in curve b of Figure 3.7 [59].
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Figure 3.7: Cm Pitching moment of an aircraft about CG [59].

Lateral Static Stability

An aircraft is said to be laterally statically stable if increases in the sideslip angle (β)

result in a counter acting yawing moment and side force that restore the aircraft to the

original state. This behavior can be labeled positive sideslip stiffness. As in longitudinal

stability, lateral static stability can be determined using the rolling moment due to sideslip

angle stability derivative (Lβ); Lβ < 0 implies lateral static stability [59].

Dynamic Stability

Dynamic stability is defined by the ability of an aircraft to return to trim flight after

deviating from it due to pilot inputs. The response of the UAV to the inputs are over-damped

and that the amplitude of the resulting oscillatory motion will diverge to trim values without

requiring pilot intervention [59].

Longitudinal Dynamic Stability

Longitudinal dynamic stability can be determined through studying the eigenvalues

(λ) of Equation (3.1). If λ < 0 or Re{λ} < 0; the aircraft is dynamically stable. For

most aircraft that are designed to be dynamically stable, the eigen values will be two pairs

of complex numbers. One pair will have low frequency response and will appear near the

origin when plotted on the real and imaginary axis while the other will have long frequency
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response and will appear further from the origin (Figure 3.8). These frequency responses

are the modes of a dynamically stable aircraft. The low frequency response is called the

phugoid mode while the long frequency response is called the short period mode [59].

Figure 3.8: The phugoid and short period modes of a dynamically stable aircraft [59].

Lateral Dynamic Stability The lateral dynamic stability can be studied by determining

the eigen values of Equation (3.2). A laterally stable aircraft has three lateral modes (Figure

3.9); i) The Spiral mode: is the tendency of an aircraft to roll while in trim flight causing a

downward spiral motion; ii) The Dutch Roll mode: is a coupled yawing and rolling mode

that causes an oscillatory motion around trim (Figure 3.10); and iii) The Roll mode: is

caused by aileron inputs.

Figure 3.9: The lateral dynamic modes [59].
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Figure 3.10: Front and top views of the Dutch Roll mode showcasing the rolling and yawing
moments [58].

3.3.2 Circulation Control Dynamics

Little is known about the effects of Circulation Control on the dynamics of an air-

craft. Research shows the introduction of a nose down pitching moment [60]. Experiments

performed at DU2SRI have proven the pitching moment effect of CC (Figure 3.11) . To

showcase this effect, the UC2AV is flown in trim conditions when CC is turned on. Two

vital observations are made, i) a nose down pitching moment effect, and; ii) no significant

effects in the lateral dynamics.
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Figure 3.11: CC is turned on at time = 1.5s (top) and at 2s (bottom) while the remaining
control surfaces are in trim conditions. The UC2AV experiences a pitch down moment until
the pilot manually recovers it by applying an elevator input and turning CC-off.

Initial flight tests indicate that CC causes a nose down pitching moment effect. Weather

conditions and forces introduced by the centrifugal compressor on-board and pilot’s in-

puts, might also effect UAV’s behavior. It can be concluded that of the three moments

the UC2AV experiences (L,M,N ), only the longitudinal moment M is affected by CC.

Therefore, the pitching moment effect can be studied by analyzing the longitudinal dynam-

ics. More specifically, it can be studied by analyzing the dimensional stability and control

derivatives that the pitching moment (M ) is dependent upon.
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3.4 System Identification Methodology

This section presents the system identification algorithm implemented in this thesis. It

begins by presenting an overview of the method of approach explaining the requirements

placed on the input signals designed to excite system dynamics, the system identification

algorithm, and the model verification performed to analyze model accuracy. The section

then presents the simulation testing environment setup and concludes by presenting the

avionics system, signal processing procedures, and the limitations that arise during flight

testing.

3.4.1 Method Overview

System identification is performed on the baseline RMRC Anaconda UAV and the mod-

ified UC2AV (CC-off and CC-on) in simulation environment (X-Plane Flight Simulation

Software) and with flight testing (Figure 3.12). Simulation system identification is per-

formed to verify the proposed method and obtain simulation-based mathematical models

of the UAVs. Flight tests are held to perform system identification using real flight data

to identify mathematical models that capture CC dynamics (since CC dynamics cannot be

simulated in the flight simulation software) and to allow comparison with the simulation

models. The CC-off and CC-on mathematical models are used to determine the effects of

CC on the UAV dynamics.

Derivation of the mathematical models of the UAVs is done in three steps, Data Collec-

tion, System Identification, and Model Verification. Frequency sweep (chirp) signals are

applied to the aircraft’s control surfaces (elevator, aileron, and throttle) to excite system

dynamics. Throttle is maintained at 60% of full power while elevator and aileron sweeps

are performed. The applied inputs and UAV response to the inputs are recorded and used

for system identification. CIFER, which is a system identification software package based
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on frequency domain methods, is used for performing system identification. The mathe-

matical models are obtained by examining the response of the aircraft to frequency sweep

inputs. Doublet inputs are applied to the control surfaces individually and the response

of the aircraft is recorded. Verification of the models is done by comparing the response

of the aircraft to doublet inputs to the response of the mathematical models to identical

doublet inputs. Root mean square error and Theil Inequality Coefficient (TIC), which is a

parameter used to identify the predictive ability of the models, calculations are performed

to analyze the accuracy of the models.

Figure 3.12: Breakdown of the method of approach.

Frequency Sweep and Doublet Inputs

Frequency sweep inputs are applied to the control surfaces of the UAVs to capture

the aerodynamic characteristics. The frequency sweeps must excite the dynamics in the

frequency range of interest. The frequency range is defined as [53]:

54



0.5wbandwidth < w < 2.5w180 (3.3)

A pilot performs the sweeps following the provided guidelines below. The guidelines

are designed to produce high quality frequency sweeps that can derive accurate models [53]

(Figure 3.13):

• Frequency sweeps are implemented on control surface individually (on axis) while

maintaining the remaining surfaces (off axis) in trim conditions. This guarantees

that the response is due to the input applied to the sweeping surface and that there is

minimum correlation with the other control surfaces.

• The aircraft response must be roughly symmetric with the trim conditions. Weather

conditions and the UAV’s aerodynamic characteristics might lead the aircraft to drift

preventing symmetric responses. This is compensated for by applying pulse inputs

on the off axes correcting the drift.

• The sweeps begin and end in approximately 3 seconds of trim flight.

• After the first 3 seconds of flight in trim conditions, two frequency sweeps are per-

formed at the lowest frequency of interest.

• The frequency of the sweeps gradually increases to the highest frequency of interest.

Afterwards, a 3 second flight in trim conditions is performed.
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Figure 3.13: Frequency sweep signal implemented on the elevator.

The total record length of each sweep is 4.5Tmax(where Tmax = 1
fmin

is defined by

Equation (3.3)). The sweeps are performed three times for each control surface. This guar-

antees sufficient data for system identification. The magnitude of control surface input is

within ±20 − 30% of maximum surface deflection. This guarantees that the response is

within the range defined by the small perturbation theorem and hence is decoupled and

linear. The angular response of the longitudinal dynamics is within ±20◦. Doublet input

signals are applied on each control surface individually for model verification. The re-

sponse of the mathematical models to the doublet inputs are compared to the response of

the UAVs to the same input.

Data Collection

The data required for system identification is acquired by applying sweep and doublet

inputs on the elevator, aileron, and throttle control surfaces and by recording the response of

the aircraft to the inputs. The pitch angle θ, pitch rate of change q, forward velocity u, and

vertical velocity w response of the UAVs are recorded for longitudinal model identification.

The roll φ, roll rate p, yaw rate r, and lateral velocity v are recorded for lateral model

identification.
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To collect the data necessary for simulation system identification, a Simulink code is

written to communicate with X-Plane software (Section 3.4.2). Whereas an avionics system

is developed for real-time data logging of flight tests (Section 3.4.3)

System Identification

The longitudinal and lateral models shown in Equation (3.1 and 3.2) are identified for

both aircraft along with the stability and control derivatives using CIFER. To reduce iden-

tification error, the data collected is segmented to 5 overlapping Hanning windows. The

minimum window size for the lower frequency dynamics is 3 seconds while the minimum

size for the higher frequencies is 15 seconds. These are found using the guidelines derived

by Tischler [53]. The guidelines are presented here:

For the lower frequencies, T = 5/(ζ ∗ ωmax) and higher frequencies T = 60 ∗ π/ωmax

CIFER performs chirp z-transform frequency domain analysis conditioning of the result

to multiple inputs (off axis) present during the sweeps and optimizing the results across the

multiple spectral windows and calculates a frequency-response. The frequency-response is

used to calculate a coherence function (γ2xy), which is given by Equation (3.4), that is an

indication of the fraction of output spectrum that is linearly related to the input spectrum.

The coherence function is used as a measure to determine the quality of the sweep signals.

Low coherence values are an indication that the response of aircraft are not due to the input

sweep signals but other parameters such as non-linear system dynamics and wind gusts.

Tischler has shown, through experimental studies, that coherence values > 0.6 yield accu-

rate models [53].
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γ2xy =
|Gxy(f)|2

|Gxx(f)||Gyy(f)|
(3.4)

Where Gxx(f),Gyy(f),and Gxy(f) are the input spectral function, output spectral function,

and cross spectral function receptively. They are represented as:


Gxx(f) =

2

T
×X(f)2

Gyy(f) = 2
T
× Y (f)2

Gxy(f) =
2

T
×X(f)× Y (f)

(3.5)

A coherence value is calculated for each frequency sweep. Frequency response analysis

is completed once every coherence value is greater than 0.6.

CIFER implements an optimization algorithm that minimizes the error between the

magnitude and phase of the model to be identified and of the calculated frequency-response

of the recorded data. The primary outcome is identification of matrices A and B appearing

in Equations (3.1 and 3.2) that produce the frequency response matrix T (s) that matches the

frequency response of flight data T̂c. A quadratic cost function is defined and minimized for

every transfer function nTF . Tischler determined experimentally that average cost values

less than 100 with no individual cost value exceeding 200 yield accurate models [53]. The

standard cost function is:

J =

nTF∑
l=1

(
20

nω
×

ωnω∑
ω1

Wγ[Wg(|T̂c| − |T |)2 +Wp(∠T̂c − ∠T )2]

)
l

(3.6)

58



Three weights are presented in the cost function. These are:

• Wγ: Is a coherence weighting function. It is implemented to place more value in

frequency response ranges where the coherence is high. It is defined as Wγ =

[1.58(1− e−γ2xy)]2

• Wg andWp are magnitude and phase weights. By convention, these are set toWg = 1

and Wp = 0.01745 [53].

CIFER’s DERVID function is used to identify state-spaces models of the aircraft. In

addition to cost values, which are used as an indication of how well the model fits the

frequency response of the data, two additional parameters are provided (Equation (3.7)).

These are the Cramér-Rao bound calculations, which are the minimum expected standard

deviation of an estimated parameter and are used for accuracy analysis, and insensitivity

percentage, which indicates the effect of a parameter on the cost values. A high insen-

sitivity percentage indicates that a parameter has little effect on the cost values. Tischler

determined that Cramér-Rao bounds and percentages and insensitivity percentages that are

within the following standards yield accurate models [53]:

• Cramér-Rao bound and CR% ≤ 20%

• Insensitivity I ≤ 10%

CRi =
√

(H−1)ii

where H =
δJ

δΘδΘT

Ii =
1√
Hii

(3.7)

Parameters with insensitivity percentages greater than 10% are eliminated from the

model following the steps shown in Figure 3.14.

59



Figure 3.14: The process of eliminating stability and control derivatives with large CR and
insensitivity percentages.

A final overview of the system identification process is shown in Figure 3.15.

Figure 3.15: An overview of the system identification procedure indicating the CIFER
algorithm.
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Model Verification

Doublet input signals are applied to the control surfaces of the aircraft. The models

obtained with the DERVID function are verified using CIFER’s VERIFY function. The

step input applied to the elevator surface is provided as an input to the model while throttle

is kept constant. The response of the UAV and the output of the models are compared.

The comparison is used as verification of the model. Prior to performing the comparison,

CIFER estimates and corrects any biases or reference shifts that account for untrimmed

reference flight, unaccounted for secondary control inputs, or weather related disturbances.

Once these are calculated, the root mean square Jrms of the model response and flight

data is calculated. Along with Jrms, CIFER provides calculations for the Theil inequality

coefficient (TIC) which a normalized criterion used to assess the predictive ability of a

model (Equation (3.8)). TIC = 0 indicates that the model has perfect predictive capability

while TIC = 1 means the model has no predictive capability. As a standard, Jrms ≤ 0.5 to

1.0 and TIC ≤ 0.25 to 0.30 are considered acceptable [53].

TIC =

√
[1/ntn0]

∑n
i=1[(ydata − y)TW (ydata − y)]√

[1/ntn0]
∑nt

i=1[y
TWy] +

√
[1/ntn0]

∑nt
i=1[y

T
dataWydata]

(3.8)

3.4.2 Implementation in Simulation Environment

X-Plane models of the RMRC Anaconda and UC2AV are created using JavaFoil, Airfoil

Maker, and Plane Maker (Figure 3.17). JavaFoil is used to model the airfoil aerodynamic

properties and dimensions at the appropriate Reynold’s number. The UC2AV airfoil proper-

ties can be found in [10]. Segmenting the RMRC Anaconda wing and measuring the airfoil

dimensions (maximum thickness location) revealed that the RMRC Anaconda has a Clark

YH airfoil (Figure 3.16). The modeled airfoils are converted to X-Plane using X-Plane’s

airfoil Maker. Plane Maker is used to model the weight and dimensions of the UAV parts
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(fuselage, wings, landing gear...etc.), the location of center of gravity, motor specifications

(horse power, maximum rpm...etc.), and control surface dimensions (control surface width,

maximum deflection angles, location on wings...etc.).

Figure 3.16: Top: the wing is segmented to five pieces to analyze airfoil properties. Bot-
tom left: an airfoil segment shows the location of maximum airfoil thickness. Bottom
right: Clark YH airfoil (maximum thickness = 11.9%) has the best match with the RMRC
Anaconda airfoil (maximum thickness = 12.2%).

Figure 3.17: Steps for creating UAV X-Plane models. The coefficients of lift CL, drag DD,
and moment CM are modeled by X-Plane
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A Simulink code is written to communicate with X-Plane via UDP protocol. The data

generated by X-Plane (pilot inputs and UAV response) is packeted and sent to Simulink.

The packeted data is in decimal code and single precision floating point format (Figure

3.18). The Simulink code unpacks and converts the data to decimal values [61]. The

values are also plotted in real-time to provide immediate pilot feedback (Figure 3.19). It

is important to note that Simulink’s simulation time is dependent on the complexity of the

code and the speed of computer. The time array produced by Simulink can be inaccurate

leading to incorrect data time stamping. To resolve the issue, tic and toc Matlab functions

are used.

Figure 3.18: A UDP packet sent by X-Plane to Simulink. Bytes 1-4 contain the Header,
byte 5 is a software internal use byte, bytes 6-10 contain the data label, and bytes 11-41
contain the estimated aerodynamic variables.

Figure 3.19: Real-time visualization of the recorded data.
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The designed frequency sweeps used for system identification and doublet input signals

used for model verification are applied to the aircraft using the Interlink Elite Controller.

Sweep inputs and UAV response to the inputs are recorded using Simulink and Matlab.

The recorded data is imported to CIFER for system identification. Doublet inputs and UAV

response to the inputs are recorded and imported to CIFER for model verification (Figure

3.20).

Figure 3.20: The simulation method of approach.

3.4.3 Implementation on Aircraft and Flight Testing

Avionic System

An avionic system is setup for data collection during flight testing (Figure 3.21). A

trained pilot is stationed on the ground and controls the UAV through an RC transmitter.

The sensory system includes an IMU that records the aerodynamic angles and linear ac-

celerations, a GPS unit that records latitude, longitude and altitude coordinates, and a pitot

tube that measures air speed. The data recorded by the sensors is transmitted to Arduino

microcontrollers and stored on an on-board SD card. The pilot inputs are also sent to an

Xbee transmitter for real-time plotting. The pilot PWM inputs are transmitted to another
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Xbee sensor on the ground. An Arduino Mega is used to parse the incoming pilot input

data and plot it on a laptop.

The pilot performs the sweep maneuvers at discrete frequency values four times. This

guarantees sufficient data for system identification. Signal processing analysis reveals the

quality of the sweeps and the best sweep maneuvers are selected from the four datasets for

each frequency value. The flight engineer is stationed by the ground control station (GCS)

and provides the pilot with real-time feedback by examining the data presented on the GCS.

Figure 3.21: The avionic system on board the UAVs.
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Signal Processing

In order to capture the models shown in Equations (3.1 and 3.2), all the variables pre-

sented in the models need to be recorded during flight data. Table 3.3 summarizes the signal

processing procedure for each sensor. It is worth noting that the VN-100 IMU is incapable

of capturing highly dynamic lateral maneuvers without implementation of sensor fusion

algorithm. An upgrade in the IMU and the GPS sensors should improve the quality of the

captured data.

Table 3.3: The sensory system.

Unit Sensor Sampling Frequency Data Recorded Signal Processing

GPS 3D Robotics 5 Hz
Latitude, longitude,

and altitude

Data is convereted to UTM coordinates,

then to body axis frame.

Linear velocity of the

UAV is calculated in the body axis frame.

Sensor fusion is performed with IMU readings.

Pitot Tube DIY drones 5 Hz Airspeed

Calculated of forward velocity.

Used as a reference for

sensor fusion algorithm.

IMU VN-100 100 Hz

Aerodynamic angles

and linear

accelerations

Aerodynamic angles are recorded.

Linear accelerations are referenced to the

body frame and are used in

sensor fusion with GPS readings.

RC Receiver Spectrum 20 Hz PWM Inputs Inputs are upsampled to 50 Hz.

Equation (3.9) show the process of converting latitude (φ), longitude (λ), and altitude

(h) to earth reference frame velocities (unv, vnv, and wnv). For more detail on the con-

version parameters and their derivation, see [62]. The estimated velocity values are then

converted to the body reference frame using the rotational matrix shown in Equation (3.10).
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REa = 6, 378, 137.0 m

f =
1

298.257223563

REb = REa(1− f)

e =

√
R2
Ea −R2

Eb

REa

= 0.08181919

ME =
REa(1− e2)

(1− e2sin2φ)(3/2)

NE =
REa√

1− e2sin2φ

vnv = λ̇(NE + h)cosφ

unv = φ̇(ME + h)

wnv = −ḣ

(3.9)

Rb/nv =


cθcψ cθsψ −sθ

sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ

cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ

 (3.10)

In order to improve the accuracy of the velocity readings, the calculated GPS values are

fused with the IMU accelerometer readings. Since the accelerometer readings are not free

of signal noise, integrating acceleration readings will only yield accurate velocity values

for roughly 2 seconds. The noise present in the readings will cause integration error build

up making the velocity values diverge with time (Figure 3.22). There is little change in

altitude and lateral position of the UAV at high frequency sweeps maneuvers. Examination

of the data has shown that the GPS resolution is not sufficient to estimate UAV velocity in

such scenarios. A Kalman filter sensor fusion algorithm is implemented to overcome these

issues (Figure 3.23).

67



Figure 3.22: Integration of acceleration readings will result in integration drift making the
velocity readings incorrect.

The sensor fusion algorithm combines the velocity readings obtained from GPS calcu-

lations Equation (3.9) and the IMU accelerometer using Kalman filter equations (Equation

(3.12)). The Kalman filter equations include a gain variable K. It can be seen from ex-

amining Equation (3.12) that setting K = 0 will result velocity calculation using IMU

accelerometer data alone. Setting K = 1 will result in velocity calculation using GPS

data alone. The implemented algorithm sets K = 1 every 0.2 seconds (GPS sampling fre-

quency). This resolves integration drift issues. The algorithm also fuses the IMU readings

with the linearly interpolated GPS readings for frequencies > 5 Hz. The gain values are

calculated using Equation (3.11).

Kk = P+
k R

−1
K

P+
k = (I −Kk)P

−
k

(3.11)
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v̂+
xk

= ∆t ˆa−xk−1
+ ˆv+

xk−1
+Kk[uGPS −∆t ˆa−xk−1

− ˆv+
xk−1

]

v̂+
yk

= ∆t ˆa−yk−1
+ ˆv+

yk−1
+Kk[vGPS −∆t ˆa−yk−1

− ˆv+
yk−1

]

v̂+
zk

= ∆t ˆa−zk−1
+ ˆv+

zk−1
+Kk[wGPS −∆t ˆa−zk−1

− ˆv+
zk−1

]

(3.12)

Figure 3.23: An elevator sweep example shows that the GPS is incapable of capturing the
vertical velocity w without sensor fusion due to poor resolution.
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Flight Testing Frequency Range

The guidelines shown in Figure 3.13 and discussed in Section 3.4.1 need to be followed

to guarantee accurate system identification. The guidelines state that the sweeps must begin

with 3 seconds trim flight, include two long period sweeps, linearly increase frequency, and

end in 3 second trim flight (Figure 3.13). CIFER also requires persistent excitation of the

UAV dynamics to guarantee sufficient data for system identification. Time history files with

a record length equal or greater than 5 × Tmax, where Tmax is the period of the minimum

frequency of interest, are said to be persistently excited. These guidelines can be easily

followed in simulation environments. However, due to limited radio communication range,

a maximum of 20 seconds of level flight can be achieved by the pilot. Given the trim

flight and CIFER’s persistent excitation requirements, the minimum identifiable frequency

is roughly 1
14
5

= 0.35 Hz.
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Chapter 4

Simulation Results and Analysis

This chapter presents the mathematical models obtained through system identification

of X-Plane flight simulation software models. Longitudinal and lateral models of the

RMRC Anaconda and the UC2AV (CC-off) are presented. Verification experiments are

held to test the predictive ability and accuracy of the derived models

4.1 RMRC Anaconda Aircraft

The longitudinal model is identified by applying elevator sweeps and capturing the

forward velocity (u), vertical velocity (w), pitch angle (θ), and pitch rate of change (q)

responses. The lateral model is identified by applying aileron sweeps and capturing the

lateral velocity (v), roll rate of change (p), and roll angle (φ). The yaw rate of change

variable (r) seen in Equation (3.2) was omitted from the lateral model as rudder input

sweeps are required to capture the yaw dynamics.
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4.1.1 Longitudinal Model

Simulation Model Derivation

Following the guidelines presented in Section 3.4.1, frequency sweep inputs are applied

to the elevator (Figure 4.1) while the throttle is maintained at 60% of full power. Aileron

inputs are limited to small pulse inputs that guarantee decoupling of UAV dynamics. The

frequency range of the sweep inputs is approximately between 0.05 Hz to 1.2 Hz. The

aircraft’s forward velocity (u), vertical velocity (w), pitch rate (q), and pitch (θ) are recorded

(Figure 4.2).

Figure 4.1: Elevator sweep signal applied to excite UAV dynamics.
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Figure 4.2: Pitch angle response to the elevator sweep.

CIFER is used to convert the data from the time domain to the frequency domain by

performing chirp z-transform and then calculate a coherence function for every identified

parameter (Equation (3.4)), perform multiple input conditioning to account for aileron in-

puts, and perform data windowing to reduce error. Coherence values greater than 0.6 are

required to obtain accurate models [53]. Table 4.1 and Figure 4.3 highlight the frequency

ranges that possess coherence ranges > 0.6.

Table 4.1: Frequency ranges of model variables with acceptable coherence values.

RMRC Anaconda (Hz)

u 0.05-0.17

w entire range

q entire range

θ entire range
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Figure 4.3: Magnitude, phase, and coherence plots for every identified variable of the
simulation RMRC Anaconda.

The coherence values are greater than 0.6 for the entire frequency range of every iden-

tified parameter with the exception of u. Low coherence for u is expected at higher fre-

quencies as u remains constant while performing elevator sweeps. This indicates a lack of

correlation between elevator control surface and u at high frequencies. However, there still

exist sufficient data to model u at lower frequencies.

CIFER’s DERVID function is used next to identify the dynamic models. To do so,

the longitudinal model structure presented in Equation (3.1) is chosen for identification.

However, the model in Equation (3.1) is decomposed to the canonical form (Equation 4.1).

The canonical form is desired as it allows the direct identification of the stability and con-

trol derivatives by factoring the known mass and inertia variables out of the mathematical

models.

Mẋ = Fx+Gu (4.1)
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In Equation (4.1), M is the inertial matrix of longitudinal dynamics, x is the state

variables matrix x = [u w q θ]T , and u is the input matrix. Matrix F contains the stability

derivatives and matrixG contains the control derivatives. MatricesM , F andG are defined

as:

M =



m 0 0 0

0 m 0 0

0 0 Iy 0

0 0 0 1


, F =



Xu Xw Xq −gcos(θ0)

Zu Zw Zq −gsin(θ0)

Mu Mw Mq 0

0 0 1 0


, G =



Xδe

Zδe

Mδe

0


(4.2)

For accurate model identification, initial values of the stability derivatives are provided

to CIFER. Initial values of the stability derivatives can be determined by calculating the

natural damping frequency and damping ratio of the phugoid and the short period dynamic

modes. The phugoid mode is a low frequency stable lightly damped longitudinal UAV dy-

namic mode while the short period mode is a high frequency heavily damped longitudinal

UAV dynamic mode (see Section 3.3.1). Applying a step input to the elevator results in a

lightly damped oscillatory UAV motion (phugoid mode) while applying an impulse input

results in a heavily damped oscillatory motion (short period mode) (Figure 4.4). Calcula-

tion of the period and logarithmic decrement (δ) of the oscillatory motion is used to identify

the natural frequency (ωn) and damping ratio (ζ) of the UAV (Equation (4.3)).

δ =
1

n
ln

x(t)

x(t+ nT )
ζ =

1√
1 + (2π

δ
)2

ωn =

2π

T√
1− ζ2

(4.3)

where x(t) is the signal amplitude at time t and x(t + nT ) is the amplitude after n

periods (n ≤ number of peaks).
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Figure 4.4: The phugoid mode can be simulated by applying elevator step input.

CIFER’s numeric optimization algorithm tunes the initial guesses by minimizing the

cost function J (Equation (3.6)) and arrives at the final values (Table 4.3). Table 4.2 indi-

cates that all cost values are within the accepted standards discussed in Section 3.4.1. In

addition to cost value analysis, Cramér Rao percentage and bound, and insensitivity anal-

ysis are performed to further validate the derived stability and control derivatives. Table

(4.3) indicates that all parameters except u meet the standards discussed in chapter three

(Insensitivity ≤ 10 and CR ≤ 20). This is likely due to the low coherence values at high

frequencies, which limit the amount of data available for system identification. Table 4.3

also shows Mw and Mq ≤ 0, which implies static stability (Section 3.3.1).

Table 4.2: Cost values after CIFER optimization.

RMRC Anaconda

u 36.950

w 131.431

q 53.31

θ 59.006

Average cost 70.174
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Table 4.3: RMRC Anaconda stability and control derivatives.

Parameter Value CR bound CR% Insen %

Xu -9.675 4.529 46.81 6.217

Xw 108.800 7.311 6.722 0.223

Xq -24.820 3.749 15.100 0.449

Zu -1.348 0.257 18.960 1.731

Zw 3.415 0.219 6.405 0.312

Zq -19.280 0.069 0.362 0.023

Mu 3.415 0.862 25.240 5.018

Mw -1.912 0.660 34.540 4.346

Mq -4.156 0.968 23.290 0.720

Xδe 42.940 7.269 16.930 0.505

Mδe 7.288 1.869 25.650 0.782

Equation (4.4) displays the final RMRC Anaconda longitudinal model. The longitu-

dinal dynamic stability can be determined through the eigenvalue of Equation (4.4). The

results indicate that RMRC Anaconda has three stable poles corresponding to three dy-

namic modes (Table 4.4).

ẋ =



−2.4188 27.1906 −6.2057 −9.9465

−0.3370 0.8538 0.1806 −0.343

8.5371 −4.7791 −10.3898 0

0 0 1.0027 0





u

w

q

θ


+



10.7338

0.3597

18.2190

0


[
δe

]
(4.4)
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Table 4.4: The dynamic modes of the RMRC Anaconda.

Eigenvalues fn (Hz) ζ τ

Mode 1 -0.332 NA NA 3 sec

Mode 2 -0.908 NA NA 1 sec

Third Oscillatory Mode -5.357±j5.908 1.27 0.672 NA

Simulation Model Validation

A verification process is necessary before any conclusions can be made regarding the

accuracy of the identified models. Doublet inputs that were not used in the system iden-

tification process are applied to the elevators of the RMRC Anaconda in X-Plane (Figure

4.5). The off-axis control surfaces (aileron, rudder, and throttle) are maintained at trim.

The response of the aircraft in X-Plane is recorded and compared to the response of the

derived models. CIFER is used to calculate unmodeled disturbance biases and reference

shifts and to calculate the root mean square error between the model and X-Plane and the

Theil inequality coefficient to be used as a measure of the predictive ability of the models.

Figure 4.5: Doublet inputs applied to the simulation RMRC Anaconda.
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Figure 4.6: The response the RMRC Anaconda model vs. response of X-Plane.

Calculation of the biases and shifts improves the accuracy of the model (Table 4.5). The

TIC value of the model indicates excellent model predictive ability. It can be seen from

Figure 4.6 and Table 4.5 that the model does not match X-Plane data at higher amplitudes.

This is due to the unmodeled non-linear dynamics present during flight.

Table 4.5: Jrms and TIC before and after calculation of biases and shifts for the RMRC
Anaconda model.

Jrms TIC

Before calculation of biases and shifts 1.795 0.268

After calculation of biases and shifts 1.309 0.188
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4.1.2 Lateral Model

Simulation Model Derivation

Frequency sweep inputs are applied to the aileron (Figure 4.7) while the throttle is

maintained at 60% of full power. Elevator inputs are limited to small pulse inputs that

guarantee decoupling of UAV dynamics. The frequency range of the sweep inputs is ap-

proximately between 0.05 Hz to 1.2 Hz.The UAV lateral velocity (v), roll rate (p), and roll

(φ) are recorded (Figure 4.8).

Figure 4.7: X-Plane aileron input signal.

Figure 4.8: Roll angle of simulation RMRC Anaconda.
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Identical steps are taken as the longitudinal model to calculate coherence values, mul-

tiple input conditioning, and perform data windowing by CIFER. Figure (4.9) indicates

that the coherence values for all identified parameters are greater than 0.6 for the entire

frequency range.

Figure 4.9: Simulated frequency response of RMRC Anaconda lateral motion.

The lateral model structure presented in Equation (3.2) is chosen for identification. To

allow the direct identification of the stability and control derivatives, the model is decom-

posed to its canonical form (Equation (4.5))

M =


m 0 0

0 Ix 0

0 0 1

 , F =


Yv Yp −gcos(θ0)

Lv Lp 0

0 1 0

 , G =


Yδa

Lδa

0

 (4.5)
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CIFER’s optimization algorithm is used to calculate final stability and control deriva-

tives and derive the mathematical values. The cost values for the identified parameters

are well within the accepted standards (Table 4.6). Cramér Rao and insensitivity values

are also within the accepted percentages. The results obtained indicate a small delay in

aircraft response (represented as τ in Table 4.7). The cost function is highly sensitive to

τ (Insen = 2.916), therefore it was not omitted from the model. The RMRC Anaconda

lateral mode is shown in Equation (4.6).

Table 4.6: Cost values of lateral dynamics after CIFER optimization.

RMRC Anaconda

v 21.37

p 8.46

φ 12.19

Average cost 14.01

Table 4.7: Lateral RMRC Anaconda stability and control derivatives

Parameter Value CR bound CR % Insen %

Yv -12.1400 1.5410 12.70 3.040

Yp -0.1479 0.0181 12.23 1.556

Lp -1.2800 0.2559 19.99 1.090

Yail 0.3895 0.1420 36.44 4.750

Lail 10.9800 1.7840 16.26 0.9681

τ -0.0998 0.0194 19.44 2.916
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ẋ =


−3.0350 −0.0370 −0.0332

−0.8750 −8.0013 0

0 1 0




v

p

φ

+


0.0974

68.5999

0


[
δa

]
(4.6)

The eigenvalues of the identified model indicate that the UAV has two stable dynamic

modes (Table 4.8). Due to the omission of rudder control surface from the model, the

damping ratio and natural frequency of the dynamic modes were not captured.

Table 4.8: The lateral dynamic modes of the RMRC Anaconda.

Eigenvalues fn (Hz) ζ τ

Mode 1 -3.0396 NA NA 0.3 sec

Mode 2 -7.9955 NA NA 0.1 sec

Simulation Model Validation

Doublet inputs that were not used in the system identification process are applied to the

elevators of the RMRC Anaconda in X-Plane (Figure 4.10). The off-axis control surfaces

(aileron, rudder, and throttle) are maintained at trim. The response of the aircraft in X-Plane

is recorded and compared to the response of the derived models (Figure 4.11). CIFER is

used to calculate unmodeled disturbance biases and reference shifts and to calculate the

root mean square error between the model and X-Plane and the Theil inequality coefficient

to be used as a measure of the predictive ability of the models (Figure 4.10).
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Figure 4.10: Aileron doublet input.

Figure 4.11: Lateral X-Plane model response vs mathematical model response of the
RMRC Anaconda.

Table 4.9: Jrms and TIC before and after calculation of biases and shifts for the RMRC
Anaconda lateral model.

Jrms TIC

Before calculation of biases and shifts 1.755 0.112

After calculation of biases and shifts 1.040 0.066
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The final Jrms TIC values are well within the minimum acceptable values. This vali-

dates the accuracy and predictive ability of the derived models.

4.2 UC2AV Aircraft

The UC2AV longitudinal and lateral model structures are identical to RMRC Anaconda

(Equations 3.1 and 3.2). Elevator sweeps are applied and the forward velocity (u), vertical

velocity (w), pitch angle (θ), and pitch rate of change (q) responses are recorded. The data

are used to identify the longitudinal model. The lateral model is identified by applying

aileron sweeps and capturing the lateral velocity (v), roll rate of change (p), and roll angle

(φ). As in the previous section, the yaw rate of change variable (r) seen in Equation (3.2)

was omitted from the lateral model as rudder input sweeps are required to capture the yaw

dynamics.

4.2.1 Longitudinal Model

Simulation Model Derivation

The guidelines discussed in Section 3.4.1 are followed to excite system dynamics and

decouple the longitudinal and lateral motion. The UC2AV model derivation process is

identical to RMRC Anaconda model derivation. Figure 4.12 presents an example of an

elevator sweep implemented while figure 4.13 presents the response of the UC2AV to the

sweep input.
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Figure 4.12: Elevator sweep signal applied to excite UAV dynamics.

Figure 4.13: Pitch angle response of the UC2AV.

The longitudinal model to be identified (Equation 3.1) is converted to the canonical

form to allow direct identification of the stability and control derivatives. The recorded data

are imported to CIFER which performs chirp z-transform to calculate a coherence function
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for each parameter (Figure 4.14 and Table 4.10). It can be seen that the u acceptable

coherence range has slightly increased when compared to the RMRC Anaconda. This is

likely due to the additional weight of the UC2AV which decreases the response time of u

to elevator inputs.

Table 4.10: Frequency ranges of model variables with acceptable coherence values.

UC2AV (Hz)

u 0.05-0.20

w entire range

q entire range

θ entire range

Figure 4.14: Magnitude, phase, and coherence plots for every identified variable of the
UC2AV.

CIFER’s DERVID function is used to derive a model by optimizing the cost function,

estimate stability and control derivatives, and calculate Cramér Rao percentages and bound
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and insensitivity percentages. Table 4.12 indicate that all parameters meet the CIFER stan-

dard except Xu, this is likely due to the limited amount of data available for identifying u

dynamics. Mq and Mw ≤ 0 which implies static stability.

Table 4.11: Cost values after CIFER optimization.

UC2AV

u 40.697

w 50.519

q 62.513

θ 66.409

Average cost 55.034

Table 4.12: UC2AV stability and control derivatives.

Parameter Value CR bound CR% Insen %

Xu -6.856 5.625 82.040 7.433

Xw 92.610 5.166 5.578 0.171

Xq -35.480 8.300 23.400 0.218

Zu -1.609 0.370 23.010 1.235

Zw 3.192 0.171 5.345 0.229

Zq -18.110 0.093 0.511 0.024

Mu 4.333 0.774 17.860 2.108

Mw -1.917 0.463 24.160 1.503

Mq -5.780 0.895 15.470 0.233

Xδe 51.970 12.370 23.790 0.223

Mδe 8.176 1.396 17.070 0.248
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The UC2AV longitudinal model is shown in Equation (4.7). The eigenvalues of the

derived model indicate that the UC2AV has two stable longitudinal dynamic modes (Table

4.13).

ẋ =



−1.3711 18.5218 −7.0951 −7.9572

−0.3218 0.6385 0.3771 −0.2744

10.3166 −4.5636 −13.7626 0

0 0 1.0000 0





u

w

q

θ


+



10.3949

0.0564

19.4674

0


(

δe

)

(4.7)

Table 4.13: The dynamic modes of the UC2AV.

Eigenvalues fn (Hz) ζ τ

Mode 1 -0.260±j0.230 0.055 0.745 NA

Mode 2 -6.987±j5.819 1.447 0.768 NA

Simulation Model Validation

The UC2AV model derivation process is identical to the RMRC Anaconda model deriva-

tion. This section presents the response of the model verses the response of UC2AV in X-

Plane to identical doublet inputs (Figures 4.15 and 4.16. Root mean square and TIC values

are also presented (Table 4.14).
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Figure 4.15: Doublet input applied to the UC2AV.

Figure 4.16: The response the UC2AV model vs. response of X-Plane.

Table 4.14: Jrms and TIC before and after calculation of biases and shifts for the UC2AV
model.

Jrms TIC

Before calculation of biases and shifts 1.272 0.145

After calculation of biases and shifts 1.092 0.125
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The final Jrms and TIC values are within the accepted standards which indicates ac-

ceptable model accuracy and predictive ability. The identified model does not capture the

large amplitude responses of the UC2AV (Figure 4.16). This is likely due to the unmodeled

nonlinear dynamics.

4.2.2 Lateral Model

Simulation Model Derivation

Aileron sweep inputs are applied to excite the lateral system dynamics (Figures 4.17

and 4.18). The aileron sweeps begin at a frequency of 0.05 Hz and linearly progress to a

frequency of 1.2 Hz. The UAV’s lateral velocity (v), roll rate (p), and roll (φ) are recorded.

Figure 4.17: Sweep input applied to the UC2AV.

Figure 4.18: Roll response to sweep signal.
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Coherence values are calculated for each identified parameter (Figure 4.19). Coher-

ence values for all identified parameters are greater than the minimum 0.6 for the entire

frequency range.

Figure 4.19: Magnitude, phase and coherence plots for all the identified lateral variables of
the UC2AV.

CIFER optimizes the defined cost function and derives the mathematical model. The

final cost values for every identified parameter is presented in Table 4.15. Cramér Rao per-

centages and bound and insensitivity percentages for every stability and control derivative

is presented in Table 4.16. The final cost, Cramér Rao, and insensitivity values are within

the accepted range. CIFER identifies a delay in UAV response modeled by the parame-

ter τ . The delay is not omitted from the final identified model due to its low insensitivity

percentage (Table 4.16). The UC2AV lateral model is shown in Equation (4.8).
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Table 4.15: Cost values of lateral UC2AV dynamics after CIFER optimization.

UC2AV

v 59.59

p 11.36

φ 82.17

Average cost 51.04

Table 4.16: Lateral UC2AV stability and control derivatives

Parameter Value CR bound CR % Insen %

Yv -21.1700 1.3490 6.37 2.064

Yp -0.4300 0.0662 15.40 1.863

Lp -1.6910 0.4819 28.49 1.014

Yail 1.0850 0.4254 39.21 4.707

Lail 11.0100 2.9540 26.84 0.9797

τ -0.0669 0.0245 36.53 6.357

ẋ =


−5.2929 −0.1075 −0.0968

0.8750 −10.5693 0

0 1 0




v

p

φ

+


0.2713

68.7891

0


(

δa

)
(4.8)

The eigenvalues of the model indicate two stable dynamic modes. Due to the omission

of the rudder control surface from the model, damping ratios and natural frequencies of the

modes were not captured.
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Table 4.17: The lateral dynamic modes of the UC2AV.

Eigenvalues fn (Hz) ζ τ

Mode 1 -5.31 NA NA 0.2

Mode 2 -10.55 NA NA 0.1

Simulation Model Validation

Lateral model validation process is identical to longitudinal model validation. Doublet

inputs are applied to the aileron while the response is recorded in X-Plane. This section

presents the response of the model verse response of in X-Plane (Figures 4.20 and 4.21)

and root mean square error and TIC values (Table 4.18).

Figure 4.20: Doublet input applied to the UC2AV.
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Figure 4.21: X-Plane response vs mathematical model response.

Table 4.18: Jrms and TIC before and after calculation of biases and shifts for the UC2AV
model.

Jrms TIC

Before calculation of biases and shifts 2.065 0.177

After calculation of biases and shifts 0.308 0.027

The final Jrms TIC values are well within the minimum acceptable values (Table 4.18).

This validates the accuracy and predictive ability of the derived models.

The Jrms and TIC values indicate accurate simulation model identification. To guaran-

tee static and dynamic stability, the location of gravity of both UAVs are placed at the front

end (the nose of the UAV). The location of center of gravity is also modeled in X-Plane’s

Plane Maker software. Parameter estimation of both UAVs and analysis of dynamic modes
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indicate that both UAVs are dynamically and statically stable. The simulation results ob-

tained match the known UAV properties. This verifies the proposed system identification

method.
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Chapter 5

Flight Data Results and Analysis

This chapter presents the mathematical models obtained through flight testing. Three

sets of models are derived, these are: 1) RMRC Anaconda longitudinal and lateral models;

2) CC-off UC2AV longitudinal and lateral models; and 3) CC-on UC2AV longitudinal and

lateral models.

5.1 RMRC Anaconda Aircraft

The longitudinal model is identified by applying elevator sweeps and capturing the

forward velocity (u), vertical velocity (w), pitch angle (θ), and pitch rate of change (q)

responses. However, due to limited identifiable frequency range, the velocity u was not

identified and was omitted from the final model. The lateral model is identified by applying

aileron sweeps and capturing the lateral velocity (v), roll rate of change (p), and roll angle

(φ). The yaw rate of change variable (r) seen in Equation (3.2) was omitted from the lateral

model as rudder input sweeps are required to capture the yaw dynamics.
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5.1.1 Longitudinal Model

Model Derivation

Due to the limited radio communication range, it is difficult to perform a single fre-

quency sweep beginning at the minimum frequency of interest and progressing to the max-

imum frequency of interest. Instead, sweep maneuvers are performed at discrete frequency

values. The collected data is concatenated in CIFER. Figure 5.1 presents an example of

a sweep maneuver performed at roughly 0.7 Hz and Figure 5.2 presents the RMRC Ana-

conda response. The data recorded by the avionic system is imported to Matlab to perform

signal processing then to CIFER to perform system identification.

Figure 5.1: RMRC Anaconda elevator PWM input signal.

Figure 5.2: RMRC Anaconda pitch angle.
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The signal processing procedure begins by parsing the stored data, calculating linear

velocities from accelerometer and GPS data by performing sensor fusion and signal in-

terpolation. Since multiple sweeps are performed at discrete frequency values, the data

sets that best match the sweep requirements discussed in Chapter 3 are used for system

identification (Figure 5.3).

Figure 5.3: Signal processing procedure.

Figure 5.4 presents the frequency response data for each parameter. It can be seen

that the u coherence values are consistently less than 0.6. The u parameter is dynamically

present at low frequencies, as shown in the simulation tests (Table 4.1). Due to persistent

excitation requirements (discussed in section 3.4.3), it is difficult to identify dynamics be-

low 0.35 Hz. Therefore, the parameter uwas omitted from the model. Throttle sweeps were

performed to investigate the relationship between u and throttle inputs. Throttle sweeps at

frequencies > 0.35 did not produce high coherence values (Figure 5.5). Therefore, throttle

inputs are not included in the final model.
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Table 5.1: Frequency ranges of longitudinal RMRC Anaconda model variables with ac-
ceptable coherence values.

RMRC Anaconda (Hz)

u NA

w 0.45-0.70

q 0.35-0.80

θ 0.35-0.80

Figure 5.4: RMRC Anaconda longitudinal frequency response due to elevator sweeps.
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Figure 5.5: There are small changes in u due to throttle sweeps at frequencies> 0.35 which
result in low coherence values.

The mathematical model is decomposed to its canonical form to allow direct identifi-

cation of the stability and control derivatives. CIFER cost optimization function is imple-

mented to derive the mathematical model. Table 5.2 presents the final cost values while

Table 5.3 presents the stability and control derivatives.

Table 5.2: Longitudinal RMRC Anaconda cost values after CIFER optimization.

RMRC Anaconda

w 5.139

q 11.788

θ 19.713

Average cost 12.214

The minimum acceptable standards for accurate models is to have average cost value

less than 100 while no individual parameter cost value exceeds 200. CIFER optimization

produces low cost values that are well within the minimum requirements.
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Table 5.3: RMRC Anaconda longitudinal stability and control derivatives.

Parameter Value CR bound CR% Insen %

Zw -5.533 1.017 18.380 8.190

Zq -7.000 2.991 42.720 19.130

Mw -0.766 0.469 61.260 12.230

Mq -12.590 11.260 89.440 2.047

Mδe 0.051 0.047 91.860 2.175

τ 0.137 0.0136 9.981 3.131

Cramér Rao and insensitivity analysis reveal that while stability derivatives meet the

insensitivity requirements (less than 10%) the Cramér Rao percentages and bounds do not

meet the requirements (less than 20%). This reduces the reliability of the results for pa-

rameter estimation. However, the validation experiments reveal that the derived models

accurately capture the UAV dynamics. Table 5.4 presents the RMRC Anaconda longitudi-

nal dynamic modes. The final RMRC longitudinal model is shown below:

ẋ =


−1.3833 3.2499 0.3424

−1.9155 −31.4760 0

0 1 0




w

q

θ

+


0.0217

0.1279

0.2755


(

δe

)
(5.1)

Table 5.4: Longitudinal dynamic modes of the RMRC Anaconda.

Eigenvalues fn (Hz) ζ τ

Mode 1 -0.0132 NA NA 75.75 sec

Mode 2 -1.5776 NA NA 0.64

Mode 3 -31.2684 NA NA 0.03
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Model Validation

Doublets inputs (Figure 5.6) that were not used in the system identification process

are used to validate the models. Doublet inputs are applied to the elevator. The RMRC

Anaconda response and inputs are recorded by the avionic system. Identical steps as shown

in Figure 5.3 are taken to process the data recorded. Identical doublet inputs are used to

simulate the derived mathematical model. Thiel Inequality Coefficient (TIC) and root mean

square analysis (Jrms) reveal the accuracy of the models (Table 5.5). The response of the

model and RMRC Anaconda to the doublet inputs are shown in Figure 5.7.

Figure 5.6: RMRC Anaconda elevator inputs used for verification.

Figure 5.7: The RMRC Anaconda and longitudinal model response.
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Table 5.5: Jrms and TIC before and after calculation of biases and shifts for the RMRC
Anaconda model.

Jrms TIC

Before calculation of biases and shifts 91.76 0.89

After calculation of biases and shifts 3.20 0.16

The final TIC and Jrms values indicate acceptable identification accuracy. While Jrms

is greater than the minimum standard, this is likely due to untrimmed flight conditions and

asymmetric pilot inputs.

The RMRC Anaconda model obtained presents the static and dynamic stability proper-

ties of the UAV. The stability derivatives and dynamic modes of the model reveal that the

UAV is both statically and dynamically stable. This is expected as the center of gravity is

located at the nose of the UAV which is generally required to guarantee stability. Results

show that low frequency throttle sweeps do not significantly (coherence < 0.6) effect the

forward velocity u of the RMRC Anaconda and was therefore omitted from the model.

An identical motor is used in the UC2AV. Since the UC2AV is roughly 4 lbs heavier than

the RMRC Anaconda, it is extremely unlikely that throttle sweeps will result in signifi-

cant changes of the forward velocity u of the UC2AV. Therefore, throttle sweeps were not

performed while performing UC2AV system identification.

5.1.2 Lateral Model

Model Derivation

Sweep inputs are applied to the aileron while the elevator is maintained at trim values.

The RMRC Anaconda response is recorded and processed following the same procedure

as longitudinal sweeps (Figures 5.8 and 5.9).

104



Figure 5.8: The RMRC Anaconda aileron sweep.

Figure 5.9: RMRC Anaconda roll response due to aileron sweep.

The processed data is imported to CIFER to calculate coherence values and perform

cost optimization. Table 5.6 and Figure 5.10 reveal the frequency response and the fre-

quency range with acceptable coherence values. The coherence values for lateral velocity
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v is inversely proportional to frequency. This is expected as the change in lateral velocity

due to aileron inputs reduces at high frequencies.

Table 5.6: Frequency ranges of model variables with acceptable coherence values.

RMRC Anaconda (Hz)

v 0.35-0.45

p 0.35-0.90

φ 0.35-0.90

Figure 5.10: Lateral frequency response of the RMRC Anaconda.

The final cost values meet the standards and are shown in Table 5.7. The derived stabil-

ity and control derivatives are shown in Table 5.8. Table 5.9 indicates the lateral dynamic

modes of the RMRC Anaconda. Equation (5.2) presents the final lateral model. The lateral

model reveals that the UAV is laterally dynamically stable (eigenvalues < 0).
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Table 5.7: Lateral RMRC Anaconda cost values after CIFER optimization.

RMRC Anaconda

v 74.743

p 20.069

φ 32.945

Average cost 42.586

Table 5.8: RMRC Anaconda lateral stability and control derivatives.

Parameter Value CR bound CR% Insen %

Yp -39.25 7.857 20.020 1.810

Yv -0.167 0.074 44.170 4.142

Lp -7.831 0.465 5.939 0.281

Yδa -3.088 0.178 5.818 0.314

Lδa -0.034 0.003 10.170 0.285

τ 0.183 0.009 4.959 2.158

ẋ =


−9.8119 −197.0404 2.8083

−0.4780 −22.3747 0

0 1 0




v

p

φ

+


−0.7720

−0.0971

−0.2520


(

δa

)
(5.2)
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Table 5.9: The lateral dynamic modes of the RMRC Anaconda.

Eigenvalues fn (Hz) ζ τ sec

Mode 1 -0.0107 NA NA 93.45

Mode 2 -4.520 NA NA 0.22

Mode 3 -27.656 NA NA 0.04

Model Validation

Doublets inputs (Figure 5.11) are applied to the aileron while the remaining control

surfaces are maintained at trim. The response of the RMRC Anaconda and the model is

compared by performing TIC and root mean square analysis (Figure 5.12 and Table 5.10).

Figure 5.11: Aileron doublet inputs used for model validation.

108



Figure 5.12: RMRC Anaconda response vs. lateral model.

Table 5.10: Jrms and TIC before and after calculation of biases and shifts for the RMRC
Anaconda lateral model.

Jrms TIC

Before calculation of biases and shifts 145.000 0.952

After calculation of biases and shifts 3.699 0.087

The final TIC and Jrms values indicate acceptable identification results. While the

model has excellent predictive ability (as indicated by the TIC value), Jrms is greater than

the minimum standard. However, this is likely due to asymmetric RMRC Anaconda roll

response which results in a non sinusoidal roll rate response.
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5.1.3 Remarks

The observations made after performing system identification using flight data are be-

low:

• The stability derivatives of the UAV imply longitudinal static stability. This is ex-

pected as the center of gravity is located at the nose of the UAV. Eigenvalues of

the models obtained indicate that the UAV possesses both longitudinal and lateral

dynamic stability.

• The Cramér Rao bounds and percentages obtained, which are the expected standard

deviation of an identified stability or control derivative, have increased when com-

pared to simulation results. Due to limited radio communication range, a single

frequency sweep beginning at the minimum frequency of interest and progressing to

the maximum frequency of interest could not be performed. This is resolved by per-

forming multiple sweeps at discrete frequency values. This results in multiple short

duration (no more than 10 seconds) time history files which is the likely cause of the

drop in Cramér Rao bounds and percentages. It was also noted that including more

time history data improves the Cramér Rao values.

• Reduction in the acceptable coherence range of the lateral velocity v is observed.

Simulation flight tests reveal that while the change in v due to high frequency aileron

sweeps is significantly less compared to low frequency sweeps, there still is a suf-

ficient change in v to result in coherence values > 0.6. Flight testing reveals that

there is little change in v due to high frequency aileron sweeps resulting in coherence

values < 0.6.

• Validation experiments show that the models accurately capture the RMRC Ana-

conda.
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5.2 UC2AV Aircraft

System identification is performed for the UC2AV to capture the longitudinal and lateral

models. System identification is performed two times, first, the CC system is turned off,

and second, the CC system is turned on and is blowing at maximum capacity.

5.2.1 Circulation Control Off

Longitudinal Model

Model Derivation

Elevator sweeps (Figure 5.13 and 5.14) are performed at discrete frequency values. The

avionic system and signal processing procedure is identical to the RMRC Anaconda system

and procedure.

Figure 5.13: UC2AV elevator sweep.
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Figure 5.14: UC2AV pitch response.

Table 5.11: Frequency ranges of longitudinal UC2AV (CC-off) model variables with ac-
ceptable coherence values.

UC2AV (Hz)

w 0.35-0.65

q 0.35-0.75

θ 0.35-0.75

The acceptable coherence range has decreased compared to the RMRC Anaconda. The

additional weight of the UC2AV and the unchanged motor power makes the UC2AV less

responsive to pilot inputs and is the likely cause of the reduction in coherence.
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Figure 5.15: Longitudinal UC2AV frequency response (CC-off).

CIFER performs frequency domain analysis to identify the frequency ranges with ac-

ceptable coherence values (Table 5.11) and performs cost optimization to derive the math-

ematical models and the stability and control derivatives (Table 5.12 and 5.13).

Table 5.12: UC2AV (CC-off) longitudinal cost values after CIFER optimization.

UC2AV

w 7.078

q 19.209

θ 49.864

Average cost 25.384
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Table 5.13: UC2AV longitudinal (CC-off) stability and control derivatives.

Parameter Value CR bound CR% Insen %

Zq -116.600 10.690 9.174 1.005

Mw 0.203 0.029 14.180 3.404

Mq -2.374 0.237 9.980 1.014

Zδe -0.401 0.049 12.400 1.552

Mδe -0.011 0.003 11.670 1.141

The longitudinal dynamic modes are presented in Table 5.14. The derived stability

derivative and the dynamic modes identified reveal that the UC2AV (CC-off) is both stati-

cally and dynamically stable. The final UC2AV CC-off model is shown below:

ẋ =


0.0481 −23.3137 0

0.4063 −4.7489 0

0 1 0




w

q

θ

+


−0.0802

−0.0229

−0.3443


(

δe

)
(5.3)

Table 5.14: The longitudinal dynamic modes of the UC2AV (CC off).

Eigenvalues fn (Hz) ζ τ sec

Mode −2.350± 1.928 0.773 0.483 NA

Model Validation

Doublet inputs are applied to the elevator for model validation (Figure 5.16). The re-

sponse of the model is compared to the response of the UC2AV. TIC and Jrms values indi-

cate acceptable model results.
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Figure 5.16: UC2AV response vs. model response

Table 5.15: Jrms and TIC before and after calculation of biases and shifts for the UC2AV
model.

Jrms TIC

Before calculation of biases and shifts 18.187 0.551

After calculation of biases and shifts 4.599 0.184

The final model has acceptable predictive ability as indicated by the final TIC value.

However, the model does not capture the the vertical velocity w accurately. This is likely

due to poor sweep signal quality. Further flight testing should improve the accuracy of the

model.
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Lateral Model

Model Derivation

Aileron sweeps are applied to identify the lateral dynamics model (Figure 5.17 and

5.18). The response of the UC2AV is recorded and processed using the same procedure as

the previous models.

Figure 5.17: UC2AV aileron sweeps.

Figure 5.18: UC2AV roll response to aileron sweeps.

Table 5.16: UC2AV (CC-off) lateral frequency ranges of model variables with acceptable
coherence values.

UC2AV (Hz)

v 0.35-0.45

p 0.35-0.55

φ 0.35-0.55
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The values obtained indicate a significant decrease in acceptable coherence range of

the UC2AV compared to the RMRC Anaconda. The noted decrease is greater than the

decrease of the longitudinal coherence values. There are two reasons for this observation:

i) the additional weight makes the UC2AV laterally less response to pilot input; and ii) the

UC2AV has a significantly smaller aileron surface (RMRC Anaconda: 48 x 5 cm, UC2AV:

32 x 2.5 cm). This reduces the lateral dynamic maneuverability of the UC2AV.

Figure 5.19: UC2AV (CC-off) lateral frequency response.

CIFER calculates the coherence values for the frequency ranges. As in the case of the

RMRC Anaconda, the v coherence values drop below the minimum 0.6 for frequencies

greater than 0.45 Hz (Figure 5.19 and Table 5.17).

Table 5.17: Cost values after CIFER optimization.

UC2AV

v 30.128

p 61.655

φ 110.293

Average cost 67.359
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Table 5.18: UC2AV lateral stability and control derivatives.

Parameter Value CR bound CR% Insen %

Yw -288.3 45.290 15.710 2.223

Lq -9.992 5.924 59.290 1.817

Yδa 4.528 0.461 10.190 1.425

Lδa -0.025 0.015 60.110 1.843

τ 0.208 0.017 8.219 2.985

Table 5.18 show the stability and control derivatives while Table 5.19 show the lat-

eral dynamic modes. The dynamic modes indicate that the UC2AV (CC-off) is laterally

dynamically stable. The final model is shown below:

ẋ =


−57.659 157.6775 2.246

−0.1364 −22.2047 0

0 1 0




v

p

φ

+


0.9056

−0.0548

−0.1385


(

δa

)
(5.4)

Table 5.19: The lateral dynamic modes of the UC2AV.

Eigenvalues fn (Hz) ζ τ sec

Mode 1 -22.822 NA NA 0.044

Mode 2 -57.042 NA NA 0.017

Model Validation

Aileron doublet inputs (Figure 5.20) are applied and the UC2AV response recorded

(Figure 5.21). TIC and root mean square analysis reveal accurate model identification

(Table 5.20).
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Figure 5.20: UC2AV aileron doublet inputs (CC-off).

Figure 5.21: UC2AV lateral model response (CC-off) vs. flight data.

Table 5.20: Jrms and TIC before and after calculation of biases and shifts for the UC2AV
CC-off lateral model.

Jrms TIC

Before calculation of biases and shifts 59.681 0.629

After calculation of biases and shifts 4.550 0.104

Although the final Jrms value is slightly greater than the minimum accepted standard,

the model produces acceptable Jrms and TIC values. The final Jrms value is likely due to

asymmetric roll rate response.
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5.2.2 Circulation Control ON

Longitudinal Model

Model Derivation

Elevator sweeps are applied and the response of the UC2AV recorded (Figures 5.22 and

5.23) while the CC system is turned on.

Figure 5.22: UC2AV elevator sweep (CC-on).

Figure 5.23: UC2AV pitch response (CC-on).

Coherence values for each parameter are calculated (Table 5.21 and Figure 5.24). CIFER

cost optimization function drives the mathematical models. The final cost values are pre-

sented in Table 5.22.
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Table 5.21: Frequency ranges of model variables with acceptable coherence values.

UC2AV (Hz)

w 0.35-0.60

q 0.35-0.65

θ 0.35-0.75

Figure 5.24: Longitudinal UC2AV frequency response (CC-on).

It is noted that there is a small decrease in acceptable coherence range compared to

UC2AV (CC-off). It is difficult to identify the cause of this decrease because the acceptable

coherence range reduction is relatively small (less than 1 Hz). Such a small reduction is too

small to highlight the cause and could be caused by poor data quality. It is also noted that

while the induced pitching moment causes changes in trim values, elevator sweeps produce

similar peak to peak pitch amplitude values (CC-off and CC-on).
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Table 5.22: Cost values after CIFER optimization.

UC2AV

w 45.874

q 92.407

θ 32.221

Average cost 56.834

Table 5.23 shows the final stability and control derivatives. It can be seen that Mq < 0

indicates the UC2AV remains statically stable.

Table 5.23: Longitudinal UC2AV (CC-on) stability and control derivatives.

Parameter Value CR bound CR% Insen %

Zw -0.216 3.9750 1840.000 177.00

Zq -2.858 32.8500 1149.000 53.92

Mw -0.025 0.1934 785.600 82.39

Mq -3.286 1.5430 46.950 2.39

Zδe 0.243 0.0960 39.550 2.62

Mδe -0.016 0.0004 28.360 2.11

Table 5.24 shows the dynamic modes of the UC2AV. It can be seen that the modes are

dynamically stable. The final longitudinal CC-on model is shown below:

ẋ =


−0.0432 −0.5716 0.2655

−0.0492 −6.5725 0

0 1 0




w

q

θ

+


0.0486

−0.0316

−0.3044


(

δe

)
(5.5)
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Table 5.24: The longitudinal dynamic modes of the UC2AV (CC-on).

Eigenvalues fn (Hz) ζ τ sec

Mode 1 −0.0192± 0.0402 0.0071 0.433 NA

Mode 2 -6.577 NA NA 0.152

Model Validation

Doublet inputs are applied to the elevator and the response recorded (Figures 5.25 and

5.25).

Figure 5.25: Longitudinal UC2AV response (CC-on) vs. model response.

Table 5.25: Jrms and TIC before and after calculation of biases and shifts for the UC2AV
CC-on lateral model.

Jrms TIC

Before calculation of biases and shifts 26.132 0.609

After calculation of biases and shifts 4.934 0.158
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The final Jrms does not meet the minimum standard requirement. This caused by poor

doublet inputs that produce non-sinusoidal pitch rate response which in turn causes high

Jrms values as can be seen in Figure 5.25. The final TIC value indicates that the model has

acceptable predictive ability. It is also worth noting that the model accurately captures the

pitch response of the UC2AV (Figure 5.25). This implies that the negative pitching moment

effect is appropriately modeled.

Lateral Model

Model Derivation

Aileron sweep inputs are applied and the response recorded (Figures 5.26 and 5.27)

while the CC system is turned on. Table 5.26 and Figure 5.28 present the frequency ranges

with acceptable coherence values.

Figure 5.26: UC2AV aileron sweeps (CC-on).
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Figure 5.27: UC2AV roll response to aileron sweeps (CC-on).

Table 5.26: Frequency ranges of model variables with acceptable coherence values.

UC2AV (Hz)

v 0.35-0.60

p 0.35-0.70

φ 0.35-0.70

There is a significant increase in lateral coherence values of UC2AV (CC-on) compared

to CC-off. As discussed, the UC2AV implements small ailerons that cause a loss in lateral

dynamic maneuverability. UC2AV (CC-on) coherence values suggest that CC makes the

UC2AV more responsive to pilot inputs at higher frequencies. It is also worth noting that

while the acceptable coherence range of roll and roll rate of the RMRC Anaconda is greater

than UC2AV (CC-on), the acceptable coherence range of lateral velocity v of the UC2AV

is greater than RMRC Anaconda by 2 Hz.
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Figure 5.28: Lateral UC2AV frequency response (CC-on).

The final cost values after CIFER optimization are shown in Table 5.27. The stability

and control derivatives are presented in Table 5.28.

Table 5.27: Lateral UC2AV (CC-on) Cost values after CIFER optimization.

UC2AV

v 62.71

p 10.54

φ 49.40

Average cost 40.88
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Table 5.28: UC2AV stability and control derivatives.

Parameter Value CR bound CR% Insen %

Yw -210.400 230.300 109.500 5.257

Lq 0.509 5.577 1096 32.990

Yδe -4.199 1.225 29.160 1.413

Lδe 0.019 0.014 72.930 2.195

τ 0.077 0.014 18.730 5.732

Table 5.29 indicates that the UC2AV remains laterally dynamically stable with turning

CC on. The final CC-on lateral model can be seen below:

ẋ =


−42.0748 −283.8869 0

7.9463 1.1313 0

0 1 0




v

p

φ

+


−0.8399

0.0441

−0.2147


(

δa

)
(5.6)

Table 5.29: The longitudinal dynamic modes of the UC2AV (CC-on).

Eigenvalues fn (Hz) ζ τ sec

Mode 1 −20.471± 37.836 0.476 6.847 NA

Model Validation

Doublet inputs are applied to the aileron and the response is recorded (Figures 5.29 and

5.30). TIC and root mean square calculations are performed to determine the accuracy of

the model (Table 5.30).
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Figure 5.29: UC2AV aileron doublet (CC-on).

Figure 5.30: UC2AV lateral model response (CC-on) vs. flight data.
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Table 5.30: Jrms and TIC before and after calculation of biases and shifts for the UC2AV
CC-on lateral model.

Jrms TIC

Before calculation of biases and shifts 87.166 0.744

After calculation of biases and shifts 8.339 0.204

The final Jrms value does not meet the minimum standards. This is due to un-modeled

nonlinear dynamics present in the response of the UC2AV to the implemented doublet

inputs. The final TIC value suggests that the mathematical model has acceptable predictive

ability.

5.2.3 Remarks

The observations made after performing system identification using CC are summarized

below:

• Negative pitching moment is observed while performing flight testing. The pitching

moment causes changes in the aircraft trim values. However, this does not affect the

UC2AV stability properties. The derived models indicate that the UC2AV (CC-on

and CC-off) is statically and dynamically stable. Symmetric elevator sweeps around

trim produce symmetric pitch, pitch rate, and vertical velocity w responses. Ele-

vator sweeps in CC-on and CC-off cases produce similar responses. This can also

be observed by examining the magnitude and phase plots of longitudinal frequency

response (Figures 5.15 and 5.24). It can be seen from the two bode plots that the

magnitude gain and phase shift is relatively the same for all identified parameters

across the frequency range (CC-on and CC-off). A CC induced change in longitu-

dinal trim values is also noted. The elevator trim values change from a PWM value
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of 1400 µs to 1480 µs. This is nearly a 10% reduction in the total elevator inputs

available for ascending altitude (pitching up).

As discussed in section (3.3.1), there are two longitudinal UAV dynamic modes.

These are the phugoid mode, which is a low frequency mode, and the short period

mode, which is a high frequency mode. It is known that the forward velocity u is

only dynamically present in the phugoid mode [57]. Simulation experiments results

presented in Chapter 4 indicate that u is dynamically present at frequencies < 0.20

Hz. Therefore, it can be concluded that the RMRC Anaconda and UC2AV phugoid

modes have frequencies < 0.20 Hz. Due to radio communication range, dynamics at

frequencies > 0.35 Hz were captured (short period mode only). Therefore, the CC-

on results indicate that CC does not affect the short period mode dynamics. However,

it was noted that while the UC2AV (CC-off) was able to consistently achieve pitch

angle values between +35◦ to +45◦ at the lower frequencies (0.35-0.45 Hz), the

UC2AV (CC-on) was unable to consistently achieve such values and was limited to

pitch values between +25◦ to +35◦ in many of the recorded data. This along with

the new trim elevator values are an indication that the UC2AV (CC-on) is unable to

achieve the same pitch angles of the UC2AV (CC-off) in the phugoid dynamic mode

(frequency < 0.35 Hz) due to the negative pitching moment effect.

• There is a reduction of the frequency range with acceptable coherence values for all

longitudinal parameters (CC-off) compared to the RMRC Anaconda. This is likely

caused by the additional weight of the UC2AV.

• There is a significant reduction of the frequency range with acceptable coherence

values for all lateral parameters (CC-off) compared to the RMRC Anaconda. This

mainly caused by the small ailerons implemented on the CCW (UC2AV aileron sur-

face area = 1
3

RMRC Anaconda aileron surface area) which reduces the lateral dy-
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namic maneuverability of the UC2AV.

• Lateral system identification of the UC2AV (CC-on) produces a larger frequency

range with acceptable coherence values when compared to UC2AV (CC-off). This

implies that CC improves the lateral maneuverability of the UC2AV. However, the

lateral UC2AV (CC-on) coherence range is smaller than the lateral RMRC Anaconda

range. This indicates that while CC does improve the lateral maneuverability, it does

not compensate for lost aileron surface area.

• The mathematical models capture the dynamics associated with acceptable coher-

ence values. Therefore, the models capture the improved lateral response of the

UC2AV.

• Some stability and control derivatives calculated for the CC-on models have large

Cramér Rao bounds and percentages. This makes parameter estimation analysis

using the obtained results unreliable. However, the Cramér Rao percentages and

bounds can be reduced by collecting more data for system identification.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, a system identification method is developed and implemented for a Class-I

Circulation Control UAV. There has been a lot of work done to understand the aerodynamic

properties of CC in wind tunnel environments. However, analysis of the effects of CC on

a UAV equations of motions has not been performed. The aim of this thesis is to develop

an understanding of the effects of CC on UAV dynamics. System identification is per-

formed on a CC UAV with the CC system turned on and off. Derivation of mathematical

models and parameter estimation of stability and control derivatives are performed. The

mathematical models are to be used in the future to design autopilot algorithms.

Flight tests are held to investigate the effects of CC on UAV dynamics. A system iden-

tification method is then presented to capture the CC effects. The proposed method is first

implemented in a simulation environment. To do so, a simulation platform is designed

using X-Plane and Matlab. Simulation system identification produce accurate simulated

mathematical models. An avionic system consisting of a sensory system and software sys-

tem are developed to allow system identification with flight testing. System identification
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is first performed on a baseline UAV with known aerodynamic properties. Afterwards,

system identification is performed on the CC UAV.

Data collected from flight tests indicate that CC induces a noise down pitching mo-

ment effect which alters the dynamic properties of the UAV. The CC UAV models derived

capture the noise down pitching moment effect as indicated by the validation experiments.

Derivation of longitudinal and lateral dynamic models highlights the effects of CC on the

decoupled motions. It was observed that besides changing trim values, CC does not effect

the longitudinal dynamics or stability properties of the CC UAV. CC does change the lateral

dynamics by making the UAV dynamically sensitive (more responsive) to high frequency

pilot inputs while the dynamics at low frequency inputs remain largely unchanged. Data

collected indicate that CC does not change the lateral trim values.

6.2 Future Work

Although the proposed method has produced acceptable models, there are a number of

steps that could be taken to improve the quality of the models. The implemented method

in this thesis uses initial stability and control derivative values by analyzing similar Class-I

UAVs (weight and size) with known mathematical models. Identification of initial baseline

stability and control derivatives using wind tunnel tests should improve the accuracy of

the models. The algorithm developed in this thesis implements a Kalman based sensor

fusion algorithm between an IMU and a GPS sensors. The sensor fusion algorithm assumes

Gaussian noise distribution which could lead to inaccurate velocity estimation. The IMU

sensor is unable to capture highly dynamic lateral motion without sensor fusion with the

GPS. Upgrading the IMU sensor should therefore improve the accuracy of the estimated

lateral velocity. System identification using more flight data will also increase the reliability

of the model.
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