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Abstract

In this thesis, several algorithms have been proposed for estimating ocean wave parame-

ters from X-band marine radar data, i.e., wave direction, wave period, and significant wave

height. In the first part of this study, the accuracy of wave direction and period estimation

from X-band marine radar images under different rain rates is analyzed, and a sub-image

selection scheme is proposed to mitigate the rain effect. Firstly, each radar image is di-

vided into multiple sub-images, and the sub-images with relatively clear wave signatures are

identified based on a random-forest based classification model. Then, wave direction is esti-

mated by performing a Radon transform (RT) on each valid sub-image. As for wave period

estimation, a random-forest based regression method is proposed. Texture features are first

extracted from each pixel of the selected sub-image using the gray-level co-occurrence ma-

trix (GLCM) and combined as a feature vector. Those feature vectors extracted from both

rain-free and rain-contaminated training samples are then used to train a random-forest

based wave period regression model. Shore-based X-band marine radar images, simultane-

ous rain rate data, as well as buoy-measured wave data collected on the West Coast of the

United States are used to analyze the rain effect on wave parameter estimation accuracy

and to validate the proposed method. Experimental results show that the proposed sub-

image selection scheme improves the estimation accuracy of both wave direction and wave

period under different rain rates, with reductions of root-mean-square errors (RMSEs) by

6.9◦, 6.0◦, 4.9◦, and 1.0◦ for wave direction under rainless, light rain, moderate rain, and

heavy rain conditions, respectively. As for wave period estimation, the RMSEs decrease by

0.13 s, 0.20 s, 0.30 s, and 0.20 s under those four rainfall intensity levels, respectively.

The second part of research focuses on the estimation of significant wave height (Hs).

A temporal convolutional network (TCN)-based model is proposed to retrieve Hs from X-

band marine radar image sequences. Three types of features are first extracted from radar

image sequences based on signal to noise ratio (SNR), ensemble empirical mode decompo-

sition (EEMD), and GLCM methods, respectively. Then, feature vectors are input into the
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proposed TCN-based regression model to produce Hs estimation. Radar data are collected

from a moving vessel at the East Coast of Canada, as well as simultaneously collected wave

data from several wave buoys deployed nearby are used for model training and testing. After

averaging, experimental results show that the TCN-based model further improves the Hs es-

timation accuracy, with reductions of RMSEs by 0.33 m and 0.10 m, respectively, compared

to the SNR-based and the EEMD-based linear fitting methods. It has also been found that

with the same feature extraction scheme, TCN outperforms other machine-learning based

algorithms including support vector regression (SVR) and the convolutional gated recurrent

unit (CGRU) network.
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Chapter 1

Introduction

1.1 Research Rationale

Accurate measurement of sea surface wave parameters is critical for a variety of maritime

applications, such as offshore wind farm development, oil and gas exploitation, ship nav-

igation, breakwater construction, and cross-sea bridge building [2]. Traditionally, in situ

sensors such as wave buoys are employed for wave measurements. However, they only pro-

vide the sea surface parameters at the current position of interest [3]. In contrast, remote

sensing instruments are able to explore and measure sea surface within a much wider area.

Remote sensing equipment can be deployed on different platforms, such as satellites, air-

craft, low-altitude unmanned aerial vehicles (UAVs), and terrestrial platforms [4]. In recent

decades, different remote sensing techniques, e.g., the satellite-borne Synthetic Aperture

Radar (SAR) [5], high frequency (HF) radar [6, 7], and X-band marine radar [8] have been

utilized to estimate the sea surface wave information. Typical satellite-borne SAR systems

lack high temporal resolution because the time interval of revisiting the same location is

on the order of days [9]. On the other hand, although HF radar can monitor sea surface

parameter for a long distance, spatial resolution of the HF radar is not relatively high since

HF radar is operated in the 3-30 MHz frequency range [10]. Among different types of
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radar sensors, the X-band marine radar is a favorable choice for real-time wave estimations.

Firstly, it has a high temporal resolution [11] since its interval of monitoring is in order of

seconds. Also, it has a relatively high resolution to produce finer sea surface parameters.

Additionally, compared to SAR, the instruments of X-band marine radar have relatively

low installation and maintenance cost [12]. Moreover, X-band marine radar can not only be

installed on a fixed offshore platform or nautical traffic control tower but also be mounted

on a moving ship to obtain the information of sea surface far from shore [13]. However,

the accuracy of sea surface parameters estimated from X-band radar data drops under rain

conditions since X-band radar signal is sensitive to rain.

Traditionally, X-band marine radar is used for target detection. In recent decades,

it has been found that X-band marine radar may be used as an alternative choice for

obtaining sea surface information. The Bragg resonance interactions between the X-band

electromagnetic waves and the cm-scale capillary waves induced by local winds generate the

radar backscatter from the sea surface [8]. The short waves are then modulated by longer

ocean waves under multiple mechanisms such as hydrodynamic effects, tilt modulation, and

shadowing effects [2]. Because of this modulation, longer sea surface waves become visible

in radar backscatter (i.e., sea clutter) images, which are manifested by strip-like patterns.

Although the sea clutter is undesirable for navigation purposes, sea surface variations can

be reflected from the sea clutter [14]. Thus, it is possible to utilize the marine radar images

to efficiently estimate the sea surface features, such as wind [15, 16] and wave [8, 17–19]

parameters.

However, the presence of rainfall will negatively influence the measurement accuracy

of those sea state parameters because the raindrops on the ocean surface and in the atmo-

sphere alter both sea surface roughness and X-band radar backscatter [20,21]. Consequently,

some wave signatures of radar backscatter images are blurred and existing methods for sea

parameter estimation do not work well [13, 22].
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1.2 Literature Review

The X-band marine radar operating at grazing incidence is widely applied for the mea-

surements of sea surface parameters. The transmit frequency is from 8 to 12 GHz, and

the corresponding radio wavelength is from 2.5 cm to 3.75 cm. The electromagnetic signal

transmitted from X-band radar will interact with the rough sea surface. Then, the received

backscatter signal was sent to the processor and transformed into radar image so that it

can be easily interpreted and studied by the user. During the past several decades, different

methods have been proposed for estimating wave information from X-band radar images.

In 1966, Wright proposed that sea clutter could be used to obtain the backscattering from

capillary waves [23]. In the early research for wave parameter estimation, the methods used

were relatively primitive. For example, wave direction could only be measured by the pro-

tractor from wave trains in the radar images projected on the screen, and it was also feasible

to estimate the wave period from radar images [24]. In the 1980s, spectral-based methods

were introduced to analyze the wave information. It was found that two-dimensional (2D)

spectra of radar images similar to the spectra derived from buoy data could be obtained by

the application of a 2D Fourier transform [25]. However, a directional ambiguity of 180◦

exists when estimating the wave direction by 2D image spectra. A wave direction ambiguity

removal method was proposed in [26], which implemented two sequential images for analysis

and combined them with the theory of dispersion for gravity waves. In 1985, a three dimen-

sional (3D) fast Fourier transform (FFT) was applied to a full time series of digitized radar

images by Young [8], which could effectively eliminate the 180◦ directional ambiguity by

the introduction of time as the third dimension. In this method, the spatial and temporal

features of sea surface from radar data could be combined to analyze the directional wave

spectrum. In the two decades following Young’s work, the spectral-analysis technique was

widely used for sea surface parameter estimation, and it was also integrated into the com-

mercial wave and surface current monitoring system (WaMoS II) [27]. The first step of this

method is to transform radar data into the spectral domain by the 3D-FFT to obtain the

image spectrum [11]. Then, the surface current can be estimated by least square fitting with

3



the dispersion relation, which is considered as a band-pass filter to filter the components

in the image spectrum that do not belong to the wave field [8]. Eventually, the wave spec-

trum can be extracted from the wave-related image spectrum by the means of a modulation

transfer function (MTF) [11]. Therefore, the wave direction and wave period can be deter-

mined from the wave spectrum [28, 29]. However, the wave height cannot be determined

directly from the wave spectrum since the intensity of a radar image is directly associated

with the strength of radar backscatter signals rather than the sea surface elevation. In the

early studies, significant wave height (Hs) was derived from SAR images [30, 31], where it

was found Hs was proportional to the square root of the signal-to-noise ratio (SNR) [32].

In subsequent research, the main spectral components from the X-band radar image spec-

tra were analyzed, which include wave components within the dispersion relation shell [8],

higher harmonics [18, 33], subharmonic [34], and background spectral noise (BGN) [18, 28].

In 2008, Nieto-Borge et al. [18] proposed the SNR-analysis based method to estimate Hs

from X-band radar images, and this became one of the most popular methods for Hs es-

timation. Although the SNR-based method has been incorporated into several commercial

radar systems for real-time wave monitoring, later studies have found that Hs is not com-

pletely linearly proportional to the square root of SNR since the variations of sea states, the

difference in SNR calculation methods and different radar systems will affect the accuracy

of the regression model [3, 35,36].

Several other spectral analysis-based algorithms were presented for wave height estima-

tion after the SNR-analysis based method. In 2014, an iterative least squares (ILS)-based

algorithm was proposed to simplify obtaining wave parameters [37] by not requiring a band-

pass filter as in the traditional 3D-FFT-based algorithm. A year after, an adaptive recursive

positioning method (ARPM)-based algorithm was proposed which could be used to further

improve the wave direction and period [38]. However, this technique requires a full radar

field of view; otherwise, the estimation accuracy will be affected because of the obstruction

of land areas or islands. Wang et al. [39] proposed a method to calculate the SNR based

on the geometry of the linear wave dispersion relationship, which avoided the problem of
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inaccurate surface current measurement. Additionally, it was found that 2-D continuous

wavelet transform (CWT)-based algorithms could also be implemented to obtain the wave

spectra [40]. In 2017, the array-beamforming based algorithms [41] were proposed to ex-

tract the directional wave spectrum and related wave parameters, where beamforming is

a technique that extracts the signal arriving from a desired direction through constructive

interference and suppresses other signals through destructive interference [42].

Another Hs estimation method is based on texture analysis of X-band radar images. In

1997, Buckley et al. [43, 44] proposed that the crest-to-trough length ratio and a threshold

probability of illumination could produce a model related to Hs. In 2000, a statistical-

analysis-based method was proposed by Gangeskar to determine Hs [45], and an adaptive

method was also applied to the problematic situations, such as low wave height and rain

condition [46]. In 2005, an algorithm based on tilt modulation was proposed by Dankert

to determine the sea elevations [47]. The advantage of this method is that the outputs

do not require calibration from an additional reference. Additionally, the Radon trans-

form (RT) was applied for wave direction and wave period estimation by the analysis of

wave signatures from X-band radar images [17, 48]. In 2014, Gangeskar [49] conducted a

shadowing-analysis-based method to obtain the Hs, which did not require calibration. How-

ever, the experimental results needed to be verified by using a usual marine radar installed

at a height of 20–30 m since the antenna height of the radar used in that study was much

higher (i.e., 43.2 m). Two years later, Liu et al. [14] improved the original shadowing-

based method by smoothing the edge pixel intensity and extracting a suitable sub-image

for analysis. Also, Wei et al. [35] considered the water depth effect to the coastal area

application based on the shadowing-based method. In 2017, an empirical orthogonal func-

tion (EOF)-based method [50] was proposed for the estimation of wave parameters. In this

algorithm, Hs, wave period, and wave direction could be determined from the principal

components obtained from the EOF. Subsequently, an ensemble empirical mode decompo-

sition (EEMD)-based algorithm was proposed by Liu et al. [36], which analyzed the linear

relationship between Hs and the parameter derived from EEMD-based method.
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Furthermore, it should be noted that in recent years, machine learning (ML)-based

algorithms have been increasingly incorporated into wave parameter estimation models.

Firstly, support vector regression (SVR) is an appealing algorithm for a large variety of

regression problems, which does not only consider the error approximation to the data,

but also the generalization of the model. In 2015, Salcedo-Sanz et al. [51] extracted the

probability of shadowing and tangent of the local incidence angle as input variables from

the simulation-based data to obtain Hs using the SVR-based method. In the following

year, Cornejo-Bueno et al. [52] extracted SNR, peak wave number and peak frequency

derived from the wave number spectrum, and different estimations of the mean powers of

the frequency derived from the ratios of the spectral moments. Then, these parameters

were used as predictive variables to train the SVR-based Hs estimation model. In addition,

the artificial neural network (ANN) is also a ML-based regression algorithm often used

to estimate Hs. In 2012, Vicen-Bueno et al. [53] extracted
√

SNR from the consecutive

radar image sequences, wave period, and wave length as inputs to estimate Hs by using

a non-linear ANN model with multilayer perceptrons (MLP). The introduction of multiple

parameters for Hs analysis can mitigate the Hs overestimation problem under low wind

speeds. In 2020, Park et al. [54] also applied the ANN-based method with
√

SNR, wave

period, and wind condition parameters to estimate Hs. In 2021, the ANN-based regression

model was also used to analyze the influence of non-onshore winds on Hs from the off-shore

X-band radar system [3]. In addition to
√

SNR, the powers from nearshore radar subimages

and in situ wind components were also included as input parameters of the neural network

to improve the Hs estimations from coastal radar images. It can be found the SVR-based

methods and the ANN-based method use the square root of SNR as the main feature to

train the estimation model. Thus, it is worthwhile that more effective features are combined

for analysis to improve the estimation accuracy.

In the past two years, more advanced neural networks have been applied to sea parameter

estimation. For example, in 2020, a convolutional neural networks (CNN)-based regression

method was proposed to obtain the wave period and Hs from the sub-images extracted
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from simulated X-band radar images [55]. However, the validation of the method was based

on a simulated image data set and requires further validation for real data. In 2021, a

convolutional gated recurrent unit network (CGRU) was used to estimate Hs by Chen et

al. [13], which effectively took into account the temporal features of the radar image time

series. However, both deep learning-based methods use the radar images instead of features

extracted from the images as input directly to train the estimation model. This end-to-end

system cannot reflect the mapping relationship between the features and wave parameters.

In most of the above-mentioned parameter estimation techniques only radar images col-

lected under rain-free conditions were used. This is due to the known fact that those tech-

niques yield significantly decreased estimation accuracies when applied to rain-contaminated

radar images. In order to detect the presence of rain from radar images, a variety of meth-

ods have been proposed to classify the radar images into rainless and rain-contaminated

types, including the mean-and-difference-coefficient-analysis based method [56], zero-pixel-

percentage (ZPP) based method [15], and the support-vector-machine (SVM) based method

[57]. Besides those, a couple of modified and novel methods for wind parameters estimation

with rain mitigation have been proposed, such as the modified-intensity-level-selection based

method [58], the EEMD-based method [59], and the SVR-based method [60]. In contrast,

few studies have been conducted for wave parameter estimation using rain-contaminated

radar images. In 2012, rain-contaminated radar images could be identified by analyzing

the change trend of the 3D evaluation parameters of surface roughness of radar images and

SNR [56]. It was found that in the wave spectrum of radar image sequences not seriously

affected by rain, the energy in low frequency part is higher than that of rainless radar image

sequences. Therefore, those radar images which were not seriously affected by rain could

be selected by comparing the energy difference in low frequency part of the wave spectrum

and then filtered in frequency domain to improve the estimation accuracy of wave period

and wave direction. In 2017, a rain influence correction method on the gray level radar

image based on 1-D complex continuous wavelet transform was proposed [61]. In 2021, the

proposed CGRU-based method would also improve the Hs estimation accuracy under rain
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condition [13].

1.3 Motivation and Objectives

Although some algorithms mentioned above for estimating wave parameters under rain

condition have been proposed, it is found that the influence of rainfall intensity on wave

parameter estimation accuracy has never been analyzed. Thus, it is worthwhile to estimate

the wave period and direction under different rainfall intensities. On the other hand, these

existing studies for rain radar data just utilize preliminary methods for analysis, which

still have some shortcomings to be improved. For example, those radar images severely

contaminated by rain are not available for wave period and direction estimation when using

the method proposed in [56]. Although the 1-D complex continuous wavelet transform-based

method [61] can correct the rain-contaminated radar image to some extent, the correction

performance does not work well for those regions where the wave signatures are completely

blurred by rain. According to Huang et al. [62], for rain-contaminated images, regions that

are unaffected or less affected by rainfall can still be used to estimate sea surface parameters.

Thus, it is necessary to develop a novel scheme to identify and select regions with clear wave

signatures for wave parameter estimation. Therefore, the objective of the first part in this

thesis is to evaluate the influence of different rainfall intensities on the measurement of wave

direction and period as well as mitigate the rain effect on the wave direction and wave period

estimation.

As for the Hs estimation, it is found that traditional SNR-based linear fitting method

cannot effectively produce accurate results, especially when radar data are collected from a

moving platform [36]. Besides, those calibration-free methods, such as shadowing-analysis-

based [49] and EOF-based [50] methods are composed of more complicated structures and

computation steps than that of using calibration reference methods. On the contrary, ML-

based methods can simplify the design of algorithms and improve the estimation accuracy
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efficiently. For now, some ML-based Hs estimation methods, e.g., CNN-based and CGRU-

based methods are end-to-end systems, which can extract features automatically and pro-

duce relatively high accuracy. However, it is hard to analyze the relationship between those

highly abstract features and Hs. On the other hand, a more advanced ML-based regression

method can be developed to improve the estimation accuracy of Hs. Among different types

of neural networks, the temporal convolutional network (TCN) is a variant of CNN architec-

ture for sequence network modeling proposed in [63]. Compared to models based on other

typical CNNs, TCN-based estimation model can exhibit longer effective memory, which in-

dicates that Hs can be analyzed in conjunction with more long-term data. Thus, Hs can

not only be estimated from the spatial features extracted from the current radar image, but

also the temporal variations exploited from preceding radar image sequence. Therefore, the

second objective is to utilize the state-of-the-art TCN-based regression method to further

improve the Hs estimation accuracy from rain-free radar data.

1.4 The Scope of the Thesis

In this thesis, novel algorithms are developed to estimate wave parameters, i.e., wave direc-

tion, wave period, and Hs. The thesis is organized as follows:

In Chapter 2, a sub-image selection scheme is proposed to mitigate the rain effect on the

rain-contaminated radar images. Then, the wave direction and wave period are estimated

based on the RT and random forest regression methods under different rain intensities.

In Chapter 3, a TCN-based regression model is proposed to estimate Hs under rainless

conditions.

A summary of the thesis and some suggestions for future work are addressed in Chapter

4.

The achievements of this research have been published in the following journal papers:

1. Z. Yang, W. Huang, and X. Chen, “Evaluation and mitigation of rain effect on wave
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direction and period estimation from X-band marine radar images,” IEEE J. Sel. Top.

Appl. Earth Obs. Remote Sens., vol. 14, pp. 5207–5219, 2021.

2. W. Huang, Z. Yang, and X. Chen, ”Wave height estimation from X-band nautical

radar images using temporal convolutional network,” IEEE J. Sel. Top. Appl. Earth

Obs. Remote Sens., vol. 14, pp. 11395–11405, 2021.
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Chapter 2

Evaluation and Mitigation of Rain

Effect on Wave Direction and

Period Estimation from X-band

Marine Radar Images

In this chapter, quantitative analysis of the effect of rain intensities on wave direction and

period estimation from X-band radar data is presented. A sub-image selection scheme

for identifying the region with relatively clear wave signatures to improve the estimation

accuracy and a ML-based wave period measurement method are proposed. In Section

2.1, the radar and environmental data used in this study are described. The proposed

methodology is illustrated step by step in Section 2.2. Section 2.3 contains the experimental

results as well as rain effect analysis. Finally, the chapter summary is addressed in Section

2.4.
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Figure 2.1: Locations of the radar, buoy, and weather station site as well as the

bathymetry of the region from GPS Nautical Charts [1].

2.1 Data overview

The radar data used in this study were collected by a commercial X-band marine radar

(Koden) deployed on a shore-based tower at Yaquina Bay, Newport, OR, USA (44°37’27”N,

124°03’45”W). The radar system specifications are provided in Table 2.1. The range reso-

lution of this radar is 12 m, and beam width is 0.8°. The resolution of the Cartesian radar

image is 5 m. Fig. 2.1 shows the locations of the radar, buoy, and weather station site as well

as the bathymetry of the region. The coverage of the radar image is shown by a red sector.

According to the bathymetry map, the water depths of the observation area range from 0 to

47.5 m. In this study, regions with water depths shallower than 10 m are excluded from the

analysis. This is because that as the deep-water waves travel into shallow water, they will

interact with the seabed, resulting in the variations of wave period and direction [64]. The

reference wave information is collected per hour by a TriAXYS directional wave buoy located
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Table 2.1: Radar information

Radar site A shore-based tower in Newport, OR, USA

Transmit frequency 9.45 GHz

Polarization Horizontal

Pulse width 80 ns

Range resolution 12 m

Range coverage 3 m - 6087 m

Beam width 0.8◦

Azimuth coverage 180◦

Antenna height 63 m

Antenna rotation speed 44 rpm

Grey level of radar image 0 - 255

around 20 kilometers from the radar site (44°38’21”N 124°18’15”W). According to [65], the

buoy can measure wave periods of 1.5 s to 30 s with a resolution of 0.1 s. The accuracy of

the measured wave period is better than 1%. The buoy measures wave direction from 0°

to 360° with a resolution of 1° and the measurement error is within 3°. The hourly average

rain rate was recorded every 5 minutes from a rain gauge with a resolution of 0.1 mm/h and

provided by the ARPSWXNET/CWOP weather station (44°38’30”N 124°03’21”W). The

measurement error is within 0.5 mm/h. The radar, buoy, and rain gauge instruments are

all working 24/7. Since the sampling rates of both buoy and rain gauge are lower than that

of the radar, the reference wave and rain data for each radar image are obtained from the

closest measurements before or after the image acquisition time. The radar images used

for this study were selected between January 11 and July 18, 2019 under a wide range of

rain rates. Among those images, 70% of them were randomly selected for training while the

other 30% were used for testing.

2.2 Methodology

The overall framework of wave direction and period estimation in this study is presented in

Fig. 2.2.
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Figure 2.2: Framework of wave direction and period estimation.

2.2.1 Sub-image Selection

Fig. 2.3 shows examples of radar images obtained under four different rainfall intensities.

It can be observed that wave signatures will be affected by different degrees under different

rain rates. Specifically, a rain-free radar image is presented in Fig. 2.3(a), and the texture

of wave signatures can be clearly observed in most of the sea surface regions. In comparison,

Figs. 2.3(b), (c), (d) are radar images with blurry wave signatures obtained under rain rates

of 1.5 mm/h, 3.0 mm/h, and 9.1 mm/h, respectively. It may be observed that as rain rate

increases, the proportion of regions dominated by rain echoes increases as well.

For some rain-contaminated images, wave signatures might still be visible in some re-

gions, from which wave parameters can be estimated [62]. On the other hand, regions

dominated by rain echoes should be discarded. In order to identify those regions with visi-

ble wave signatures, 15 sub-images with equal size are first extracted from each radar image,

as shown in Fig. 2.4. For each sub-image, texture features are extracted and input into a

random-forest-based classification model, which is able to determine whether the sub-image

is dominated by visible wave signatures (i.e, valid sub-image) or rain-echoes (i.e, invalid

sub-image). If all the 15 sub-images in one radar image are identified as invalid sub-images,

this radar image will be discarded from wave estimation as well. The detailed procedures
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(a) (b)

(c) (d)

Figure 2.3: Radar images obtained under different simultaneous rainfall intensities: (a)

rainless, (b) 1.5 mm/h rain rate, (c) 3.0 mm/h rain rate, (d) 9.1 mm/h rain rate.
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for texture feature extraction and sub-image classification are introduced below.

Figure 2.4: Selection of 15 sub-images (outlined in red) in the radar image.

Feature Extraction

The gray level co-occurrence matrix (GLCM)-based method [66] that reflects the correlation

characteristic of image grayscale space is an efficient texture analysis approach and used here

for feature extraction from each sub-image. Firstly, a L×L sliding window is applied to the

sub-image. In each window, the pixels with the maximum and minimum intensities in the

window are set as gray level 15 and gray level 0, respectively. Then, other pixels within the

window are scaled to the integers between 0 to 15 based on the min-max feature scaling.

The min-max feature scaling can convert the values to a range between 0 and 1 via

X
′

=
X −min(X)

max(X)−min(X)
, (2.1)
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where X is the original value and X
′

is the normalized value. Next, the GLCMs are formed

from each pixel-intensity-scaled window as

P d∆ =



P d∆(0, 0) P d∆(0, 1) · · · P d∆(0, 15)

P d∆(1, 0) P d∆(1, 1) · · · P d∆(1, 15)

...
...

. . .
...

P d∆(15, 0) P d∆(15, 1) · · · P d∆(15, 15)


(2.2)

The element (denoted as P d∆(i, j)) of the GLCM indicates the number of occurrences of the

pair of pixels which have intensities of i and j (i, j = 0, 1, 2..., 15) with a distance d along

direction ∆. The Chebyshev distance, which is used to calculate the distance (d) between two

pixel positions (x1, y1) and (x2, y2) in this study, equals to max(abs(x1 − x2), abs(y1 − y2)).

The directional relationships of pixel pairs are shown in Fig. 2.5 and

• ∆ = 1 (in 0o direction);

• ∆ = 2 (in 45o direction);

• ∆ = 3 (in 90o direction);

• ∆ = 4 (in 135o direction).

Since for a certain distance d each direction ∆ can be chosen to create one GLCM, four

GLCMs can be generated in each sliding window.

Finally, a feature vector is constructed based on the statistics of the GLCMs. In [66],

fourteen statistics can be calculated from the GLCM. In this study, four of them, i.e., con-

trast (denoted as Con), homogeneity (denoted as H), correlation (denoted as Cor), and

energy (denoted as E) are selected and calculated for each GLCM, respectively, as

Con∆ =
∑
i

∑
j

(i− j)2P d∆(i, j), (2.3)
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Figure 2.5: The pixel pairs in four directions having the same Chebyshev distance.

H∆ =
∑
i

∑
j

1

1 + |i− j|
P d∆(i, j), (2.4)

Cor∆ =
∑
i

∑
j

(i− µi)(j − µj)P d∆(i, j)

σiσj
, (2.5)

where µ and σ are the mean and standard deviation of the GLCM, respectively.

µi =
∑
i

∑
j

iP d∆(i, j), (2.6)

µj =
∑
i

∑
j

jP d∆(i, j), (2.7)

σ2
i =

∑
i

∑
j

P d∆(i, j)(i− µi)2, (2.8)

σ2
j =

∑
i

∑
j

P d∆(i, j)(j − µj)2. (2.9)

Also, the energy can be expressed as

E∆ =
∑
i

∑
j

P d∆(i, j)2. (2.10)
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In addition, the mean and standard deviation of each feature are calculated over four

directions and composed as an 8-dimensional feature vector for each sliding window. The

reason why these features are selected for analysis will be illustrated in Section IV. The size

(L) of the sliding window and the distance (d) between pixel pairs along four directions are

set as 9 and 1 respectively for the method used in this study. Then, for each sub-image, the

8-dimensional features of all sliding windows are combined together as one feature vector.

Thus, in each sub-image (P × P in pixels), the number of sliding windows (denoted as W )

can be calculated as W = (P − L + 1)2. In order to facilitate the computation of feature

vectors, all the sub-images are resized into 100× 100 pixels using bicubic interpolation [67].

Therefore, 8486 sliding windows can generate a feature vector with 67,712 elements in each

sub-image.

Random Forest Classification

After obtaining the texture features for all the sub-images in each image, the random-forest

based classification method is used to identify the valid sub-images. Random forest [68]

which consists of a large number of decision trees is an ensemble learning algorithm and can

be used for both classification (in this section) as well as regression. The ensemble method

is a technique that combines the predictions from multiple decision tree models to make

more accurate predictions than any individual model. The randomness of the random forest

is reflected from selecting a random set of features from all features and random samples

from the training dataset for each decision tree.

The architecture of the random forest classifier is shown in the right block diagram

in Fig. 2.2, which consists of three steps (i.e., bootstrapping, decision tree training, and

prediction). The first is to generate one subset via bootstrapping for each decision tree.

Bootstrapping is a sampling method to draw around 63.2% samples randomly from the

training set (i.e., D in Fig. 2.2) with replacement as the training subset for the decision

tree [69]. Usually, a total of n training subsets (i.e., D1, D2, . . . , Dn in Fig. 2.2) should

be generated (i.e., n sampling times). As for the training set, all sub-images from 90 radar
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images obtained under different rainfall intensities are first manually labelled into two types:

those with relatively clear wave signatures and those without clear wave signatures. Then,

the extracted feature vectors of these labelled sub-images and their corresponding labels are

combined as the training set, while the remaining radar images are used as the testing set.

The involvement of many decision trees can reduce the variance efficiently, avoid overfitting,

and improve generalization. Therefore, the number of sampling times is chosen as 100 (i.e.,

100 subsets or decision trees).

Next, each training subset is employed to train one decision tree model based on the

Classification and Regression Tree (CART) method [70] which is able to predict classification

results according to the feature differences of the input training set. In each decision tree

training, the square root of the number of all features is considered as the number of selected

random features which are used for decision node selection [68]. The purpose of selecting a

random set of features is to reduce the correlation between each decision tree and improve

the classification accuracy of each decision tree. Additionally, the selection of the optimal

feature as a decision node can be referred to as the CART method [70]. After obtaining

each decision tree model, every individual tree in the random forest will produce a class

prediction result. Thus, each testing sample in the testing set is input into each decision

tree model, and a total of 100 classification results will be generated here. Then, a majority

voting scheme is applied, which means that the class with the most votes according to

all decision trees’ prediction results becomes the random forest classification model’s final

prediction.

The valid wave regions of each radar image can be obtained using the classification

method and used for wave parameter measurement. The framed red boxes in Fig. 2.6 are

the valid sub-images identified from the rain-contaminated radar image in Fig. 2.4.
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Figure 2.6: Valid sub-images (outlined in red) identified from radar image in Fig. 2.4.

2.2.2 Wave Direction Estimation

After obtaining the valid sub-images for each radar image, the classic method for edge

detection, i.e., Canny edge detection proposed in [71], is first performed on each valid sub-

image in order to facilitate line detection using the RT in the next step. In this study,

in order to outline the main texture with lower computation load, each sub-image used

for edge detection is still 100 × 100 pixels. An example of the edge detection result of a

valid sub-image (i.e, Fig. 2.7(a)) is presented in Fig. 2.7(b). Next, the dominant direction

(denoted as η) of each edge image is estimated using the RT-based method. The RT [72]

can be expressed as

f(r, α) =

∫ ∫
I(x, y)δ(r − x cosα− y sinα)dxdy, (2.11)
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(a) (b)

Figure 2.7: (a) The valid sub-image highlighted in yellow dash lines in Fig. 2.6. (b) The

detected edge image of (a).

where I(x, y) is the pixel intensity at location (x, y) in the edge image, δ is the Dirac delta

function, r represents the distance from the center of the edge image to a candidate straight

line in the image, and α is the angle between the normal of the straight line and x-axis,

which is also the projection direction of the straight line. It is obvious that only the line

r = x cosα+ y sinα, (2.12)

contributes to the integral in Eq. (2.11). The α and r in Eq. (2.11) represents the integral

of the intensity of all the pixels on a line which is in the direction α and at a distance r

relative to the image center, i.e., each point in the RT domain corresponds to a straight

line in image space. As for the detected edge image, it can be found that one texture line

with high gray level and a distance r as well as direction α relative to the edge image center

will generate a bright point at (α, r) in the RT domain. On the contrary, the texture line

with low gray level will generate a dark point in the RT domain. Thus, the pixels in the RT

domain image in the corresponding texture line projection direction will display the largest

intensity value variation. The standard deviation of the pixel intensities in each projection

direction (α) of the transformed result in the Radon domain can be calculated, and the
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direction with the peak standard deviation value can be considered as the texture dominant

direction (η).

(a)

(b)

Figure 2.8: (a) The RT results of all projection lines in Fig. 2.7(b). (b) The standard

deviation of RT results as a function of projection direction.

To reduce computation, for an edge image which contains l pixels on each side, only

the projection lines that have at least l/
√

2 pixels are used for the RT, which means the

absolute value of applicable distance r is less than l/(2
√

2) pixels. Based on this criterion,

the RT result of Fig. 2.7(b) is presented in Fig. 2.8(a). Besides, the standard deviation of

the pixel intensities in each projection direction (α) of Fig. 2.8(a) is calculated and shown

in Fig. 2.8(b). It can be observed that the texture dominant direction of Fig. 2.7(a) is 18◦.

Furthermore, for each radar image, the standard deviations of RT results obtained from
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all valid sub-images are averaged for each projection direction, and the direction with the

maximum averaged standard deviation is selected as a rough estimation direction (denoted

as φ). Next, by comparing η with φ, only those sub-images with η being within ±10◦ of φ

are selected, and the median value of η associated with the selected sub-images is regarded

as the final texture dominant direction (denoted as γ) of one radar image [17]. It should be

noted that η and γ should be converted to β and θ which are measured with reference to

the true North.

Figure 2.9: The region extraction for wave period estimation. (a) The selected valid

sub-image centering at A. (b) The extracted region centering at A for wave period

estimation outlined in blue.

2.2.3 Wave Period Estimation

The steps for wave period estimation are illustrated as follows. As shown in Fig. 2.9(a), the

valid sub-image with its dominant wave direction (β) closest to the estimated wave direction
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(θ) from the corresponding radar image is selected. Then, a 256 × 256-pixel region (1280 m

× 1280 m) which centers at the original sub-image center with two sides aligning with the

estimated wave direction is selected for wave period estimation, as depicted in Fig. 2.9(b).

Similar to the sub-image selection step, the GLCM-based method is also used for texture

feature extraction. In this method, the size of the sliding window is 59 × 59 pixels (295

m × 259 m) and the distance between the pixel pairs is selected as 4. Since the wave

period is related to the spacing between the wave signatures [73], if the window size is too

small, the sliding window cannot include sufficient wave signatures and therefore cannot

reflect accurate spacing between the wave signatures. In contrast, the number of generated

texture features would be less if a larger window were used because the number of available

sliding windows will decrease. As for the distance between the pixel pairs, the value of 4 is

chosen to ensure it is large enough to capture most variations of pixel intensities between

adjacent wave crests and troughs. If the distance value is too small, the variations between

pixel pairs may not be observed, while a very large distance will cause the fact that the

feature obtained does not represent the variation between adjacent wave crests and troughs.

Therefore, in each 256× 256 sub-image, 39204 sliding windows can generate 313632 feature

values to obtain one feature vector.

After obtaining the texture features, the random-forest-based regression algorithm [74]

is used to train the wave period estimation model. Although the main training steps of the

random-forest-based regression model are the same as those of the aforementioned random-

forest classification algorithm, the goal of the proposed regression model is to obtain the

smallest difference between the actual data value (buoy-measured wave period in this study)

and the radar-derived wave period. Besides, the number of randomly selected features for

training of each decision tree is one third of all features [68]. Moreover, the output at each

leaf of the decision tree is wave period. In this study, the final predicted wave period of each

radar image equals the average of the predicted results generated by 100 trained regression

models.
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2.3 Experimental Results

In this study, the radar-derived estimation results are analyzed under four rainfall intensity

levels, i.e., rainless, light rain, moderate rain, and heavy rain. According to the Manual of

Surface Weather Observations (MANOBS) [75], the range of rain rates for each level is

• Rainless: Zero rain rate;

• Light rain: Nonzero rain rates less than 2.5 mm/h;

• Moderate rain: Rain rates between 2.6 to 7.5 mm/h;

• Heavy rain: Rain rates between 7.6 to 50 mm/h.

Also, in order to validate the effectiveness of the sub-image selection scheme for rain effect

mitigation, the proposed wave direction and wave period estimation algorithms without

applying the sub-image selection scheme are also implemented for comparison. In the latter

case, all the 15 sub-images in each radar image are used for wave parameter estimation.

2.3.1 The Influence of Rain on Extracted Features

In order to verify the effectiveness of classifying between rainless and rainy images using these

four features (Con, H, Cor, and En) from GLCM, the mean and standard deviation of each

feature calculated from rainless and rainy sub-images for different wind speeds, observation

ranges, and observation directions are compared with each other with the results being

shown in the box plots in Figs. 2.10 to 2.17. In each figure, the red and blue box plots

represent the results calculated under rainless and rainy conditions, respectively. From Figs.

2.10-2.13, it can be observed that the medians of mean contrast under rainless conditions

are generally lower than those obtained under rainy conditions. In contrast, the medians

of mean homogeneity, correlation, and energy under rainless conditions are all larger than

those obtained under rainy conditions. From Figs. 2.14-2.17, it may be observed that most

of the median standard deviations calculated from the contrast, homogeneity, and energy
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Figure 2.10: Box plots of the mean contrast distributions for different (a) wind speeds, (b)

ranges, and (c) directions.
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Figure 2.11: Box plots of the mean homogeneity distributions for different (a) wind speeds,

(b) ranges, and (c) directions.
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Figure 2.12: Box plots of the mean correlation distributions for different (a) wind speeds,

(b) ranges, and (c) directions.
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Figure 2.13: Box plots of the mean energy distributions for different (a) wind speeds, (b)

ranges, and (c) directions.
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Figure 2.14: Box plots of the standard deviation distribution of contrast for different (a)

wind speeds, (b) ranges, and (c) directions.
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Figure 2.15: Box plots of the standard deviation distribution of homogeneity for different

(a) wind speeds, (b) ranges, and (c) directions.
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Figure 2.16: Box plots of the standard deviation distribution of correlation for different (a)

wind speeds, (b) ranges, and (c) directions.
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Figure 2.17: Box plots of the standard deviation distribution of energy for different (a)

wind speeds, (b) ranges, and (c) directions.
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under rainless conditions are larger than those obtained under rainy conditions. On the

other hand, the median standard deviations calculated from the correlations under rainless

conditions are smaller than that obtained under rainy conditions. Additionally, it can be

found that these features do not show obvious dependence on wind speed, distance range

and direction under rainless or rainy condition. According to the difference of the mean and

standard deviation distributions of each feature under the rainless and rainy conditions,

it can be concluded that values of these image features will mainly be influenced by rain.

Thus, it is feasible to extract the mean and variance of these features as feature vectors to

train the classification model.

2.3.2 Wave Direction Result Analysis

Figs. 2.18 and 2.19 show the wave direction estimation results under rainless and rainy

conditions. Specifically, Figs. 2.18(a) and Fig. 2.19(a) show the simultaneous wind speed

and wave height information of each sample. It can be observed from Fig. 2.18(b) that

a few relatively large deviations between radar-derived results and buoy measurements ap-

pear when the sub-image selection scheme is not used under rainless conditions. These

deviations are mainly caused by estimation from some low-backscatter regions in the radar

images. From Fig. 2.19(c), it can be found that there are many relatively large deviations

between radar-derived results and buoy measurements if the sub-image selection scheme is

not applied. This is mainly caused by estimation from the regions severely contaminated

by rain. In contrast, the sub-image selection scheme leads to a better performance in wave

direction estimation; thus, this method can effectively mitigate the rainfall effect on estima-

tion to some extent. As for Figs. 2.18(c) and 2.19(d), it can be found that the deviation

of estimated wave direction increases with the increase of rainfall intensities. Under rainy

conditions, the wave signatures may be still affected by rain even if the texture is clear in the

sub-image identified by selection scheme. Another reason for the large difference between

the wave direction estimated from the radar images and buoy data may be that the buoy

site is far away from the coastal radar system and is not within the radar coverage range.
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Figure 2.18: (a) Simultaneous wind speed and wave height during radar data collection

periods. (b) Wave direction estimated with and without the sub-image selection scheme

under rainless conditions. (c) Scatter plot of the radar-derived and buoy-measured wave

direction under rainless conditions.

Moreover, there is no obvious relationship between the wave direction estimation accuracy

and wind speed or wave height.

In order to further analyze, Table 2.2 shows the root-mean-square errors (RMSEs) and
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Figure 2.19: (a) Simultaneous wind speed and wave height during radar data collection

periods. (b) Simultaneous rain rates during radar data collection periods. (c) Wave

direction estimated with and without the sub-image selection scheme under rainfall

conditions. (d) Scatter plot of the radar-derived and buoy-measured wave direction under

different rainfall intensities.
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Table 2.2: RMSEs and CCs of wave direction estimation under different rainfall intensities

With sub-image
selection scheme

Without sub-image
selection scheme

Rainfall intensity
level

RMSE CC RMSE CC

Rainless 19.7◦ 0.81 26.6◦ 0.65

Light rain 34.7◦ 0.44 40.7◦ 0.30

Moderate rain 39.8◦ 0.67 44.7◦ 0.56

Heavy rain 51.9◦ 0.56 52.9◦ 0.65

correlation coefficients (CCs) between the radar-derived and the buoy-measured wave direc-

tions. From Table 2.2, it can be observed the proposed sub-image selection scheme effectively

improves estimation accuracy by reducing the RMSEs and increasing the CCs of estimation

results under four rain intensity levels. Also, when rain level increases, the improvement

is less. It should be noted that under heavy rain conditions, the difference between the

RMSEs of wave direction is only 1°, which may be associated with the error of the buoy.

However, as shown in Fig. 2.19(a)-(b), most heavy rain samples are obtained under wind

speeds higher than 10 m/s. According to our previous research [22], the generated surface

roughness might be dominated by wind force under high wind speeds and rain may only

cause additional radar backscatter instead of blurring surface wave signatures significantly.

As a consequence, wave signatures may be visible in the radar images under the heavy rain

conditions. In Table 2.2, the small difference between RMSEs of wave direction under heavy

rain is reasonable. In addition, the number of images obtained under heavy rain is much

less than those obtained under light rain and moderate rain. Therefore, more image data

obtained under the heavy rain conditions should be used to further evaluate the effectiveness

of the proposed method in the future work.

2.3.3 Wave Period Result Analysis

Considering that the number of testing samples with light rain and heavy rain is small, more

than one valid sub-image is extracted from light and heavy rain radar images to expand the

data for wave period estimation. In [76], the optimal percentage of data used for training

is found to be 40% to 80%. Thus, the whole dataset is split into 70% for training and
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30% for testing in this experiment. The training set is composed of both rainless and rain-

contaminated sub-images. Additionally, the proposed method with and without the sub-

image selection scheme is tested. As for the method without using the sub-image selection

scheme, the sub-images for wave period estimation are selected along the estimated wave

direction in each radar image.

(a) (b)

(c) (d)

Figure 2.20: Scatter plots of radar-derived wave period with the sub-image selection

scheme and buoy-measured wave period under (a) rainless conditions, (b) light rain

conditions, (c) moderate rain conditions, and (d) heavy rain conditions.
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(a) (b)

(c) (d)

Figure 2.21: Scatter plots of radar-derived wave period without the sub-image selection

scheme and buoy-measured wave period under (a) rainless conditions, (b) light rain

conditions, (c) moderate rain conditions, and (d) heavy rain conditions.

Fig. 2.20 and Fig. 2.21 shows the comparison of radar-derived and buoy-measured wave

periods under different rainfall intensities. Moreover, the colour intensity at each point

indicates the wind speed. It can be found that the method without using the sub-image

selection scheme generated larger deviations than that with the sub-image selection scheme.

This is because that the wave signatures in the sub-image found by the selection scheme are

less contaminated than that without using the scheme. This suggests that the sub-image
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Table 2.3: RMSEs and CCs of wave period estimation under different rainfall intensities

With sub-image
selection scheme

Without sub-image
selection scheme

Rainfall intensity
level

RMSE CC RMSE CC

Rainless 0.80 s 0.91 0.93 s 0.86

Light rain 0.88 s 0.73 1.08 s 0.31

Moderate rain 0.98 s 0.80 1.28 s 0.69

Heavy rain 1.04 s 0.68 1.24 s 0.16

selection scheme can also efficiently mitigate the rain effect on wave period estimation.

Furthermore, it also can be observed that the estimated deviation still increases with the

increase of rainfall intensities. Moreover, there is no obvious relationship between the wave

period estimation accuracy and wind speed.

Table 2.3 shows the RMSEs and CCs between the radar-derived and buoy-measured

wave periods. It can be observed that the sub-image selection scheme helps decrease the

RMSEs by 0.13 s, 0.20 s, 0.30 s under four rainfall intensity levels, respectively. On the

other hand, the CCs of estimated wave periods using the sub-image selection scheme are

also higher than the results without using the sub-image selection scheme under the same

rainfall intensity. It can be found that the RMSE of the wave period under moderate rain

condition is the largest when the sub-image selection scheme is not used. As mentioned

earlier, wave signatures may still be visible in the radar images under heavy rain conditions.

In contrast, those moderate rain samples obtained under low wind speeds will be dominated

by rain echoes with few visible wave signatures; hence, the estimation accuracy of those

samples will decrease and the corresponding RMSE is relatively large.

2.4 Chapter Summary

In this chapter, the influence of rainfall intensity on wave direction and period estimation

from X-band marine radar images is analyzed. First, a random-forest-based classification

method for identifying the valid sub-images with visible wave signatures is proposed to

reduce the effect of rain. Wave direction is estimated from the selected valid sub-images
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of each radar image by performing a RT-based algorithm, while a novel method based on

texture feature extraction, and a random-forest-based regression model is proposed for wave

period estimation. Experimental results show that the sub-image selection scheme plays a

significant role in reducing wave direction and wave period estimation errors under different

rain conditions. In addition, it has been observed that as rain rate increases, the influence

of rain on wave parameter estimation tends to be more severe as well. As a limitation of

this method, the time required for GLCM feature extraction from a radar image is around

54 s. Therefore, a more efficient method for GLCM feature extraction should be developed.
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Chapter 3

Wave Height Estimation from

X-band Nautical Radar Images

Using Temporal Convolutional

Network

In this chapter, a temporal convolutional network (TCN)-based significant wave height

(Hs) estimation model that employs three types of Hs-related input features is proposed.

In Section 3.1, the radar and wave data used in this study are introduced. The procedures

for feature extraction and the architecture of TCN are described in Section 3.2. Section 3.3

illustrates the experimental results and comparisons among different ML-based algorithms.

Finally, conclusions and future work are addressed in Section 3.4.

3.1 Data Overview

In this chapter, since Hs estimation is studied under rainless condition, another set of data

with more available rain-free radar images is utilized for analysis. Additionally, the data
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used in Chapter 2 do not provide radar image sequences and thus do not permit utilization

of temporal features to analyze Hs. The radar data in this chapter were collected by an

X-band nautical radar (Decca) operating at grazing incidence with horizontal transmit and

horizontal receive (HH) polarization. The radar system was installed on a moving vessel and

its information is provided in Table 3.1. During the data collection periods (from November

26 to December 4, 2008), the vessel was travelling approximately 300 km south-southeast of

Halifax, Nova Scotia, Canada, where the water depth is around 200 m. Since the antenna

rotation period is around 2.14 s, each sequence file which includes 32 radar gray-level (from

0 to 255) images is generated approximately every 68 seconds by WaMoS II. The original

radar images are presented in polar coordinates and can be transformed into Cartesian

coordinate through scan conversion. It should be noted that because the presence of rain

may blur wave signatures and lead to inaccurate wave estimation [21, 57], data collected

under rainfall conditions are excluded from the analysis. Simultaneous wave measurements

from three Triaxys directional wave buoys that were deployed in a drifting mode [77] are used

as ground truth for model training, validation, and testing purposes. In order to maintain

a short distance from the drifting buoys, the vessel was sailed or moored near the buoys

during the data collection period. The distances between the vessel and the buoys were

generally less than 10 km. The route of the vessel is indicated by red lines in Fig.3.1. Those

buoys are able to measure Hs ranging from 0 to 20 m with a resolution of 0.01 m, and an

error within 2%. Since the reference Hs was measured approximately every 30 minutes, the

simultaneous Hs for each radar image sequence can be obtained by temporal averaging and

interpolation.

3.2 Methodology

3.2.1 Feature Extraction

In this study, three types of features are extracted using different algorithms and combined

as the input feature vector for the estimation model. These features are introduced below.
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Figure 3.1: The route of the vessel during radar data collection periods.

SNR feature extraction

In [18], SNR was calculated from radar-derived wave spectra based on 3D Fourier transform

analysis and it used to determine Hs through linear regression. Here, a series of 32 Cartesian

radar images contained in each file are used to generate one estimation result. For each

radar image, a 128 × 128 sub-image (960 m × 960 m) centered on the upwind direction

was selected, as shown in Fig. 3.2. The calculation of SNR involves several steps. Firstly,

Table 3.1: Radar information

Transmit frequency 9.41 GHz

Polarization Horizontal

Pulse width 50 ns

Range resolution 7.5 m

Range coverage 240 m - 2160 m

Beam width 2◦

Azimuth coverage 360◦

Antenna height 21.9 m

Antenna rotation speed 28 rpm

Grey level of radar image 0 - 255
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Figure 3.2: The selected sub-image (outlined in blue) for calculating SNR.

the image spectrum of the selected region FI(k, ω) is obtained by applying the 3D Fourier

transform [8], where k = (kx, ky) is the two-dimensional wave number vector and ω is the

angular frequency of the ocean wave. According to the linear gravity wave theory [8, 33],

the dispersion relation can be expressed as

ω =
√
g|k| tanh (|k|d) + k ·U , (3.1)

where d is the water depth, g is the gravitational acceleration, and U = (Ux, Uy) is the

velocity of encounter (i.e., combination of the velocities of radar platform and current)

[33,78]. Then, U can be determined by a least square analysis method using the dispersion

relation (3.1) according to the image spectrum [8,19]. The high harmonic dispersion relation

is also considered and may be expressed as

ωq = (q + 1)

√
g|k|
q + 1

tanh (
|k|d
q + 1

) + k ·U , (3.2)
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where q represents the order of the qth-harmonic. The main spectral components of the

image spectrum include the wave-related component, high harmonics caused by shadowing

modulation, subharmonics of the dispersion relation, and the background spectral noise

(BGN) due to the roughness caused by the local wind on the sea surface [79]. The wave-

related image spectrum (denoted as FF (k, ω)) can be extracted from FI(k, ω) by applying

a filter based on the linear wave dispersion relationship (3.1). Hence, those components in

the image spectrum that do not belong to the wave field can be filtered [8]. Similarly, the

high harmonic spectrum (denoted as FH(k, ω)) also can be obtained from FI(k, ω) (3.2).

Thus, the 3D BGN spectrum (denoted as FBGN (k, ω)) can be approximated as

FBGN (k, ω) ' FI(k, ω)− FF (k, ω)− FH(k, ω). (3.3)

Next, due to the non-linearity of the radar imaging process, the wave spectrum (denoted

as FW (k, ω)) is estimated from FF (k, ω) using an empirical modulation transfer function

(MTF, denoted as TM (k)) as

FW (k, ω) = FF (k, ω) · TM (k). (3.4)

The MTF (TM (k)) is used for converting the wave-related image spectrum to the actual

wave spectrum as a further correction, which is expressed as

TM (k) = |k|β, (3.5)

where β is the MTF exponent, which is empirically suggested as 1.2 [11]. Finally, the SNR

can be obtained as the ratio of the integration of the wave spectrum and the integration of

BGN as

SNR =

∫
Ωαk

FW(k, ω)d2kdω∫
Ωωk

FBGN(k, ω)d2kdω
. (3.6)

Finally, the calculated
√

SNR is considered as the SNR feature for the network model since

it has been found that
√

SNR is proportional to Hs [18].
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EEMD feature extraction

Figure 3.3: The selected sub-image (outlined in blue) for EEMD-based feature extraction.

In order to reduce the computation load, a sub-image ranging from 240 to 1200 m from

the radar site and ±30° around the upwind direction was selected for feature extraction

from the first polar radar image in each sequence file, as displayed in Fig. 3.3. The details

of feature extraction are illustrated as follows. Firstly, the sub-image can be represented by

Isub as

Isub =



p(1,1) p(1,2) · · · p(1,N)

p(2,1) p(2,2) · · · p(1,N)

...
...

. . .
...

p(M,1) p(M,2) · · · p(M,N)


, (3.7)

where p(m,n) is the intensity of the pixel in the mth row and the nth column of the sub-

image. Then, ensemble empirical mode decomposition (EEMD) [36] is applied to each

column (azimuthal direction) of Isub to obtain the first five intrinsic mode functions (IMFs)

and a residual term, which can be obtained as

Isub(∼, n) =

5∑
j=1

Cj(∼, n) +R(∼, n), (3.8)

where n is the nth column of the sub-image, Cj is the jth IMF, and R is the residual term.

Each IMF can be split into the amplitude modulation (AM, denoted as A) and frequency

modulation (FM, denoted as F ) portions [80] using a normalization scheme, where the AM
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part Aj(∼, n) is expressed as

Aj(∼, n) =



a1,n,j

a2,n,j

...

aM,n,j


. (3.9)

Eventually, the AM portions of the 2nd-5th IMFs are calculated and averaged in each azimuth

and range of the sub-image, which can be expressed as

S =
1

N

1

M

5∑
j=2

Aj . (3.10)

In [36], the calculated average (S) is used to estimate Hs with linear regression. Here, it is

employed as another input to the network model.

GLCM feature extraction

Since GLCM analysis has already been employed for retrieving wave direction and wave

period [81], it is reasonable to further analyze GLCM-based features for Hs estimation. The

selected region for feature extraction is the same as the region extracted for the EEMD

feature. A 29 × 29 sliding window (217.5 m × 217.5 m) is first applied to the sub-image.

The distance between the pixel pairs in each sliding window is set as 4, while the positional

relationships of pixel pairs are in four directions (0°, 45°, 90°, and 135°) [66]. In this study,

four statistics calculated from each GLCM, i.e., contrast (Con), homogeneity (H), correla-

tion (Cor), and energy (E) are selected. In order to verify the influence of different Hs on

the GLCM feature values, the median values of mean and standard deviation of the four

features over four directions from all sliding windows in each radar sub-image are calculated

and compared under different Hs ranges (1.00 - 2.25 m, 2.25 - 3.50 m, 3.50 - 4.75 m), as

shown in the box plots in Figs. 3.4 and 3.5. It can be observed that only two (i.e., the

median values of mean contrast and mean homogeneity) out of the eight figures do not show

clear correlations with Hs, while the other six features either increase or decrease gradually
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(a) (b)

(c) (d)

Figure 3.4: Median value distribution of mean of (a) contrast, (b) homogeneity, (c)

correlation, and (d) energy.

as Hs increases. Thus, metrics presented in the other six figures are selected from each radar

image for Hs estimation, i.e.,

• Median of mean correlation;

• Median of mean energy;

• Median of contrast standard deviation;

• Median of homogeneity standard deviation;

• Median of correlation standard deviation;

• Median of energy standard deviation.
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(a) (b)

(c) (d)

Figure 3.5: Median value distribution of standard deviation of the (a) contrast, (b)

homogeneity, (c) correlation, and (d) energy.

Those 6 features are combined with the SNR and EEMD features to form a feature vector.

Then, the combined feature vector is normalized by using zero-center normalization. Assume

that the collection of each type of feature extracted from all sequences is denoted as T , the

normalization operation results in

Tnorm =
T −mean(T )

std(T )
, (3.11)

where Tnorm is the collection of each type of normalized feature, and mean(T ) and std(T )

are the mean value and standard deviation, respectively, of each type of feature collection

in all sequences. Finally, a total of 8 normalized features are combined as an 8-dimensional
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Figure 3.6: The overall framework of the TCN-based Hs estimation model.

(8D) feature vector for each input sample in the TCN-based model.

3.2.2 TCN-based Wave Height Estimation Model

TCN is a variant of CNN that convolves over the time domain. The complete architecture

of the proposed TCN-based Hs estimation model is presented in Fig. 3.6, which includes 6

dilated causal convolution (DCC) layers and a fully connected layer. The functions of each

component and operation in the network are briefly introduced as follows.

DCC layer

The visualization of dilated convolution inside 6 DCC layers is shown in Fig. 3.7. It can be

observed that the outputs of each convolutional layer are calculated only from its current and
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Figure 3.7: Visualization of dilated convolution in 6 DCC layers.

earlier input samples. On the other hand, it also allows interval sampling of the input during

convolution, which allows a larger number of effective history inputs without a pooling [82].

As shown in Fig. 3.7, the sampling rate is controlled by the dilation factor, which increases

exponentially with the depth of the network. For the nth DCC layer, the dilation factor is

given by dn = 2(n−1), n ∈ {1, 2, ..., 6}. Also, the filter size in each convolution operation is

k × 1. In this study, k is equal to 3 since if the value of k is too large or too small, the

computation load will be increased or the temporal feature cannot be reflected, respectively.

The number (r) of input samples in the receptive field of this network is determined by dn

and k, resulting in

r = 1 +

6∑
n=1

(k − 1)× dn = 127. (3.12)
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Figure 3.8: The structure of each DCC layer.

Figure 3.9: A figure illustration of 8 3× 1 filters used in the convolution operation.

As mentioned above, each sample in the input sequences (X) consists of an 8D feature

vector. In order to estimate Hs at a certain time (t0) in the sequences, a total of 127 8D

feature vectors (xt0 ,xt0−1, ...,xt0−126) are extracted as the receptive field to produce an 8D

result (yt0) from 6 DCC layers.

The detailed calculation steps in each DCC layer are illustrated in Fig. 3.8, which

includes a convolution operation, rectified linear unit (ReLU), and dropout. A total of 8

filters are used in each convolution operation. In particular, all elements in 8 filters can

be denoted as fij , i ∈ {1, 2, 3, 4, 5, 6, 7, 8}, j ∈ {1, 2, 3}, where i represents the index of
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filters and j represents the index of elements in the ith filter. The values of each filter are

initialized with a normal distribution. As displayed in Fig. 3.9, the collections of fi1, fi2,

and fi3, i ∈ {1, 2, 3, 4, 5, 6, 7, 8} are respectively denoted as three 8D vectors f(1), f(2),

and f(3) for the convolution operation. In Fig. 3.7, Cn
t indicates the input of convolution

operation at time t in the nth DCC layer, which is marked in red. Due to the dilation, t of

each input sample used in the nth DCC layer can be expressed as

t = t0 − 2n × l, l ∈ {0, 1, ..., 27−n − 2}. (3.13)

Therefore, the output of the convolution operation at time t in the nth DCC layer can be

expressed as

F n
1 (t) =

3∑
j=1

f(j) ∗Cn
t−dn×(j−1), (3.14)

where ∗ denotes the element-wise product. When n = 1, the inputs can be given as

C1
t−d1×(j−1) = xt−d1×(j−1).

Then, the convolution operation is followed by ReLU. ReLU is a kind of activation

function [83] that sets all negative input values to zero in order to achieve non-linear trans-

formation of the data, which is given by

F n
2 (t) = ReLU(F n

1 (t)). (3.15)

Compared to other activation functions, ReLU further reduces computation by adding more

sparsity.

In order to prevent overfitting, the dropout operation is used as a form of regularization

after ReLU [84], which will probabilistically drop out nodes in the network during the train-

ing. Assuming that output values in the ReLU operation are kept for futher computation

with a probability of p, the expression can be presented as

F n
3 (t) = M ∗ F n

2 (t), (3.16)
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where M is the 8D vector consisting of 0 and 1, which is generated by the Bernoulli function

M ∼ Bernoulli(p). (3.17)

In the proposed model, the probability p is set as 50% in each dropout operation, which

means half of the randomly selected output values will be kept while the other half are

discarded.

Furthermore, the residual connection [85] is incorporated into the training of deep layers

in order to avoid the issue of exploding or vanishing gradients. Specifically, the input of

each convolution operation at time t is connected to the output from the dropout operation

for the addition operation [63]. Then, after the addition operation, the ReLU operation is

implemented. The output (Cn+1
t ) can be expressed as

Cn+1
t = ReLU(F n

3 (t) + Cn
t ). (3.18)

When n ≤ 5, Cn+1
t is considered as the input at time t of next layer. When n = 6, t is

equal to t0. Thus, C6+1
t can also be written as yt0 .

Fully connected layer

The purpose of this step is to establish the mapping relationship between the 8D output

(yt0) from 6 DCC layers and the final estimated wave height (Hest). Assume that yt0 =

(y1, y2, ..., y8), Hest can be obtained as

Hest =
8∑
i=1

(wiyi + bi), (3.19)

where wi and bi are the updated weight value and bias corresponding to yi by the Adam

algorithm [86].
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Table 3.2: RMSE comparison of estimated Hs for different input features

Input features
RMSEs of estimated Hs using TCN
Training Validation Testing

SNR 0.67 m 0.57 m 0.58 m

EEMD 0.42 m 0.41 m 0.41 m

GLCM 0.34 m 0.39 m 0.41 m

SNR +EEMD 0.42 m 0.38 m 0.39 m

SNR +GLCM 0.30 m 0.37 m 0.38 m

EEMD+GLCM 0.29 m 0.36 m 0.35 m

SNR +
EEMD+GLCM

0.26 m 0.32 m 0.32 m

3.3 Experimental Results

3.3.1 Model Training

Since data collections were interrupted due to system failure for some periods, and the radar

data collected under rain condition are also excluded, a total of 1448 radar image sequences

were utilized in this study. 50% of radar image sequences collected in three time periods are

used for model training, while the other half are used for testing the estimation accuracy.

Five fold cross validation is applied to the training set. As for the model training, the size

of mini-batch is referred to the widely used size (64) for a neural network. In addition, the

number of epochs is set to be 150. If the number is too large, it will cost much time. On

the other hand, less epochs may cause underfitting.

3.3.2 Input Features Validity Analysis

Table 3.2 shows the RMSEs of Hs estimated from the testing samples. In order to validate

the effectiveness of the extracted features (SNR, EEMD, and GLCM feature) in wave height

estimation, different feature combinations are input to the TCN model for the Hs estimation

analysis. In this study, the range of Hs encountered is from 1.41 m to 4.49 m. It can be

noticed that the regression accuracy is not satisfactory when only the SNR feature is used

as the input feature for the network, while the regression result is better when EEMD or

GLCM is selected as the single input. When selecting two of the three features, it is noticed
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that combination with the GLCM feature generate better results than combinations without

the GLCM feature. It can be observed that when the SNR feature is added to the combined

features of EEMD and GLCM, the performance of Hs estimation can be further improved

to produce the minimum RMSE.

3.3.3 Comparisons with Different Methods

In order to compare the performance of the TCN-based model with existing methods for

estimating Hs from the radar data, the typical SNR-based [18] and EEMD-based [36] linear

fitting methods are also implemented. The SVR-based [87] and CGRU-based models [88]

with the same input features as the TCN model are also employed for comparison. The

estimation results from the testing samples with the SNR-based linear fitting, EEMD-based

linear fitting, SVR-based, CGRU-based and the proposed TCN-based methods before and

after implementing the moving average are presented in Figs. 3.10(a), (b), (c), (d), and

(e), respectively. The temporal moving average is applied to the estimated Hs obtained

during each time interval between two consecutive buoy measurements. In addition, Fig.

3.11 shows the estimated Hs of all samples before and after applying the moving average

in time series. It can be noticed from Fig. 3.10(a) and Fig. 3.11(a) that the SNR-based

linear fitting method does not present a clearly linear relationship between the square root

of SNR and Hs. Specifically, Hs is generally overestimated when the buoy-measured Hs is

lower than 3 m and mostly underestimated for higher Hs. In the SNR-based linear fitting

method, wave height is assumed to be linearly related with
√

SNR. However, this may not

be true for all Hs values. Fig. 3.10(b) and Fig. 3.11(b) show that for EEMD-based method,

Hs will be overestimated for buoy-measured Hs lower than 3.5 m. In contrast, the proposed

TCN-based method is able to estimate Hs without significant bias.

The RMSEs, correlation coefficients (CCs), and biases between the radar-derived Hs of

the various methods, as well as the buoy-measured Hs, are summarized in Table 3.3. It

can be observed that the RMSE calculated from the TCN model is 0.32 m and the CC
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(a) (b)

(c) (d)

(e)

Figure 3.10: Scatter plots of buoy-measured Hs and radar-derived Hs with and without

temporal moving average. (a), (b), (c), (d), and (e) correspond to SNR-based linear

fitting, EEMD-based linear fitting, SVR-based and GRU-based, and the proposed

TCN-based methods, respectively.
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Figure 3.11: Hs estimation results in time series using different methods. Cyan and red

scatters represent testing samples without and with temporal averaging, respectively. (a),

(b), (c), (d), and (e) correspond to SNR-based linear fitting, EEMD-based linear fitting,

SVR-based and GRU-based, and the proposed TCN-based methods, respectively.
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Table 3.3: Comparisons of results using different methods for Hs estimation

Training Validation Testing (without averaging) Testing (with averaging)
RMSE CC Bias RMSE CC Bias RMSE CC Bias RMSE CC Bias

SNR-based linear
fitting method

0.68 m 0.59 -0.01 m – – – 0.59 m 0.62 0.11 m 0.57 m 0.65 0.11 m

EEMD-based linear
fitting method

0.44 m 0.86 0 m – – – 0.41 m 0.84 0.07 m 0.34 m 0.90 0.07 m

SVR-based
method

0.28 m 0.94 -0.03 m 0.33 m 0.89 -0.06 m 0.32 m 0.89 0.07 m 0.25 m 0.94 0.07 m

GRU-based
method

0.28 m 0.95 -0.02 m 0.34 m 0.90 -0.06 m 0.33 m 0.90 0.10 m 0.27 m 0.93 0.10 m

Proposed TCN-based
method

0.26 m 0.95 0.04 m 0.32 m 0.91 0.02 m 0.32 m 0.90 0.07 m 0.24 m 0.94 0.07 m

is 0.90 when the moving average is not applied. Compared to the typical SNR-based and

EEMD-based linear fitting methods, the proposed method decreases the RMSE by 0.27 m

and 0.09 m with CC being furthered improved. When comparing the estimation results

with the other two ML-based methods, it can be observed that while the TCN model still

generates the best regression result, the difference is not significant, which indicates that

the ML-based methods are superior to methods that are based on linear regression. In

addition, although the proposed method performs only marginally better than the SVR-

based method, the TCN-based method requires lower memory for training. This is because

that the SVR-based method needs a lot of memory to store all the support vectors [89].

On the other hand, the backpropagation path of TCN can generate stable gradients and

effectively mitigate the gradient of explosion [63]. Finally, it may be noted from Table 3.3

that when the moving average is applied, the estimation accuracy can be further improved.

In particular, the RMSE calculated from the TCN model decreases to 0.24 m while the CC

further improves to 0.94.

3.4 Chapter Summary

In this chapter, the combined features composed by SNR, EEMD and GLCM features are

extracted from X-band radar image sequences to estimate Hs using a TCN-based regression

model, which can derive the wave height by combining spatial and temporal features of radar
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image sequences. The normalized features calculated by the SNR-, EEMD-, and GLCM-

based methods are incorporated as the input feature vector for the sequence. Experiment

results from nautical radar data collected from a moving vessel on the East Coast of Canada

verified that the combination of all three types of features will generate the best estimation

accuracy. On the other hand, the application of a moving average can effectively further

improve the estimation accuracy. The proposed TCN-based method is also compared with

two existing methods. It is found that compared to the typical SNR-based and EEMD-

based linear fitting methods, the TCN-based model reduces the RMSEs from 0.57 m and

0.34 m to 0.24 m. Moreover, while other ML-based methods such as SVR and CGRU can

also produce good results, TCN [90] is still the most accurate one. However, this proposed

model should be retrained for different radars and different oceanic conditions. Thus, it is

worthwhile to introduce more radar data from various radar systems and different oceanic

conditions for the model training, which can make the model more robust and general.

Another shortcoming of this proposed method is that the computational costs for EEMD

and GLCM feature extraction are expensive. It normally takes around 65 s to produce one

result. Thus, the computational load of this method needs to be reduced.
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Chapter 4

Conclusion

4.1 Summary

In this thesis, sea surface wave parameters, i.e., wave direction, wave period, and Hs were

retrieved and evaluated by using X-band marine radar images. When estimating the wave

direction and wave period, the radar images collected under rain condition were also taken

into account. Firstly, the sub-image selection scheme was proposed in order to mitigate the

rain effect on the wave parameter estimation. Then, the wave direction and wave period

estimation accuracy under different rainfall intensities was evaluated as well. The radar data

for these two parameters were collected from an on-shore X-band marine radar at Yaquina

Bay, Newport, OR, USA. A directional wave buoy located around 20 kilometers from the

radar site provided simultaneous wave parameter used as ground truth. As for the sub-

image selection, a random-forest-based classification method was proposed to identify the

sub-image with clear wave signatures from rain-contaminated radar images. Then, those

identified regions with clear wave signatures were considered as valid sub-images for the

further wave direction and period estimation. In this study, an Radon transform (RT)-based

method was used to estimate the wave direction from the wave signatures of selected valid

sub-images. Besides this, a new random-forest-based regression method was implemented
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to train the wave period estimation model using the extracted GLCM features. It is found

from the experimental results that the estimation accuracies of wave direction and wave

period were both improved by the application of the proposed sub-image selection scheme.

Compared to the method without using sub-image selection scheme, the RMSEs of estimated

wave direction using sub-image selection scheme were decreased by 6.9◦, 6.0◦, 4.9◦, and 1.0◦

under rainless, light rain, moderate rain, and heavy rain conditions, respectively. On the

other hand, the RMSEs of estimated wave period using sub-image selection scheme were

decreased by 0.13 s, 0.20 s, 0.30 s, and 0.20 s under those four rainfall intensity levels,

respectively, compared to the method without using sub-image selection scheme. Thus,

the rain effect on the wave parameters can be mitigated to some extent by the sub-image

selection scheme. However, under rainy conditions, the wave signatures may be still affected

by rain even when the texture is clear in the sub-image identified by the selection scheme.

Also, the deviations of estimated wave direction and wave period from the reference values

are increased gradually with the increase of rain intensity.

As for Hs estimation, only rainless radar data were considered in this study. A TCN-

based regression method was proposed to estimate Hs from the radar images. This algorithm

can utilize the spatial and temporal features to analyze the radar data. In this study, the

radar data were collected on a ship-borne radar around 300 km south-southeast of Halifax,

Nova Scotia, Canada. Three directional wave buoys were deployed in a drifting mode to

provide the simultaneous wave parameters. Firstly, three features, i.e., SNR, EEMD, and

GLCM features were extracted from each radar image sequence. Then, the TCN-based

regression method utilized the three features to train the Hs estimation model. According

to the experimental results, it was found that the TCN-based model further improved the

Hs estimation accuracy, with reductions of RMSEs by 0.33 m and 0.10 m after averaging,

respectively, compared to the SNR-based and the EEMD-based linear fitting methods. It

may be finally noted that for the same input features, TCN outperformed other machine

learning-based algorithms including SVR and the CGRU network even though the difference

was not significant.
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4.2 Future Work

In the future, more image data collected from different radar systems and installation loca-

tions should be incorporated into the network to further improve the model’s accuracy and

robustness. Furthermore, more advanced network architectures for wave parameter estima-

tion should be explored. Particularly, the accuracy of Hs under high wave height needs to

be further improved. Besides, although the Hs estimation result is encouraging, the com-

putational costs for the EEMD and GLCM features are expensive, i.e., it takes around one

minute to produce one result. Thus, it is necessary to explore an effective way to reduce

the computation cost.

In this study, the regions for wave height estimation are extracted from the upwind

direction. However, the presence of swell will cause inaccuracies in the wave signatures

extracted from the region in the upwind direction. Therefore, it is also necessary to consider

swell when analyzing wave signatures in any future work.

Future work could also focus on the analysis of rain influence on wave height measure-

ment from rain-contaminated X-band marine radar images. The effect of different rain

intensities on Hs estimation is worth investigating, and the mitigation method of rain effect

should be explored as well. Additionally, the sea surface wind gusts will also affect the

surface waves, especially in the case of mesoscale convective systems [91]. Thus, the wind

conditions should be included when estimating the wave parameters from radar images.

In addition, it may be meaningful to extend the research on the effects of rain in the

frequency domain. Furthermore, ongoing work suggests that other sea parameters, such

as current and wind can be analyzed by using more advanced ML-based methods and

rain effects on these parameters can also be evaluated under different rain intensities. In

conclusion, although this work is promising, more data from different radar systems and

various sea states should be further investigated in the future in order to produce a more

robust and general wave estimation model.
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