727 research outputs found

    Ocean wind and wave parameter estimation from ship-borne x-band marine radar data

    Get PDF
    Ocean wind and wave parameters are important for the study of oceanography, on- and off-shore activities, and the safety of ship navigation. Conventionally, such parameters have been measured by in-situ sensors such as anemometers and buoys. During the last three decades, sea surface observation using X-band marine radar has drawn wide attention since marine radars can image both temporal and spatial variations of the sea surface. In this thesis, novel algorithms for wind and wave parameter retrieval from X-band marine radar data are developed and tested using radar, anemometer, and buoy data collected in a sea trial off the east coast of Canada in the North Atlantic Ocean. Rain affects radar backscatter and leads to less reliable wind parameters measurements. In this thesis, algorithms are developed to enable reliable wind parameters measurements under rain conditions. Firstly, wind directions are extracted from raincontaminated radar data using either a 1D or 2D ensemble empirical mode decomposition (EEMD) technique and are seen to compare favourably with an anemometer reference. Secondly, an algorithm based on EEMD and amplitude modulation (AM) analysis to retrieve wind direction and speed from both rain-free and rain-contaminated X-band marine radar images is developed and is shown to be an improvement over an earlier 1D spectral analysis-based method. For wave parameter measurements, an empirical modulation transfer function (MTF) is required for traditional spectral analysis-based techniques. Moreover, the widely used signal-to-noise ratio (SNR)-based method for significant wave height (HS) estimation may not always work well for a ship-borne X-band radar, and it requires external sensors for calibration. In this thesis, two methods are first presented for HS estimation from X-band marine radar data. One is an EEMD-based method, which enables satisfactory HS measurements obtained from a ship-borne radar. The other is a modified shadowingbased method, which enables HS measurements without the inclusion of external sensors. Furthermore, neither method requires the MTF. Finally, an algorithm based on the Radon transform is proposed to estimate wave direction and periods from X-band marine radar images with satisfactory results

    Evaluation and improvement of methods for estimating sea surface wave parameters from X-band marine radar data

    Get PDF
    In this thesis, several algorithms have been proposed for estimating ocean wave parameters from X-band marine radar data, i.e., wave direction, wave period, and significant wave height. In the first part of this study, the accuracy of wave direction and period estimation from X-band marine radar images under different rain rates is analyzed, and a sub-image selection scheme is proposed to mitigate the rain effect. Firstly, each radar image is divided into multiple sub-images, and the sub-images with relatively clear wave signatures are identified based on a random-forest based classiffication model. Then, wave direction is estimated by performing a Radon transform (RT) on each valid sub-image. As for wave period estimation, a random-forest based regression method is proposed. Texture features are first extracted from each pixel of the selected sub-image using the gray-level co-occurrence matrix (GLCM) and combined as a feature vector. Those feature vectors extracted from both rain-free and rain-contaminated training samples are then used to train a random-forest based wave period regression model. Shore-based X-band marine radar images, simultaneous rain rate data, as well as buoy-measured wave data collected on the West Coast of the United States are used to analyze the rain effect on wave parameter estimation accuracy and to validate the proposed method. Experimental results show that the proposed subimage selection scheme improves the estimation accuracy of both wave direction and wave period under different rain rates, with reductions of root-mean-square errors (RMSEs) by 6.9゚, 6.0゚, 4.9゚, and 1.0゚ for wave direction under rainless, light rain, moderate rain, and heavy rain conditions, respectively. As for wave period estimation, the RMSEs decrease by 0.13 s, 0.20 s, 0.30 s, and 0.20 s under those four rainfall intensity levels, respectively. The second part of research focuses on the estimation of significant wave height (Hₛ). A temporal convolutional network (TCN)-based model is proposed to retrieve Hₛ from X-band marine radar image sequences. Three types of features are first extracted from radar image sequences based on signal to noise ratio (SNR), ensemble empirical mode decomposition (EEMD), and GLCM methods, respectively. Then, feature vectors are input into the proposed TCN-based regression model to produce Hₛ estimation. Radar data are collected from a moving vessel at the East Coast of Canada, as well as simultaneously collected wave data from several wave buoys deployed nearby are used for model training and testing. After averaging, experimental results show that the TCN-based model further improves the Hₛ estimation accuracy, with reductions of RMSEs by 0.33 m and 0.10 m, respectively, compared to the SNR-based and the EEMD-based linear fitting methods. It has also been found that with the same feature extraction scheme, TCN outperforms other machine-learning based algorithms including support vector regression (SVR) and the convolutional gated recurrent unit (CGRU) network

    Sea surface wind and wave parameter estimation from X-band marine radar images with rain detection and mitigation

    Get PDF
    In this research, the application of X-band marine radar backscatter images for sea surface wind and wave parameter estimation with rain detection and mitigation is investigated. In the presence of rain, the rain echoes in the radar image blur the wave signatures and negatively affect estimation accuracy. Hence, in order to improve estimation accuracy, it is meaningful to detect the presence of those rain echoes and mitigate their influence on estimation results. Since rain alters radar backscatter intensity distribution, features are extracted from the normalized histogram of each radar image. Then, a support vector machine (SVM)-based rain detection model is proposed to classify radar images obtained between rainless and rainy conditions. The classification accuracy shows significant improvement compared to the existing threshold-based method. By further observing images obtained under rainy conditions, it is found that many of them are only partially contaminated by rain echoes. Therefore, in order to segment between rain-contaminated regions and those that are less or unaffected by rain, two types of methods are developed based on unsupervised learning techniques and convolutional neural network (CNN), respectively. Specifically, for the unsupervised learning-based method, texture features are first extracted from each pixel and then trained using a self organizing map (SOM)-based clustering model, which is able to conduct pixel-based identification of rain-contaminated regions. As for the CNN-based method, a SegNet-based semantic segmentation CNN is �rst designed and then trained using images with manually annotated labels. Both shipborne and shore-based marine radar data are used to train and validate the proposed methods and high classification accuracies of around 90% are obtained. Due to the similarities between how haze affects terrestrial images and how rain affects marine radar images, a type of CNN for image dehazing purposes, i.e., DehazeNet, is applied to rain-contaminated regions in radar images for correcting the in uence of rain, which reduces the estimation error of wind direction significantly. Besides, after extracting histogram and texture features from rain-corrected radar images, a support vector regression (SVR)-based model, which achieves high estimation accuracy, is trained for wind speed estimation. Finally, a convolutional gated recurrent unit (CGRU) network is designed and trained for significant wave height (SWH) estimation. As an end-to-end system, the proposed network is able to generate estimation results directly from radar image sequences by extracting multi-scale spatial and temporal features in radar image sequences automatically. Compared to the classic signal-to-noise (SNR)-based method, the CGRU-based model shows significant improvement in both estimation accuracy (under both rainless and rainy conditions) and computational efficiency

    Evaluation and Mitigation of Rain Effect on Wave Direction and Period Estimation From X-Band Marine Radar Images

    Get PDF
    In this article, the accuracy of wave direction and period estimation from X-band marine radar images under different rain rates is analyzed, and a simple subimage selection scheme is proposed to mitigate the rain effect. First, each radar image is divided into multiple subimages, and the subimages with relatively clear wave signatures are identified based on the random-forest-based classification model. Then, wave direction is estimated by performing the Radon transform on each valid subimage. As for wave period estimation, a new method is proposed. Texture features are first extracted from each pixel of the selected subimage using the gray-level co-occurrence matrix and combined as a feature vector. Those feature vectors extracted from both rain-free and rain-contaminated training samples are then used to train a random-forest-based wave period regression model. The shore-based X-band marine radar images, simultaneous rain rate data, as well as buoy-measured wave data collected on the West Coast of the United States are used to analyze the rain effect on wave parameter estimation accuracy and validate the proposed method. Experimental results show that the proposed subimage selection scheme improves the estimation accuracy of both wave direction and wave period under different rain rates, with reductions of root-mean-square errors (RMSEs) by 6.9 ° , 6.0 ° , 4.9 ° , and 1.0 ° for wave direction under rainless, light rain, moderate rain, and heavy rain conditions, respectively. As for wave period estimation, the RMSEs decrease by 0.13, 0.20, 0.30, and 0.20 s under those four rainfall intensity levels, respectively

     Ocean Remote Sensing with Synthetic Aperture Radar

    Get PDF
    The ocean covers approximately 71% of the Earth’s surface, 90% of the biosphere and contains 97% of Earth’s water. The Synthetic Aperture Radar (SAR) can image the ocean surface in all weather conditions and day or night. SAR remote sensing on ocean and coastal monitoring has become a research hotspot in geoscience and remote sensing. This book—Progress in SAR Oceanography—provides an update of the current state of the science on ocean remote sensing with SAR. Overall, the book presents a variety of marine applications, such as, oceanic surface and internal waves, wind, bathymetry, oil spill, coastline and intertidal zone classification, ship and other man-made objects’ detection, as well as remotely sensed data assimilation. The book is aimed at a wide audience, ranging from graduate students, university teachers and working scientists to policy makers and managers. Efforts have been made to highlight general principles as well as the state-of-the-art technologies in the field of SAR Oceanography

    Aqueous Turbulence Structure Immediately Adjacent to the Air - Water Interface and Interfacial Gas Exchange

    Get PDF
    Air-sea interaction and the interfacial exchange of gas across the air-water interface are of great importance in coupled atmospheric-oceanic environmental systems. Aqueous turbulence structure immediately adjacent to the air-water interface is the combined result of wind, surface waves, currents and other environmental forces and plays a key role in energy budgets, gas fluxes and hence the global climate system. However, the quantification of turbulence structure sufficiently close to the air-water interface is extremely difficult. The physical relationship between interfacial gas exchange and near surface turbulence remains insufficiently investigated. This dissertation aims to measure turbulence in situ in a complex environmental forcing system on Lake Michigan and to reveal the relationship between turbulent statistics and the CO2 flux across the air-water interface. The major objective of this dissertation is to investigate the physical control of the interfacial gas exchange and to provide a universal parameterization of gas transfer velocity from environmental factors, as well as to propose a mechanistic model for the global CO2 flux that can be applied in three dimensional climate-ocean models. Firstly, this dissertation presents an advanced measurement instrument, an in situ free floating Particle Image Velocimetry (FPIV) system, designed and developed to investigate the small scale turbulence structure immediately below the air-water interface. Description of hardware components, design of the system, measurement theory, data analysis procedure and estimation of measurement error were provided. Secondly, with the FPIV system, statistics of small scale turbulence immediately below the air-water interface were investigated under a variety of environmental conditions. One dimensional wave-number spectrum and structure function sufficiently close to the water surface were examined. The vertical profiles of turbulent dissipation rate were intensively studied. Comparison between the turbulence structures measured during the wind wave initiation period and those obtained during the growing period was presented. Significant wave effects on near surface turbulence were found. A universal scaling law was proposed to parameterize turbulent dissipation rate immediately below the air-water interface with friction velocity, significant wave height and wave age. Finally, the gas transfer velocity was measured with a floating chamber (FC) system, along with simultaneously FPIV measurements. Turbulent dissipation rate both at the interface and at a short distance away from the interface (~ 10 cm) were analyzed and used to examine the small scale eddy model. The model coefficient was found to be dependent on the level of turbulence, instead of being a constant. An empirical relationship between the model coefficient and turbulent dissipation rate was provided, which improved the accuracy of the gas transfer velocity estimation by more than 100% for data acquired. Other data from the literature also supported this empirical relation. Furthermore, the relationship between model coefficient and turbulent Reynolds number was also investigated. In addition to physical control of gas exchange, the disturbance on near surface hydrodynamics by the FC was also discussed. Turbulent dissipation rates are enhanced at the short distance away from the interface, while the surface dissipation rates do not change significantly

    Comparison of sea-ice freeboard distributions from aircraft data and cryosat-2

    Get PDF
    The only remote sensing technique capable of obtain- ing sea-ice thickness on basin-scale are satellite altime- ter missions, such as the 2010 launched CryoSat-2. It is equipped with a Ku-Band radar altimeter, which mea- sures the height of the ice surface above the sea level. This method requires highly accurate range measure- ments. During the CryoSat Validation Experiment (Cry- oVEx) 2011 in the Lincoln Sea, Cryosat-2 underpasses were accomplished with two aircraft, which carried an airborne laser-scanner, a radar altimeter and an electro- magnetic induction device for direct sea-ice thickness re- trieval. Both aircraft flew in close formation at the same time of a CryoSat-2 overpass. This is a study about the comparison of the sea-ice freeboard and thickness dis- tribution of airborne validation and CryoSat-2 measure- ments within the multi-year sea-ice region of the Lincoln Sea in spring, with respect to the penetration of the Ku- Band signal into the snow
    • …
    corecore